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Chapter 1

Introduction

The relation between interaction and structure and thermodynamic properties in condensed
matter is a central issue for the theory. Liquid phases have often been considered very difficult to
describe by theory since they lack the possibilities of controlled approximations like in dilute (gas)
or symmetric (crystalline) phases. However, the source of the difficulties, the partial disorder of
the relevant configurations, makes them ideal for studying the interactions in condensed matter
phases. Notwithstanding many theories have been developed in the last half century, this remains
an active field of research witnessed by recent progress in colloidal science or in confined liquid
theory. In the present thesis work we have studied issues related to some unsolved problems in
this area. The final thesis has been confined to those problems for which we could give either a
definite solution or an original discussion.

The outline of the thesis is as follows. In the second chapter we briefly present some back-
ground notions necessary to have a clear picture of where the arguments treated in the thesis
are collocated in the realm of theoretical physics: a classical liquid is defined, the creation of a
mathematical model of a real fluid is discussed, and a brief outline of the experimental methods
used to analyze a real fluid and of the simulation methods used to analyze its mathematical
models is given. In chapters 3, 4, 5, and 6 we study various aspects of the integral equations
theory. These are approximate theories which allow to gain some insight into the structure and
thermodynamics of a given model. In chapter 4 we give particular emphasis to the analytic
solutions of such theories. While in chapter 5 and 6 we concentrate on their numerical solutions.
In chapter 7 we carry out a Monte Carlo simulation aimed to study the structure of some simple
models. Up until 1961 the statistical mechanics of the one dimensional Coulomb gas was an
unsolved problem. At more or less the same time the problem was solved by Lenard [1] and by
Prager [2] independently. A powerful alternative method of solution using functional integra-
tion was subsequently found by Edwards and Lenard [3]. In chapter 9 we give a review of their
method of solution and show how it is suitable to study other one dimensional fluid models.
The two dimensional Coulomb gas may also be solved exactly at a temperature βq2 = 2 [4]. In
chapter 8 we find some exact results for a particular two dimensional Coulomb gas: one in a
disk on the surface of a pseudosphere. We will now give a brief abstract for each of the chapters
three to nine, stressing whether they contain original results or not.

In chapter 3 there are no original results. We try to give a unified introduction to the theory
of classical fluids, introducing the density functional theory as a development of the grand canon-
ical formalism of statistical mechanics, defining the free energy and the most commonly used
correlation functions, as well as the Ornstein-Zernike (OZ) equation. We use Percus method to
introduce the most commonly known integral equations [like the Random Phase Approximation
(RPA), the Percus-Yevick (PY) approximation, and the hypernetted chain (HNC) approxima-
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tion]. At the end of the chapter we present the mean spherical approximation (MSA) which
(together with PY) admits an analytic solutions for a number of fluid models of physical interest.

In chapter 4 there are no published results. We present the analytic solutions of the MSA
for the three dimensional mixture of charged hard spheres, obtained using the Wiener-Hopf
factorization (see appendix B). The original subject of this chapter, presented in the last section,
is the discussion of the impossibility to use the Wiener-Hopf technique to find an analytic solution
of the PY approximation for the three dimensional non additive hard spheres. Such solution
has not yet been found.

Chapter 5 contains original results published on [5]. We discuss and illustrate through
numerical examples the relations between generating functionals, thermodynamic consistency
(in particular the virial-free energy one), and uniqueness of the solution, in the integral equation
theory of liquids. We propose a new approach for deriving closures automatically satisfying such
characteristics. Results from a first exploration of this program are presented and discussed.

In chapter 6 we present some original results published on [6]. A recently proposed connection
between the threshold for the stability of the iterative solution of integral equations for the pair
correlation functions of a classical fluid and the structural instability of the corresponding real
fluid is carefully analyzed. Direct calculation of the Lyapunov exponent of the standard iterative
solution of HNC and PY integral equations for the 1D hard rods fluid shows the same behavior
observed in 3D systems. Since no phase transition is allowed in such 1D system, our analysis
shows that the proposed one phase criterion, at least in this case, fails. We argue that the
observed proximity between the numerical and the structural instability in 3D originates from
the enhanced structure present in the fluid but, in view of the arbitrary dependence on the
iteration scheme, it seems uneasy to relate the numerical stability analysis to a robust one-phase
criterion for predicting a thermodynamic phase transition.

Chapter 7 contains original results which are in course of publication on Physica A [7].
We calculate, through Monte Carlo numerical simulations, the partial total and direct corre-
lation functions of the three dimensional symmetric Widom-Rowlinson mixture. We find that
the differences between the partial direct correlation functions from simulation and from the
Percus-Yevick approximation (calculated analytically by Ahn and Lebowitz) are well fitted by
Gaussians. We provide an analytical expression for the fit parameters as function of the density.
We also present Monte Carlo simulation data for the direct correlation functions of a couple of
non additive hard sphere systems to discuss the modification induced by finite like diameters.

In chapter 8 we present original results published on [8]. The classical (i.e. non-quantum)
equilibrium statistical mechanics of a two-dimensional one-component plasma (a system of
charged point-particles embedded in a neutralizing background) living on a pseudosphere (an
infinite surface of constant negative curvature) is considered. In the case of a flat space, it is
known that, for a one-component plasma, there are several reasonable definitions of the pressure,
and that some of them are not equivalent to each other. In this chapter, this problem is revisited
in the case of a pseudosphere. General relations between the different pressures are given. At
one special temperature, the model is exactly solvable in the grand canonical ensemble. The
grand potential and the one-body density are calculated in a disk, and the thermodynamic limit
is investigated. The general relations between the different pressures are checked on the solvable
model.

In chapter 9 there are no published results. Following Edwards and Lenard paper [3] we
describe a way of simplifying the calculation of the grand canonical partition function of an
ensemble of classical particles living in a one dimensional world and interacting with a given
pair potential. Using the notion of a general Gaussian random process and of Kac’s theorem, we
show how it is possible to express the grand partition function as a one dimensional integral of
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the fundamental solution of a given partial differential equation. The kind of partial differential
equation will be fixed by the kind of diffusion equation satisfied by the Gaussian random process.
Following [3] we see how the Wiener process allows to treat the “Edwards model”. We then show
how other stochastic processes can be used to treat other fluid models: we use the Ornstein-
Uhlenbeck process to simplify the calculation of the grand partition function of the “Kac-Baker
model” and the generalized Ornstein-Uhlenbeck process to treat a fluid with a “general” pair
potential.



Chapter 2

Background

This thesis presents results on a few issues of the theory of classical liquids.

A liquid is a particular phase of matter which occurs at intermediate values of pressure,
temperature, and volume. In figure 2.1 we draw the typical phase diagram of a monatomic
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Figure 2.1: Phase diagram of a typical monatomic substance. The solid lines indicate the
boundaries between solid (S), liquid (L), vapor (G) or fluid (F) phases. (a) is the projection
in the pressure-temperature plane and (b) is that in the pressure-volume plane. The shaded
regions indicate the part of these diagrams considered as a dense liquid. The limits of the
liquid state are marked triple and critical points.

substance (for example argon). From the figure we can see that the liquid phase (bounded
above by the critical point and below by the triple point) occupies a relatively small region of
the phase diagram.

The temperatures at which most substances are liquid are high enough that the system may
be considered classical.

From the point of view of the dynamical and structural properties a liquid distinguishes itself
from a solid by the presence of an important diffusion and by the lack of long range order, and
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from a gas by the importance of collisional processes and short range correlations.

The work done by physicists when studying liquids can be described by the block diagram
shown in figure 2.2. To understand theoretically the behavior of a liquid we need a model for the
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carry out analytic solution
of the model

analytic solution
of the approximation

numerical solution
of the approximation

theoretical
predictions

exact results
for the model

experimental
results
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tests of
theories
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model

A

BC

A

D

statistical mechanics

make
modelsreal liquids model liquids

perform

Figure 2.2: Block diagram showing the processes needed to test a particular model of a
liquid and the ones needed to test a particular theory for a given model. In the thesis we will
present some examples to illustrate those parts of the diagram which have a circle beneath
them.

interactions. Then we need to compare the results obtained from the experiments with the ones
obtained from the numerical simulations or the rarely available analytic solution of the model.
While to test theories constructed from a particular model we need to compare the latter with the
results from numerical or analytical (when available) solutions of the theories. In this thesis we
will give some examples of “analytic solution of a model” (see chapters 8 and 9), some examples
of “analytic solution of the approximation” (see chapter 4), some examples of “numerical solution
of the approximation” (see chapters 5 and 6), and some examples of “computer simulations”
(see chapter 7). We will also see how to “construct approximate theories” (see chapters 3, 5,
and 6). Since we will not talk about how to “make models”, how to “perform experiment”, and
how to “carry out computer simulations” we will spend some words on this arguments in this
introductory chapter.
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i How to make a model

When creating a physical model of a real liquid one usually makes two basic hypothesis: the
system, in absence of an external potential, has to be homogeneous and isotropic, in the bulk.
The main ingredient to be chosen when creating a physical model of a real liquid is the type of
interaction amongst the particles.

i.1 The interaction potential

The most general potential energy for a system of N pointwise particles is

VN (r
N ) =

N
∑

i=1

v1(r1) +
∑

1≤i<j≤N
v2(ri, rj) +

∑

1≤i<j<k≤N
v3(ri, rj , rk) + . . . , (2.i:1)

where the first term represents the effect of an external field and the remaining terms represent
particle interactions. The usual assumption behind this expansion is that the pair interaction v2
will be dominant, followed by the three particles correction term v3, and hopefully successively
smaller terms which may be neglected.

If the particles are not spherically symmetric, as for rigid molecules for example, the definition
of the potentials v2, v3, . . . must be widened to include the orientations dependence.

Even if the three body term is undoubtedly important at liquid densities, in many calculations
they are either omitted or included by defining an ’effective’ pair potential

VN (r
N ) ≈

N
∑

i=1

v1(ri) +
∑

1≤i<j≤N
veff2 (rij) , (2.i:2)

where rij = |ri − rj|. In general an effective potential will depend upon the property to be
calculated and it will also be functionally dependent on the thermodynamic state parameters.
However such issues are important only if one is interested in modeling real liquids but the main
features of the liquid behavior do not depend on the details of the interaction model.

The most important feature of the pair potential of a liquid is the strong repulsion that
appears at short range and is due to the overlap of the outer electron shells inhibited by the
Pauli exclusion principle. This strongly repulsive forces are responsible for the short range order
characteristic of the liquid state. The attractive forces acting at long range are much more
smooth and play only a minor role in determining the structure of the liquid. They provide
an almost uniform attractive background giving rise to the cohesive energy that stabilizes the
liquid.

Then, the simplest model of a fluid is a system of hard spheres. That is a system of pointwise
particles whose pair potential is

v2(r) =

{

∞ r < σ
0 r ≥ σ

, (2.i:3)

where σ is the diameter of the spheres. The equilibrium properties for this potential may be
expressed in terms of the coupling parameter ρ/ρ0, where ρ0 =

√
2/σ3 is the number density of

hard spheres at closest packing. For this fluid the absence of attractive forces means that there
is only one single fluid phase.

Another simple model without attractive forces is the inverse power potential fluid (see
chapter 5 subsection iii.1) also called the soft sphere model. Its pair potential is chosen to be
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continuous

v2(r) = ǫ
(σ

r

)n
, (2.i:4)

where ǫ and σ are two positive parameters and n is usually chosen to be an integer. The
appropriate coupling parameter for this liquid is z = (ρσ3/

√
2)(βǫ)3/n.

Both the hard spheres and the inverse power potential fluids are idealized model which may
have only one fluid phase. A simple model that can describe a true liquid phase is obtained by
adding to the hard spheres potential a square well attraction.

v2(r) =







∞ r < σ1
−ǫ σ1 ≤ r < σ2
0 σ2 ≤ r

, (2.i:5)

where ǫ, σ1, and σ2 are all positive parameters.
In the search for more realistic pair potentials for neutral atoms one can consider the con-

tinuous Lennard-Jones potential (see chapter 5 subsection iii.2)

v2(r) = 4ǫ

[

(σ

r

)12
−
(σ

r

)6
]

. (2.i:6)

It involves two positive parameters: ǫ is the depth of the attractive well and σ the point at which
v2 = 0. The Lennard-Jones potential provides a fair description of the interaction between pairs
of rare gas atoms. Computer experiments [9] show that the triple point of the Lennard-Jones
fluid is at ρσ3 ≃ 0.85 and 1/(βǫ) ≃ 0.68.

For ions, these potentials are not sufficient to represent the long range interactions. A simple
approach is to supplement one of the above pair potentials with the Coulomb interaction (see
chapter 4 section i)

v2(rij) =
zizje

2

ǫ0rij
, (2.i:7)

where zie and zje are the charges on ions i and j and ǫ0 is the dielectric constant of the
surrounding medium.

When making a model of a liquid we also need to choose the space in which the particles are
allowed to move. In most cases this will be an Euclidean space but nothing forbids us to choose
more general Riemannian spaces (for example in chapter 8 we will study the one component
Coulomb plasma on a pseudosphere). The first thing to choose is the dimensionality of such a
space.

Often the choice of the space has an influence on the interaction potential amongst the
particles. Let us consider for example, charged particles (ions for example) free to move in a
two dimensional Euclidean space. In this case we have two possible choices for the Coulomb
pair potential. We can infact choose a model in which the particles still interact through an
electric field with field lines in the three dimensional space, in this case we would choose a 1/r
Coulomb potential, but we may also choose a model in which the particles interact through an
electric field with field lines which do not come out of the plane, in this case we would choose a
− ln(r/r0) (with r0 a given length scale) Coulomb potential.

Choosing a lower dimensionality often increases the chances of finding an exactly soluble
model. Some examples for this are the two dimensional one component plasma considered in
chapter 8 and the one dimensional models studied in chapter 9. The existence of an analytic
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solution for a particular model has often been considered a sufficient condition to tag that model
as an interesting one, even when the model itself did not offer an immediate description of any
real liquid known. The interest in simple exactly soluble models often lies in the fact that one
can use them as paradigmatic examples useful to build approximations for more complicated
and realistic models.

The dimensionality of the space can have an influence on the phase diagram. For example
it has been proven that one dimensional systems with finite range pairwise potential can never
have a phase transition [10].

ii Experimental methods

The main reason to mention experimental methods in a theoretical work is that the quantities
which are directly measurable play a critical role in the comparison between theory and ex-
periment. The experimental methods used when studying a real liquid fall in two categories:
experiments which measure macroscopic quantities and those which measure microscopic quan-
tities. The macroscopic data can usually be measured to a higher accuracy (0.1%) than the
microscopic data (1.0%).

ii.1 Measurements on a macroscopic scale

Typical macroscopic measurements are experiments done to measure the pressure P , density ρ,
and temperature T of a liquid. Integration of these measurements yields other thermodynamic
quantities such as the internal energy, the heat capacities, or the compressibilities.

Measurements on a macroscopic scale are often needed to measure the transport coefficients
of a liquid such as the shear and bulk viscosity, the thermal conductivity, or the diffusion
coefficient.

ii.2 Measurements on a microscopic scale

The most important class of microscopic measurements are the radiation scattering experiments.
Among these three are particularly valuable: neutrons, X-rays, and and laser light scattering.
We will now give a brief description of a scattering experiment to stress the connection between
measured quantities (the cross section) and theoretical concepts (the structure factor).

A typical layout of a scattering experiment on a liquid is shown in figure 2.3. The incident
particles are wave packets with average momenta 〈p〉 = ~k0 and average impact parameter 〈ρ〉.
They are assumed to be uniformly distributed on the z = z0 → −∞ plane for ρ . ρmax. The
range of the scattering potential V(r) is r0 ≪ ρmax.

We want to calculate the differential cross section dσ/dΩ defined as

[

dσ

dΩ
(θ, φ)

]

dΩ ≡ number of particles scattered in dΩ/second

number of incident particles/(second × area on the z = z0 plane)
.(2.ii:1)

Let us now assume, for simplicity, that the particles in the incident beam are neutrons1. The
scattering of the neutron with the liquid occurs as a result of interactions with the atomic nuclei
of the atoms of the liquid. These interactions are very short ranged, and the total scattering
potential V(r) may therefore be approximated by a sum of delta function pseudopotentials of

1Things are only slightly different for X-rays and light scattering. See later on in the text.
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Figure 2.3: Diagram showing a general scattering experiment for the measurement of the
static structure factor. The incident beam of radiation is made up of particles with average
momenta ~k0, uniformly distributed on the z = z0 → −∞ plane for ρ =

√

x2 + y2 . ρmax.
The dimensions of the liquid r0 are much smaller than ρmax. The detector counts the
number of scattered particles falling in the solid angle dΩ per second.

the form

V(r) = 2π~2

m

N
∑

i=1

biδ(r− ri) , (2.ii:2)

where bi is the scattering length of the ith nucleus. For most nuclei, bi is positive, but it can
also be negative and even complex; it varies both with isotopic species and with the spin state
of the nucleus. Using the Born approximation one finds the following result for the differential
cross section (see for example [11] chapter 19)

dσ

dΩ
=

〈

N
∑

i=1

N
∑

i=j

bibje
−ik·(ri−rj)

〉

, (2.ii:3)

where 〈. . .〉 is the thermal average and k = k1−k0, with k1 = k0r̂ the wavevector of the particles
collected by the detector. A more useful result is obtained taking a statistical average of the
scattering lengths over both the isotopic species present in the sample and the spin states of
the nuclei; this can be done independently of the thermal averaging over the coordinates. We
therefore introduce the notation

〈b2i 〉 = 〈b2〉 ,

〈bibj〉 = 〈bi〉〈bj〉 = 〈b〉2 = b2coh ,

(〈b2〉 − 〈b〉2) = b2inc ,

where the subscript “coh” stands for coherent and “inc” for incoherent, and rewrite equation
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(2.ii:3) as

dσ

dΩ
= N〈b2〉+ 〈b〉2

〈

N
∑

i 6=j
e−ik·(ri−rj)

〉

= N(〈b2〉 − 〈b〉2) + 〈b〉2
〈∣

∣

∣

∣

∣

N
∑

i=1

e−ik·ri

∣

∣

∣

∣

∣

2〉

= Nb2inc +Nb2cohS(k) . (2.ii:4)

We then see that within the coherent contribution to the cross section appear the function S(k)
called the static structure factor of the liquid. It gives information on the structure of the liquid
since for an homogeneous liquid its Fourier transform

ρ2g(2)(r) = ρ

∫

eik·r[S(k)− 1]
dk

(2π)3
, (2.ii:5)

represents [see equation (3.i:17)] the probability density of finding a particle on the origin and
another at r. For a liquid that is also isotropic g(2)(r) is called the radial distribution function.
The static structure factor for a multicomponent fluid is discussed in appendix D section i.

A similar calculation can be made for the cross section of elastic scattering of X-rays. In this
case only the coherent part gives a contribution and, since X-rays are scattered by the atomic
electrons, the analog of b is the atomic form factor.

When the energy of the incident particles is comparable to the thermal energies of the
atoms of the liquid, as for thermal neutrons, the scattering cannot be considered elastic any
more. The cross section can therefore be measured as a function of energy transfer as well
as momentum transfer. By this means it is possible to extract information on wavenumber
and frequency dependent fluctuations in liquids at wavelengths comparable with the spacing
between particles (see [12] chapter 7). Light scattering experiments yield similar results to
thermal neutron scattering, but the accessible range of momentum transfer limits the method to
the study of fluctuations of wavelengths of order 10−5cm, corresponding to the hydrodynamic
regime.

iii Numerical simulations

Numerical simulations of classical liquids [13, 14], some times called computer experiments, can
be of two types: the ones using the method of molecular dynamics [15] and the ones using the
Monte Carlo method of Metropolis [16].

These computer experiments give exact results for the particular model studied. Since com-
puters cannot deal with an Avogadro’ s number of particles the usefulness of these methods rests
in the fact that a model containing a relatively small number of particles (several hundreds) is
in most cases sufficiently large to simulate the behavior of a macroscopic system when periodic
boundary conditions [17] are employed. Moreover with a computer experiment is possible to
obtain informations on quantities of theoretical importance that are not readily measurable in
the laboratory.

Molecular dynamics is especially valuable since it allows the study of time dependent phe-
nomena. While to study the static properties of a system the Monte Carlo method is often more
suitable, primarily because the implementation of phase averages in any statistical ensemble is
simpler than in Molecular dynamics.



CHAPTER 2. BACKGROUND
III. NUMERICAL SIMULATIONS 17

iii.1 Molecular dynamics

In a typical molecular dynamic calculation a system of N particles (atoms, molecules, ions,
. . .) is placed in a cubical box of fixed volume with periodic boundary conditions. A set of
initial velocities is assigned to each particle. The velocities are usually drawn from a Maxwell-
Boltzmann distribution appropriate to the temperature of interest and selected in such a way
as to have the net linear momentum initially equal to zero.

The trajectory of the particles are then calculated by integration of the classical equations
of motion

miri = fi = −∇iVN (r
N ) , (2.iii:1)

where mi is the mass of particle i, ri is its position, and VN is the total potential energy already
introduced in 2.i:1. The dynamical states that the method generates represent a sample from a
microcanonical ensemble.

In the early stages of the calculation it is normal for the temperature to drift away from
the value at which it was originally set, and an occasional rescaling of the particles velocities is
therefore necessary. Once equilibrium is reached, the system is allowed to evolve undisturbed,
with both kinetic and potential energies fluctuating around steady mean values.

The coordinates rN and momenta pN of the particles are stored for later analysis. For
example if O[rN , pN ] is a function of the 6N coordinates and momenta, and O is the associated
thermodynamic property, the simplest way to obtain O is through a time average of O over the
dynamical history of the system

O = 〈O〉t = lim
τ→∞

1

τ

∫ τ

0
O[rN (t), pN (t)] dt . (2.iii:2)

iii.2 Monte Carlo

Apart from the choice of initial conditions, a molecular dynamics simulation is, in principle, en-
tirely deterministic in nature. By contrast, as the name suggests, any Monte Carlo computation
is essentially probabilistic.

The canonical ensemble average of any property O function of the particles coordinates can
be written as

〈O〉 =
∫

O(rN )e−βVN (rN ) drN
∫

e−βVN (rN ) drN
. (2.iii:3)

The presence of multidimensional integrals rules out the possibility to use deterministic quadra-
ture methods to calculate 〈O〉. We could instead attempt to generate a large number of random
configurations of particles {s0, s1, s2, . . . , sP} with si = (rN )i and evaluate 〈O〉 as

〈O〉 ≃
∑P

m=1 O(sm)e
−βVN (sm)

∑P
m=1 e

−βVN (sm)
. (2.iii:4)

This crude approach is in practice very inefficient because a randomly constructed configuration
is likely to have a very small Boltzmann factor.

It is then necessary to introduce importance sampling [18], i.e sample configurations in such
a way that the regions of configuration space that make the largest contribution to the integrals
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in equation (2.iii:3) are also the regions that are sampled most frequently. If π(sm) is the
probability of choosing a configuration m, equation (2.iii:4) must be replaced by

〈O〉 ≃
∑P

m=1 O(sm)e
−βVN (sm)/π(sm)

∑P
m=1 e

−βVN (sm)/π(sm)
. (2.iii:5)

If one can sample on the Boltzmann distribution itself

π(sm) =
e−βVN (sm)

∑P
m=1 e

−βVN (sm)
, (2.iii:6)

(2.iii:5) reduces to

〈O〉 ≃ 1

P

P
∑

m=1

O(sm) . (2.iii:7)

However, in the usual statistical mechanics calculations, the normalization denominator in
(2.iii:6) is not known and only relative probabilities of different configurations are easily ac-
cessible. The problem of finding a scheme for sampling configuration space according to a
specific probability distribution is most easily formulated in terms of the theory of stochastic
processes.

In a random walk (Markov chain) one changes the state of the system randomly accord-
ing to a fixed transition rule P(s → s′), thus generating a random walk through state space
{s0, s1, s2, . . .}. The definition of a Markov process is that the next step is chosen from a prob-
ability distribution that depends only on the “present” position. P(s → s′) is a probability
distribution so it satisfies

∑

s′

P(s → s′) = 1 , (2.iii:8)

and

P(s → s′) ≥ 0 . (2.iii:9)

The transition probability often satisfies the detailed balance property: the transition rate
from s to s′ equals the reverse rate

π(s)P(s → s′) = π(s′)P(s′ → s) . (2.iii:10)

If the pair π(s), P(s → s′) satisfies the detailed balance and if P(s → s′) is ergodic 2, then
the random walk must eventually have π as its equilibrium asymptotic distribution. Detailed
balance is one way of making sure that we sample π; it is a sufficient condition.

The Metropolis (rejection) method is a particular way of ensuring that the transition rules
satisfy detailed balance. It does this by splitting the transition probability into an “a priori”
sampling distribution T (s→ s′) (a probability distribution that we can directly sample) and an
acceptance probability A(s→ s′) where 0 ≤ A ≤ 1

P(s → s′) = T (s→ s′)A(s → s′) . (2.iii:11)

2Ergodicity is ensured if: (1) one can move from any state to any other state in a finite number of steps with
a nonzero probability, (2) the transition probability is not periodic (always true if P(s → s) > 0), (3) the average
return time to any state is finite. This is always true in a finite system (e.g. periodic boundary conditions).
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In the generalized Metropolis procedure [19], trial moves are accepted according to

A(s → s′) = min[1, q(s → s′)] , (2.iii:12)

where

q(s→ s′) =
π(s′)T (s′ → s)

π(s)T (s→ s′)
. (2.iii:13)

It is easy to verify detailed balance and hence asymptotic convergence with this procedure by
looking at the three cases: s = s′ (trivial), q(s → s′) ≤ 1, and q(s→ s′) ≥ 1.

This is the generalized Metropolis algorithm:

1. Decide what distribution to sample [π(s)] and how to move from one state to another
T (s→ s′).

2. Initialize the state, pick s0.

3. To advance the state from sn to sn+1:

– Sample s′ from T (sn → s′).

– Calculate the ratio

q =
π(s′)T (s′ → sn)

π(sn)T (sn → s′)
. (2.iii:14)

– Accept or reject: if q > un where un is a uniformly distributed random number in
(0,1) set sn+1 = s′, otherwise set sn+1 = sn.

4. Throw away the first κ states as being out of equilibrium (κ being the “warm-up” time).

5. Collect averages every so often and block them to get error bars.

Consider the sampling of the classical Boltzmann distribution exp(−βVN (s)). In the original
Metropolis procedure [16], T (s→ s′) was chosen to be a constant distribution inside a cube and
zero outside. This is the “classic” rule: a single atom at a single “time” slice is displaced
uniformly and the cube side ∆ is adjusted to achieve an efficient sampling of the configuration
space. acceptance. Since T is a constant, it drops out of the acceptance formula. So the update
rule is

r′ = r+ (u− 1/2)∆ , (2.iii:15)

where u = (u1, u2, u3) with un uniformly distributed random numbers in (0,1). The acceptance
is based on q = exp{−β[VN (s′) − VN (s)]}: moves that lower the potential energy are always
accepted, moves that raise the potential energy are often accepted if the energy cost (relative to
1/β) is small.

Some things to note about Metropolis:

• The acceptance ratio (number of successful moves/total number of trials) is a key quantity
to keep track of and to quote. If it is very small one is doing a lot of work without moving
through phase space, if it is close to 1 one could use larger steps and get faster convergence.

• One nice feature is that particles can be moved one at a time.

• The normalization of π is not needed, only ratios enter in.

• One can show that Metropolis acceptance formula is optimal among formulas of this kind
which satisfy detailed balance (the average acceptance ratio is as large as possible).



Chapter 3

The theory of classical fluids

The motivation for this chapter is to try to summarize the relevant results of the statistical
theory of classical fluids, in a modern perspective based on the classical version of the density
functional theory (DFT). In section i we introduce the grand canonical formalism, in section ii
we follow Percus method to introduce some well known integral equations: Yvon approximation,
Percus-Yevick (PY), hypernetted-chain (HNC), and the Born-Green equations. In section iii we
present the mean spherical approximation (MSA).

i Grand canonical formalism

In this section we will closely follow a recent paper of J. M. Caillol [20] to introduce DFT
from the grand canonical formalism for a one component classical fluid (the generalization to a
multicomponent system is given in appendix iii).

Let us consider a classical fluid in a volume V of an Euclidean space of dimension d in
the presence of an external potential ϕ(r). Given the system of pointwise, identical, classical
particles in thermodynamic equilibrium at a temperature T , the probability density of finding
the system with N particles occupying the positions rN = (r1, . . . , rN ) and with momenta
pN = (p1, . . . ,pN ) is

F(rN , pN , N) =
1

Θ

zN

hdNN !
e−βHN (rN ,pN ) , (3.i:1)

where 1/β = KBT with KB the Boltzmann constant, z = exp(βµ) is the fugacity with µ the
chemical potential, and the Hamiltonian HN = K(pN )+W (rN )+

∑N
i=1 ϕ(ri) with K the kinetic

energy andW the internal potential energy. The normalizing factor Θ = Θ(µ, V, T ) is the grand
partition function. Integrating (3.i:1) over the momenta we find

f(rN , N) =

∫

F(rN , pN , N) dpN

=
1

Θ

1

ΛdNN !
e−βW+

∑N
i=1 u(ri) , (3.i:2)

where for K =
∑

i p
2
i /(2m) we have Λ =

√

2πβ~2/m for the de Broglie thermal wavelength.
We also introduced the generalized potential u(r) = βµ− βϕ(r).

We will now introduce the following notation:

i) a configuration of the system ω = (N, rN ),

20
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ii) the measure dω = drN/(ΛdNN !),

iii) the system measure dµ(ω) = dω e−βW (ω),

iv) the equilibrium phase space density f0(ω) = f(ω)ΛdNN !,

v) the microscopic density of particles ρ̂(r;ω) =
∑N

i=1 δ
d(r− ri),

vi) the average of a microscopic variable 〈A(ω)〉 =∑∞
N=0

∫

dω f0(ω)A(ω)

vii) the scalar product 〈f(r)|g(r)〉 =
∫

ddr f(r)g(r).

The partition function can then be rewritten as the following functional of the generalized
potential

Θ[u] =

∫

dµ(ω) e〈ρ̂|u〉 . (3.i:3)

We define next the set of functions U = {u : V → R|Θ[u] < ∞}. We restrict ourselves to
the case of H-stable systems in the sense of Ruelle, i.e. systems such that W (ω) ≥ −NB with
B <∞ a constant independent of N . We have that

Θ[u] =
∞
∑

N=0

1

N !

1

ΛdN

∫

e−βW+
∑N

i=1 u(ri) dr1 · · · drN

≤
∞
∑

N=0

1

N !

(

1

Λd
e−βB

∫

V
eu(r)dr

)N

= exp

(

1

Λd
e−βB

∫

V
eu(r)dr

)

. (3.i:4)

Then the set U restricts to U = {u : V → R|eu ∈ L1(Rd, dr)}. Since the exponential function
is a convex function it is immediate to show that U is a convex set. Moreover, using Hölder
inequality, we can prove [20] that the grand potential Ω[u] = − lnΘ[u]/β is a strictly concave
functional of u.

i.1 Free energy as the Legendre transform of lnΘ

Taking the logarithm of f0 we find

βW (ω) + ln f0(ω) = − lnΘ + 〈ρ̂(r;ω)|u(r)〉 . (3.i:5)

We now take the average to obtain

〈βW (ω) + ln f0(ω)〉 = − lnΘ + 〈〈ρ̂(r;ω)〉|u(r)〉
= − lnΘ + 〈ρ(r)|u(r)〉 , (3.i:6)

where we have defined the density function as

ρ(r) = 〈ρ̂(r;ω)〉 = δ lnΘ[u]

δu(r)
. (3.i:7)

We define a functional of ρ and u as follows

βA[ρ, u] = 〈ρ|u〉 − lnΘ[u] . (3.i:8)
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Notice that for a homogeneous system in absence of external field A[ρ, βµ] = Ω[βµ] +Nµ is the
free energy of the fluid. Moreover, for a given function ρ(r), A is a strictly concave functional
of u(r). Which tells us that if A has a maximum for ū ∈ U it has to be unique. We then define
the Helmholtz free energy as

βĀ[ρ] = βA[ρ, ū] = sup
u∈U

βA[ρ, u] . (3.i:9)

Noticing that ū is such that δA/δu|ū = 0, or also (3.i:7), we conclude that the functional of the
density βĀ is the Legendre transform of lnΘ in ρ.

It remains to show the existence of ū given ρ. We can make the following observations:

(1) If ρ(r) is negative at some r then, due to the convexity of lnΘ (3.i:7) has no solutions;

(2) For the ideal gas ρ > 0, is sufficient to ensure that a solution to (3.i:7) exists. Indeed when
W = 0 (3.i:7) gives

ū = ln(Λdρ) , (3.i:10)

as solution;

(3) For H-stable systems one can show that the set

R = {ρ : V → R|(3.i:7) has solution} (3.i:11)

is convex.

Some properties of Ā[ρ] which follows from its definition are:

(1) Young’ s inequality

βĀ[ρ] + lnΘ[u] ≥ 〈ρ|u〉 ∀u ∈ U , ρ ∈ R ; (3.i:12)

(2) Ā[ρ] is a strictly convex functional of ρ;

(3) finally the functional derivative of βĀ[ρ] with respect to ρ is easily obtained as

δβĀ[ρ]

δρ(r)
= ū(r) . (3.i:13)

i.2 Correlation functions generated by lnΘ[u]

The n particles correlation functions can be obtained by a Taylor expansion of Θ[u+ δu] around
u:

G(n)(r1, . . . , rn) =
1

Θ[u]

δ(n)Θ[u]

δu(r1) · · · δu(rn)

= 〈
n
∏

i=1

ρ̂(ri;ω)〉 . (3.i:14)
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The correlation function ρ(n) typically used in the theory of liquids [12] are defined as the
functional derivatives of Θ[u] with respect to the generalized fugacity z∗(r) = eu(r)

ρ(n)(r1, . . . , rn) =
n
∏

i=1

z∗(ri)
1

Θ[z∗]
δ(n)Θ[z∗]

δz∗(r1) · · · δz∗(rn)

= 〈
[

n
∏

i=1

ρ̂(ri;ω)

]

DP

〉 , (3.i:15)

where with the symbol [. . .]DP we indicate that from the sum of products of delta functions
within the square braces we have to neglect the ones which contain more than a delta function
referred to the same particle and we have to keep only those with delta functions referred to
Different Particles. For example we have

G(2)(r1, r2) = ρ(2)(r1, r2) + ρ(1)(r1)δ(r1 − r2) . (3.i:16)

The n particles distribution function g(n) are then defined as

g(n)(r1, . . . , rn) =
ρ(n)(r1, . . . , rn)

ρ(1)(r1) · · · ρ(1)(rn)
. (3.i:17)

It is often useful to use the connected correlation functions (also known as the Ursell, or
cluster, or irreducible correlation functions), these are defined as follows

G(n)
c (r1, . . . , rn) =

δ(n) lnΘ[u]

δu(r1) · · · δu(rn)
. (3.i:18)

The relationship between G
(n)
c and G(n) can be written symbolically as follows

G(n)
c (r1, . . . , rn) = G(n)(r1, . . . , rn)−

∑ ∏

m<n

G(m)
c (ri1 , . . . , rin) , (3.i:19)

where the sum of products is carried out over all possible partitions of the set (1, . . . , n) into
subsets of cardinal number m < n. For instance we have

G(2)
c (r1, r2) = G(2)(r1, r2)− ρ(r1)ρ(r2) , (3.i:20)

where ρ = G(1) = G
(1)
c is the mean density of particles.

It is often useful to define another type of correlation functions, the total correlation functions
h(n) as

h(n)(r1, . . . , rn) =
ρ
(n)
c (r1, . . . , rn)

ρ(1)(r1) · · · ρ(1)(rn)
, (3.i:21)

where the ρ
(n)
c are defined as in (3.i:19) with G replaced by ρ.

i.3 Correlation functions generated by Ā[ρ]

The functional −βĀ[ρ] is the generating functional for the n particles direct correlation functions
ĉ(n)

ĉ(n)(r1, . . . , rn) = − δ(n)βĀ[ρ]

δρ(r1) · · · δρ(rn)
. (3.i:22)
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The direct correlation functions ĉ(n) and the Ursell correlation functions G
(n)
c are related through

generalized Ornstein-Zernike relations [21]. For historical reasons [22] one rather defines the true
direct correlation functions c(n) by

ĉ(n)(r1, . . . , rn) = c(n)(r1, . . . , rn) + ĉ
(n)
id (r1, . . . , rn) , (3.i:23)

where ĉ
(n)
id are the ĉ(n) functions of the ideal gas, so that the c(n) are the functional derivatives

of minus the excess free energy. From equations (3.i:13) and (3.i:10) we find

ĉ
(1)
id (r) = − ln[Λdρ(r)] , (3.i:24)

and from (3.i:22) and (3.i:24) we find for n ≥ 2

ĉ
(n)
id (r1, . . . , rn) =

δ(n−1)ĉ
(1)
id (r1)

δρ(r2) · · · δρ(rn)

= (−1)n−1 (n− 2)!

ρn−1(r1)

n
∏

i=2

δ(r1 − ri) . (3.i:25)

The c(n) and ρ(n) satisfy the Ornstein-Zernike equations typically used in the theory of liquids
[12]. Let us show this for n = 2. From equations (3.i:23), (3.i:24) and (3.i:13) follows

c(1)(r) = ĉ(1)(r)− ĉ
(1)
id (r)

= ū(r) + ln[Λdρ(r)]

= ln[ρ(r)/z∗(r)] + constant . (3.i:26)

We have then

c(2)(r1, r2) =
δ ln[ρ(r1)/z

∗(r1)]
δρ(r2)

(3.i:27)

=
1

ρ(r1)
δ(r1 − r2)−

δ ln z∗(r1)
δρ(r2)

,

but also

δ(r1 − r2) =
δ ln z∗(r1)
δ ln z∗(r2)

=

∫

δ ln z∗(r1)
δρ(r3)

δρ(r3)

δ ln z∗(r2)
dr3

=

∫

[δ(r1 − r3)/ρ
(1)(r1)− c(2)(r1, r3)][δ(r2 − r3)ρ

(1)(r3)

+ρ(1)(r2)ρ
(1)(r3)h(r2, r3)] . (3.i:28)

From which follows at last,

h(2)(r1, r2) = c(2)(r1, r2) +

∫

ρ(1)(r3)c
(2)(r1, r3)h

(2)(r3, r2) dr3 , (3.i:29)

which is the Ornstein-Zernike equation (OZ). The generalization of this equation to a multicom-
ponent system is given in appendix D section ii.
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ii Percus method

Consider a system of particles interacting through a pair potential v(i, j). We use index i to
denote the position of the i-th particle, ri. Let us imagine to introduce in the system a particle,
called 0, fixed on the origin. The particles of the system are then subject to the external field

φ(i) = v(0, i) . (3.ii:1)

The grand partition function of the system of particles plus the particle on the origin is a
functional of the external field

Θ[φ] =

∞
∑

N=0

ζN

N !

∫

e−β
∑N

i=1 φ(i)e−βVN d1 · · · dN , (3.ii:2)

where ζ = z/Λ3 is the fugacity and VN =
∑N

i,j=1
i<j

v(i, j). On the other hand we have

VN +

N
∑

i=1

φ(i) =

N
∑

i,j=0
i<j

v(i, j) = V 0
N+1 . (3.ii:3)

We can then write

Θ[φ] =
Θ[0]

ζ

( ∞
∑

N=0

ζN+1

N !

∫

e−βV
0
N+1 d1 · · · dN

)

/Θ[0]

=
Θ[0]

ζ

( ∞
∑

N=1

ζN

(N − 1)!

∫

e−βV
0
N d1 · · · d(N − 1)

)

/Θ[0]

=
Θ[0]

ζ
ρ(1)(0|φ = 0) . (3.ii:4)

Analogously for the single particle density in the presence of the external field we have

ρ(1)(1|φ) =
1

Θ[φ]ζ

∞
∑

N=1

ζN+1

(N − 1)!

∫

e−βV
0
N+1 d2 · · · dN (3.ii:5)

=

(

1

Θ[0]

∞
∑

N=2

ζN

(N − 2)!

∫

e−βV
0
N d2 · · · d(N − 1)

)

/ρ(1)(0|φ = 0)

= ρ(2)(0, 1|φ = 0)/ρ(1)(0|φ = 0) . (3.ii:6)

Similarly one can show that

ρ(n)(1, . . . , n|φ) = ρ(n+1)(0, 1, . . . , n|φ = 0)/ρ(1)(0|φ = 0) . (3.ii:7)

Percus idea [23] was to recognize that if the system in absence of the external field is uniform
then

ρ(1)(1|φ) = ρg(0, 1) (3.ii:8)

Let us now consider the external field φ as a perturbation. The functionals of φ can then be
expanded in a Taylor series around φ = 0

δF [φ] =

∫

δF
δφ(1)

∣

∣

∣

∣

φ=0

δφ(1) d1 +
1

2!

∫ ∫

δ2F
δφ(1)δφ(2)

∣

∣

∣

∣

φ=0

δφ(1)δφ(2) d1d2 + . . . (3.ii:9)
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At variance with the quantum version of DFT, where approximations are built on the energy
functional, the approximations of the theory of classical liquids for the pair correlations are
based on the previous formulae and are directly focused on the particle density induced by an
additional particle. They can be derived from the Taylor expansion (3.ii:9) of a suitable function
of ρ(1)(1|φ) and φ. For example if we expand ρ(1)(1|φ), to first order in δφ, we have

δρ(1)(1|φ) =
∫

δρ(1)(1|φ)
δφ(2)

∣

∣

∣

∣

∣

φ=0

δφ(2) d2 . (3.ii:10)

The functional derivative can be easily calculated as

δρ(1)(1|φ)
δφ(i)

= β[ρ(1)(i|φ)ρ(1)(1|φ) − δ(1, i)ρ(1)(1|φ) − ρ(2)(1, i|φ)] , (3.ii:11)

where δ(1, i) = δ(r1 − ri) is the Dirac delta function. When we calculate (3.ii:11) at φ = 0 we
find

δρ(1)(1|φ)
δφ(2)

∣

∣

∣

∣

∣

φ=0

= β[ρ2 − ρδ(1, 2) − ρ(2)(1, 2|0)]

= −β[ρ2h(1, 2) + ρδ(1, 2)] . (3.ii:12)

Now we observe that

δφ(2) = v(0, 2) , (3.ii:13)

and

δρ(1)(1|φ) = ρ(1)(1|φ)− ρ(1)(1|0) = ρh(0, 1) . (3.ii:14)

Using (3.ii:12), (3.ii:13), and (3.ii:14) in (3.ii:10) we find Yvon equation [24]

h(0, 1) = −βv(0, 1) + ρ

∫

h(1, 2)[−βv(0, 2)] d2 . (3.ii:15)

From the Ornstein-Zernike equation follows that Yvon approximation amounts to setting

c(0, 1) = −βv(0, 1) . (3.ii:16)

This is also known as Random Phase Approximation (RPA).
In the low density limit (ρ→ 0) this approximation gives the wrong behavior for h. According

to Yvon equation h(0, 1) ≃ −βv(0, 1) while we know that the correct behavior is h(0, 1) ≃ f(0, 1)
where f(0, 1) = exp[−βv(0, 1)] − 1 is the Mayer function.

We find better approximations when expansions in powers of δρ(1)(1|φ) are considered.

ii.1 The Percus-Yevick (PY) approximation

Let us consider, for example, the Taylor expansion of the functional ρ(1)(1|φ)/ζ∗(1) (ζ∗(i) =
ζe−βφ(i)) truncated to first order in δρ(1)

ρ(1)(1|φ)
ζ∗(1)

=
ρ(1)(1|0)

ζ
+

∫

δ[ρ(1)(1|φ)/ζ∗(1)]
δρ(1)(2|φ)

∣

∣

∣

∣

∣

φ=0

δρ(1)(2|φ) d2

=
ρ

ζ
+
ρ2

ζ

∫

c(1, 2)h(0, 2) d2 ,
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where we used the definition of the direct correlation function c (3.i:27). We find then

g(0, 1)eβv(0,1) = 1 + ρ

∫

c(1, 2)h(0, 2) d2 . (3.ii:17)

Using Ornstein-Zernike equation we find the following approximation for c

c(0, 1) = g(0, 1)
(

1− eβv(0,1)
)

. (3.ii:18)

Using (3.ii:18) in (3.ii:17) we find an integral equation for g known as the Percus-Yevick equation
[25] (PY)

g(0, 1)eβv(0,1) = 1 + ρ

∫

g(1, 2)
(

1− eβv(1,2)
)

[g(0, 2) − 1] d2 . (3.ii:19)

ii.2 The hypernetted chain approximation

For the functional ln[ρ(1)(1|φ)/ζ∗(1)] we have to first order in δρ(1)

ln

[

ρg(0, 1)

ζe−βv(0,1)

]

= ln

[

ρ

ζ

]

+

∫

c(1, 2) ρh(2, 0) d2 , (3.ii:20)

or

ln[g(0, 1)] = −βv(0, 1) + ρ

∫

c(1, 2)h(2, 0) d2 . (3.ii:21)

Using Ornstein-Zernike equation we find the following approximation for c

c(0, 1) = g(0, 1) − 1− ln[g(0, 1)] − βv(0, 1) . (3.ii:22)

Using (3.ii:22) in (3.ii:21) we find an integral equation 4for g known as the hypernetted chain
equation (HNC)

ln[g(0, 1)] = −βv(0, 1) (3.ii:23)

+ρ

∫

{g(1, 2) − 1− ln[g(1, 2)] − βv(1, 2)}[g(2, 0) − 1] d2 . (3.ii:24)

iii The mean spherical approximation

Suppose that the particles of the fluid interact through the following pair potential

v(1, 2) =

{

∞ r12 < d
v1(1, 2) r12 > d

, (3.iii:1)

where r12 = |r1 − r2|. This pair potential can be rewritten as

v(1, 2) = vhs(r12) + vt(r12) , (3.iii:2)

vhs(r) =

{

∞ r < d
0 r > d

, (3.iii:3)

vt(r) =

{

0 r < d
v1(r) r > d

, (3.iii:4)
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where vhs is the spherical hard spheres potential and vt is the tail potential, generally attractive
(v1 < 0) and without spherical symmetry.

The Mayer function can be thus written

f(1, 2) = e−βv(1,2) − 1

= e−βvhs(r12)e−βvt(r12) − 1

= [1 + fhs(r12)]e
−βvt(r12) − 1 , (3.iii:5)

where fhs is the Mayer function for the hard spheres potential.

fhs(r) =

{

−1 r < d
0 r > d

. (3.iii:6)

If the tail potential is “small” we can linearize f respect to vt. We thus obtain

f = (1 + fhs)(1 − βvt + . . .)− 1

≃ fhs − βvt(1 + fhs) . (3.iii:7)

Let us now consider the Percus-Yevick approximation

c(1, 2) = g(1, 2)
(

1− eβv(1,2)
)

, (3.iii:8)

and rewrite it in terms of the Mayer function

c = f + f(h− c) , (3.iii:9)

where h = g − 1. From the density expansion for h and c (see [12]) we know that the term of
order zero in ρ is the first term on the right hand side of (3.iii:9) (limρ→0 h = limρ→0 c = f) and
the higher orders terms are contained in the second term on the right hand side of (3.iii:9).

The mean spherical approximation consist in substituting f in the first term on the right
hand side of (3.iii:9) with its expression linearized in vt (3.iii:7), and f in the second term on
the right hand side of (3.iii:9) with its expression of order zero in vt. We then write

c = {fhs − βvt(1 + fhs)}+ {fhs}(h − c) , (3.iii:10)

From which follows the mean spherical approximation (MSA)

c = −βvt +
fhs

1 + fhs
g . (3.iii:11)

The mean spherical approximation tells us that

c(1, 2) = −βv1(1, 2) for r12 > d , (3.iii:12)

on the other hand we know that it has to hold exactly

g(1, 2) = 0 for r12 < d . (3.iii:13)

The problem is then to find c(1, 2) for r12 < d using the Ornstein-Zernike equation. Another
way to reach MSA is to start from RPA instead than PY.

If in place of vhs we have a pair potential v0, highly repulsive but continuous, replacing in
(3.iii:11) fhs with the Mayer function for v0, we obtain the so called “soft core” mean spherical
approximation

c = −βv1 +
(

1− eβv0
)

g . (3.iii:14)

The MSA is among the few integral equation which admits analytic solutions when applied
to simple classical fluids (see chapter 4). A technique often used to find the analytic solution is
the Wiener-Hopf factorization (see appendix B).



Chapter 4

MSA and PY analytic solutions

The Wiener-Hopf factorization (see appendix B) has long been known as a useful method to find
analytic solutions of simple integral equations for simple liquids. Probably the first application
of this method of solution was on the PY approximation for a one component fluid of hard
spheres [26]. This solution, due to Baxter, was alternative to the one given by Thiele-Wertheim
[27–29], and had the advantage that it could be easily generalized to the case when the potential
consisted of a hard sphere core plus a tail. Later on Baxter [44] extended his method of solution
to the PY approximation for a mixture of additive hard spheres. The Wiener-Hopf factorization
has been used by Høye and Blum [45] to find an analytic solution to the MSA of an hard sphere
multi-Yukawa fluid (one whose pair potential is given by βv(r) = −∑iKi exp[−zi(r−1)]/r r >
1,= ∞ r < 1 where the Ki and the zi are positive constants). Moreover the Wiener-Hopf
technique has been used in studies on colloidal suspensions of neutral particles with adhesive
interaction. In such studies, Baxter’s “sticky hard spheres” model [30, 31] played an important
role. In Baxter’s original formulation and its extension to the multicomponent case [32, 33]
(refereed in the literature as SHS1 model) the pair potential, in addition to a hard sphere
repulsion, contains an infinitely deep and narrow attractive square well, obtained according to a
particular limiting procedure (“sticky limit”) that keeps the second virial coefficient finite. Now
the SHS1 in the PY approximation, when applied to an n components mixtures, requires the
solution of a set of n(n+1)/2 coupled quadratic equations [32]. So this model cannot be used to
describe the properties of polydisperse systems [for which the number n of components may be
of order 101÷103 or more (discrete polydispersity) or infinite (continuous polydispersity)]. More
recently there have been attempts to find an alternative SHS model which could be analytically
tractable even in the general multicomponent case (see [34] for the references). In particular
Brey and co-workers [36] proposed to start from a hard sphere Yukawa potential with K = zK0,
with K0 independent of z. This other Hamiltonian (referred to in the literature as SHS2 model)
is supplemented by a “sticky limit” which in this case amounts to taking z → ∞ [36]. For
the SHS2 model the OZ equation can be solved analytically within the MSA [37, 38]. It turns
out that this solution is readily usable even in the polydisperse multicomponent case (see [34]
for references). Recently there has been a lot of investigations on the structural properties
of polydisperse fluids using the SHS2 model [39, 40] [41–43]. More recently Gazzillo and co-
workers showed that the SHS2 model is ill defined: its Hamiltonian leads to an exact second
virial coefficient which diverges [34].

In the first section of this chapter we present an application of the Wiener-Hopf technique
to the determination of an analytic solutions of the MSA for the restricted primitive model of
charged hard spheres. The presentation of this solution, originally given by Blum [46], will allow
us to introduce the general formalism needed to tackle a multicomponent system. In the last

29



CHAPTER 4. MSA AND PY ANALYTIC SOLUTIONS
I. RESTRICTED PRIMITIVE MODEL FOR CHARGED HARD SPHERES 30

section we show how the Wiener-Hopf technique fails to give useful results when applied to a
mixture of non additive hard spheres.

i Restricted primitive model for charged hard spheres

In this section we present a detailed derivation of the analytic solution of the MSA for a mixture
of uniformly charged hard spheres, obtained through the Wiener-Hopf method.

The simplest model of a ionic liquid (see [12]) is a system of N hard spheres uniformly
charged. In this primitive model the spheres are of n different species. The spheres belonging to
specie µ = 1, 2, . . . , n have a diameter σµ and carry a total charge zµe, where e is the elementary
charge. The spheres move in a continuum medium of dielectric constant ǫ. The pair potential
is then

vµν(r) =







∞ r < σµν ,

vcµν(r) =
zµzνe

2

ǫr
r > σµν ,

(4.i:1)

where σµν = (σµ + σν)/2. And we shall take the system to be globally neutral

∑

µ

xµzµ = 0 , (4.i:2)

where xµ is the concentration of specie µ.

We want to study such model in the restricted case

σµ = σ ∀µ ,

|zµ| = z ∀µ .

In particular we want to study such restricted primitive model when we have just two species
(binary mixture) of opposite charge and same concentration (equimolar mixture)

z1 = −z2 = 1 ,

x1 = x2 = 1/2 .

Given the symmetry of the model one can immediately verify that the total partial correlation
function must have the following symmetry

h11(r1, r2) = h22(r1, r2) . (4.i:3)

For an homogeneous and isotropic system one also have for the total and direct correlation
functions (see section ii)

h12(r) = h21(r) , (4.i:4)

c12(r) = c21(r) . (4.i:5)
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The OZ equation is

h11(r) = c11(r) +
ρ

2

[∫

c11(r
′)h11(|r− r′|) dr′ +

∫

c12(r
′)h21(|r− r′|) dr′

]

,

h22(r) = c22(r) +
ρ

2

[
∫

c21(r
′)h12(|r− r′|) dr′ +

∫

c22(r
′)h22(|r− r′|) dr′

]

,

h12(r) = c12(r) +
ρ

2

[∫

c11(r
′)h12(|r− r′|) dr′ +

∫

c12(r
′)h22(|r− r′|) dr′

]

,

h21(r) = c21(r) +
ρ

2

[∫

c21(r
′)h11(|r− r′|) dr′ +

∫

c22(r
′)h21(|r− r′|) dr′

]

.

Taking the Fourier transform of the first two equations and comparing them we find

c11(r) = c22(r) . (4.i:6)

The independent OZ equations reduces then to two

h11(r) = c11(r) +
ρ

2

[∫

c11(r
′)h11(|r− r′|) dr′ +

∫

c12(r
′)h21(|r− r′|) dr′

]

,

h12(r) = c12(r) +
ρ

2

[∫

c11(r
′)h12(|r− r′|) dr′ +

∫

c12(r
′)h22(|r− r′|) dr′

]

.

This two equations separates upon the introduction of the following combinations
{

hs(r) =
1
2 [h11(r) + h12(r)] ,

hd(r) = h11(r)− h12(r) ,
(4.i:7)

{

cs(r) =
1
2 [c11(r) + c12(r)] ,

cd(r) = c11(r)− c12(r) ,
(4.i:8)

where hs is the number density total correlation function and hd the charge density total corre-
lation function. The result being

hs(r) = cs(r) + ρ

∫

cs(r
′)hs(|r− r′|) dr′ , (4.i:9)

hd(r) = cd(r) +
ρ

2

∫

cd(r
′)hd(|r− r′|) dr′ . (4.i:10)

In the mean spherical approximation (3.iii:11) we have

cµν(r) = −βvµν(r) r > σµν . (4.i:11)

In addition since the pair potential is infinite for r < σµν we must have the following exact
relation

hµν = −1 r < σµν . (4.i:12)

In terms of the linear combinations just defined we have
{

hs(r) = −1 r < σ ,
cs(r) = 0 r > σ ,

(4.i:13)







hd(r) = 0 r < σ ,

cd(r) = −β 2e
2

ǫr
r > σ ,

(4.i:14)
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We see then that the closure for the number density correlations is equivalent to the PY ap-
proximation for a one component system of neutral hard spheres, whose solution is known [12]
to be 1

cs(x) = −λ1 − 6ηλ2x− 1

2
ηλ1x

3 x < 1 , (4.i:15)

where x = r/σ, η = ρπσ3/6 is the packing fraction, and λ1, λ2 are given by

λ1 = a2 =
(1 + 2η)2

(1− η)4
, (4.i:16)

λ2 = −(1 + η/2)2

(1− η)4
. (4.i:17)

The calculation of cd has been done independently by Waisman and Lebowitz [48, 49], and
by Blum [46]. In the next two sections we will present Blum calculation which relies on a
generalization of the methods used to solve the PY equation for the one component system
of hard spheres. Following Blum we will do the calculation for the full primitive model and
specialize to the restricted one later on.

i.1 Method of solution

Noticing that we can write

vcαβ(r) = lim
µ→0

zαzβe
2

ǫ

e−µr

r
, (4.i:18)

and recalling that the three dimensional Fourier transform of the Yukawa potential e−µr/r is
4π/(µ2 + k2), we can write the Fourier transform of the OZ equation in the following matricial
form

lim
µ→0

{

[I +
√
ρH̃(k)

√
ρ]

[

I −√
ρ

(

C̃0(k)−D
1

k2 + µ2

)√
ρ

]}

= I , (4.i:19)

where Iαβ = δαβ is the identity matrix, ραβ = ραδαβ with ρα = Nα/V , Dαβ = zαzβα
2 with

α2 = 4πβe2/ǫ,















H̃αβ(k) = 2π

∫ ∞

−∞
eikrUαβ(r) dr ,

Uαβ(r) =

∫ ∞

r
shαβ(s) ds ,

(4.i:20)























C̃0
αβ(k) = 2π

∫ ∞

−∞
eikrVαβ(r) dr ,

Vαβ(r) =

∫ ∞

r
sc0αβ(s) ds ,

c0αβ(r) = cαβ(r) + βvcαβ(r) ,

(4.i:21)

where the total partial correlation function hαβ(r) and the direct partial correlation function
cαβ(r) are assumed to extend evenly over r < 0.

1Notice that the PY approximation for the hard spheres fluid in all odd dimensions has been solved analytically
by Leutheusser [47]
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We now propose the following Wiener-Hopf factorization and will later prove it to be correct

I −√
ρ

(

C̃0(k)−D
1

k2 + µ2

)√
ρ = Q̃(k)Q̃T (−k) , (4.i:22)

where the T stands for transposition. The Q̃(k) matrix is given by

Q̃αβ(k) = δαβ +
√
ραρβ

[

−
∫ σβα

λβα

eikrQαβ(r) dr +Aαβ

∫ ∞

σβα

eikre−µr dr

]

, (4.i:23)

where we have introduced λαβ = (σα − σβ)/2 and Qαβ(r) is a function which has support on
[λβα, σβα] and is zero otherwise. We will see in section ii that a factorization of this kind is not
possible for a mixture of non additive hard spheres. The main obstacle being the determination
of the lower bounds λαβ.

We will now simplify (4.i:22).

i.1.1 Relationship between c0 and Q

In terms of

Q̂αβ(k) =

∫

eikrQαβ(r) dr . (4.i:24)

equation (4.i:23) becomes

Q̃αβ(k) = δαβ +
√
ραρβ

[

−Q̂αβ(k) +Aαβe
(ik−µ)σαβ

1

µ− ik

]

. (4.i:25)

We then have

[Q̃(k)Q̃T (k)]αβ = δαβ +
√
ραρβ

[

−Q̂αβ(k)− Q̂βα(−k) +Aαβ
e(ik−µ)σαβ

µ− ik

+Aβα
e(−ik−µ)σβα

µ+ ik

]

+
√
ραρβ

∑

γ

ργ

[

Q̂αγ(k)Q̂βγ(−k)

+AαγAβγ
eik(σαγ−σβγ)e−µ(σαγ+σβγ)

µ2 + k2
− Q̂αγ(k)Aβγ

e(−ik−µ)σβγ

µ+ ik

−Q̂βγ(−k)Aαγ
e(ik−µ)σαγ

µ− ik

]

. (4.i:26)

The term containing the product of two A’s can be rewritten as

√
ραρβe

−µσαβ

∑

γ

ργAαγAβγe
−µσγ

(

eikλαβ

k2 + µ2

)

. (4.i:27)

The inverse one dimensional Fourier transform of the term in parenthesis is

1

2π

e−µ|r−λαβ |

µ
. (4.i:28)
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Next we take the one dimensional inverse Fourier transform of the Wiener-Hopf factorization,
i.e. we multiply both members of (4.i:22) by e−ikr and integrate on dk/(2π) over the whole real
axis. We find

−2πVαβ(|r|) +Dαβ
e−µ|r|

2πµ
=

[

−Qαβ(r)−Qβα(−r) +Aαβe
−µrθ(r − σαβ) +Aβαe

µrθ(−r − σαβ)
]

+
∑

γ

ργ

{

∫

Qβγ(t)Qαγ(t+ r) dt+AαγAβγe
−µσαβe−µσγ

e−µ|r−λαβ |

2πµ

−Aαγ
∫

Qβγ(t)[e
−µ(t+r)]∞σαγ

dt−Aβγ

∫

Qαγ(t+ r)[e−µt]∞σβγ
dt

}

, (4.i:29)

where θ is the Heaviside step function and the function [f(t)]ba equals f(t) in [a, b] and is zero
otherwise.

We have three convolutions

I1γ (r) =

∫

Qβγ(t)Qαγ(t+ r) dt ,

I2γ (r) =

∫

Qβγ(t)[e
−µ(t+r)]∞σαγ

dt ,

I3γ (r) =

∫

Qαγ(t+ r)[e−µt]∞σβγ
dt .

The integration intervals in each one of the convolutions are

I1γ : [λγβ , σγβ ] ∩ [λγα − r, σγα − r] ,

I2γ : [λγβ , σγβ ] ∩ [σγα − r,∞] ,

I3γ : [σγβ ,∞] ∩ [λγα − r, σγα − r] .

For r = σαβ we have

I1γ : [λγβ , σγβ ] ∩ [λγβ − σα, λγβ ] ,

I2γ : [λγβ , λγβ + σβ] ∩ [λγβ ,∞] ,

I3γ : [λγβ + σβ,∞] ∩ [λγβ − σα, λγβ ] .

We then see that for r > σαβ we have

I1γ = 0 ∀γ , (4.i:30)

I3γ = 0 ∀γ , (4.i:31)

and the integration interval for I2γ is [λγβ , σγβ ]. The Wiener-Hopf factorization in real space,
equation (4.i:29), for r > σαβ becomes then

Dαβ
e−µr

2πµ
= e−µσαβ

(

∑

γ

ργAαγAβγe
−µσγ

)

e−µ(r−λαβ)

2πµ

−
∑

γ

ργAαγ

∫ σγβ

λγβ

Qβγ(t)[e
−µ(t+r)]∞σαγ

dt+Aαβe
−µr . (4.i:32)

Let us now make two observations:
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(1) multiplying both members of (4.i:32) by µ and taking the limit µ→ 0 we find

Dαβ =
∑

γ

ργAαγAβγ , (4.i:33)

recalling that Dαβ = zαzβα
2 we need then

Aαβ = zαaβ . (4.i:34)

Therefore (4.i:33) becomes

α2 =
∑

γ

ργa
2
γ . (4.i:35)

(2) if we call ∆µ
αβ(r) the difference between the left hand side and the first term on the right

hand side of (4.i:32) we have

lim
µ→0

∆µ
αβ(r) = Aαβ −

∑

γ

ργAαγ

∫

Qβγ(t) dt

= Aβα −
∑

γ

ργAβγ

∫

Qαγ(t) dt = constant , (4.i:36)

where the second equality follows looking at the real space Wiener-Hopf factorization for
r < −Rαβ.

We now study the integration intervals of the three convolutions when r = λβα

I1γ : [λγβ, σγβ ] ∩ [λγβ , λγβ + σα] ,

I2γ : [λγβ, σγβ ] ∩ [λγβ + σα,∞] ,

I3γ : [σγβ,∞] ∩ [λγβ, λγβ + σα] .

Then for r ≥ λβα we have

I1γ : [λγβ,min{σγβ , σγα − r}] ,

I2γ : [max{λγβ , σγα − r}σγβ ] ,

I3γ : [σγβ, σγα − r] .

Taking into account observation (2), the Wiener-Hopf factorization (4.i:29) in the limit µ → 0,
in the interval λβα ≤ r ≤ σβα becomes

−2πVαβ(|r|) = −Qαβ(r) +Aαβ [θ(r − σαβ)− 1] +
∑

γ

ργ

[∫

Qβγ(t)Qαγ(t+ r) dt

−Aαγ
(

∫ ∞

σαγ−r
Qβγ(t) dt −

∫

Qβγ(t) dt

)

−Aβγ
∫ ∞

σβγ

Qαγ(t+ r) dt

]

. (4.i:37)

Once Vαβ(r) is known iterating over Q is then formally possible to find Qαβ(r). This proves
that the factorization proposed (4.i:22) and (4.i:23) is indeed correct. This is the relationship
between V and Q. Taking a derivative with respect to r one finds the relationship between c0

and Q we are looking for. Before we do this we will make two observations:
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(1) From equation (4.i:37) follows

lim
r→σ−

αβ

Qαβ(r) = −Aαβ , (4.i:38)

(2) since c0αβ(r) is symmetric, Vαβ(r) is symmetric, then taking into account the remark (4.i:36)
follows

Qαβ(λβα) = Qβα(λαβ) . (4.i:39)

Indeed we have
∫

Qβγ(t)Qαγ(t+ λβα) dt =

∫

Qβγ(s− λβα)Qαγ(s) ds

=

∫

Qαγ(s)Qβγ(s + λαβ) ds ,

and

∑

γ

ργ

[

Aαγ

∫ ∞

σαγ−λβα

Qβγ(t) dt+Aβγ

∫ ∞

σβγ+λβα

Qαγ(t) dt

]

=

∑

γ

ργ

[

Aαγ

∫ ∞

σαγ+λαβ

Qβγ(t) dt+Aβγ

∫ ∞

σβγ−λαβ

Qαγ(t) dt

]

=

∑

γ

ργ

[

Aβγ

∫ ∞

σβγ−λαβ

Qαγ(t) dt+Aαγ

∫ ∞

σαγ+λαβ

Qβγ(t) dt

]

.

Let us now take the derivative with respect to r of equation (4.i:37). We find for λβα ≤ r ≤
σβα

2πrc0αβ(|r|) = −Q′
αβ(r) +

∑

γ

ργ

[

dI1γ
dr

−AαγQβγ(σαγ − r)

+AβγQαγ(σβγ + r)

]

, (4.i:40)

The third term in the square braces exists for −σαβ ≤ r ≤ λαβ. The second term in the square
braces exists for λαβ ≤ r ≤ σαβ . The first term in the square braces is

dI1γ
dr

=
d

dr

∫ min{σγβ ,σγα−r}

λγβ

Qβγ(t)Qαγ(t+ r) dt

=











∫

Qβγ(t)Q
′
αγ(t+ r) dt r < λαβ ,

Qβγ(σγα − r)Aαγ +

∫

Qβγ(t)Q
′
αγ(t+ r) dt r ≥ λαβ ,

(4.i:41)

where we used equation (4.i:38). So we can rewrite equation (4.i:40) as follows

2πrc0αβ(|r|) = −Q′
αβ(r) +

∑

γ

ργ

[∫

Qβγ(t)Q
′
αγ(t+ r) dt+AβγQαγ(σβγ+r)

]

, (4.i:42)
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where the last term exists only when λβα ≤ r ≤ λαβ (we are considering the worst case possible
when σα > σβ).

In particular when all the diameters are equal, σαβ = σ, λαβ = 0, and Qαβ(r) has support
on [0, σ]. We find then for 0 ≤ r ≤ σ

2πc0αβ(r) = −Q′
αβ(r) +

∑

γ

ργ

∫ σ−r

0
Qβγ(t)Q

′
αγ(t+ r) dt . (4.i:43)

i.1.2 Relationship between U and Q

Introducing the Wiener-Hopf factorization (4.i:22) into the OZ equation 4.i:19 we find in matri-
cial notation

[I +
√
ρH̃(k)

√
ρ]Q̃(k)− I = [Q̃T (−k)]−1 − I . (4.i:44)

When we take the inverse one dimensional Fourier transform of this expression the right hand
side give zero contribution for r > λβα [44] infact:

(1) form equation (4.i:23) follows that for ik → ∞

Q̃αβ(−k) ∼ δαβ + e−ikλβα

[

lαβ(k) +mαβ(k)e
−ik(σαβ−λβα)

]

, (4.i:45)

where lαβ(k) and mαβ(k) are O(1/k). Then we must have
{

[Q̃T (−k)]−1 − I
}

αβ
∼ eikλβαnαβ(k) , (4.i:46)

with limik→∞ nαβ(k) = 0. From which follows that for r > λβα

e−ikr
{

[Q̃T (−k)]−1 − I
}

αβ

ik→∞−→ 0 . (4.i:47)

When taking the inverse Fourier transform of the right hand side of (4.i:44) we can then
close the path of integration on the lower half imaginary k = x + iy plane. Since the
contribution from the path at y < 0 gives zero contribution to the total integral;

(2) the matrix elements of Q̃T (−k) are analytic functions of k on the whole complex plane
(being the Fourier transforms of functions with finite support). The same then holds for
the elements of [Q̃T (−k)]−1. Then the path integral considered at point (1) must vanish
by Cauchy’ s theorem.

The inverse one dimensional Fourier transform of (4.i:44) is then

2πUαβ(|r|) = Qαβ(r) +
∑

γ

ργ

[

2π

∫ σβγ

λβγ

Qγβ(s)Uγα(|r − s|) ds

−2πAγβ

∫ ∞

σβγ

e−µsUγα(|r − s|) ds
]

. (4.i:48)

or in the limit µ→ 0

2πUαβ(|r|) = Qαβ(r) +
∑

γ

ργ

[

2π

∫ σβγ

λβγ

Qγβ(s)Uγα(|r − s|) ds (4.i:49)

−2πAγβ

∫ ∞

σβγ−r
Uγα(|t|) dt

]

. (4.i:50)
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We now use the charge sum rule to simplify the last term. The normalization condition for
the partial pair distribution function can be written (see (D.iii:6))

ρµ

∫

gµν(r) dr = Nµ − δµν . (4.i:51)

Multiplying this expression by zµ, summing over µ, and using the neutrality condition (4.i:2)
we find for hµν = gµν − 1

∑

µ

ρµ

∫

hµν(r) dr = −zν . (4.i:52)

Multiplying by aγ and recalling (4.i:34) we find

4π
∑

µ

Aµγρµ

∫ ∞

0
hµν(r)r

2 dr = −Aνγ . (4.i:53)

Integrating by parts we have
∫ r

0
r[rhµν(r)] dr =

[

−r
∫ ∞

r
rhµν(r)

]∞

0

+

∫ ∞

0

[∫ ∞

r
r′hµν(r

′) dr′
]

dr . (4.i:54)

Since ĥµν(k = 0) must be finite, then hµν(r) must behave as 1/r3+ǫ, ǫ > 0 for r → ∞. Then the
first term in the right hand side of (4.i:54) must vanish also in r = ∞ and we find

2π
∑

µ

Aµγρµ

∫ ∞

0
Uµν(r) dr = −Aνγ

2
. (4.i:55)

Then the relationship between U and Q becomes

2πUαβ(|r|) = Qαβ(r) +
∑

γ

ργ

[

2π

∫ σβγ

λβγ

Qγβ(s)Uγα(|r − s|) ds

−2πAγβ

∫ σβγ−r

0
Uγα(|t|) dt

]

+
Aαβ
2

. (4.i:56)

For r ≤ σαβ we must have gαβ(r) = 0. We can then write

Uαβ(r) =

∫ ∞

r
shαβ(s) ds =

∫ ∞

0
shαβ(s) ds+

r2

2

=
Jαβ
2π

+
r2

2
r,≤ σαβ , (4.i:57)

where we have defined the constants

Jαβ = 2π

∫ ∞

0
shαβ(s) ds = Jβα . (4.i:58)

It is easy to verify that the relationship (4.i:56) between U and Q on the interval λβα <
r < σβα involves the function Uαβ(r) only on the interval 0 ≤ r < σβα. Given Uαβ(r) on
0 ≤ r < σβα, is then possible to find Qαβ(r) as a function of Aαβ and Jαβ . This is done in
appendix E. Moreover we know that

lim
r→σ−

βα

Qαβ(r) = −Aαβ , (4.i:59)

and we continuously extend Qαβ(r) in λβα

Qαβ(λβα) = lim
r→λ+

βα

Qαβ(r) . (4.i:60)
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ii PY solution for non additive hard spheres

An interesting problem which has not yet been solved is the determination of a complete analytic
solution of the PY integral equations for a system of three dimensional non additive hard spheres
(NAHS). In some early papers Lebowitz and co-workers [50, 51] found the exact correlation
functions as well as the solution of the PY integral equation for NAHS in one dimension with
some restriction on the non additivity parameter (Rαβ − (Rα + Rβ)/2), but their extension to
the three dimensional system was not complete and they could not provide a closed analytical
expression for the direct correlation functions.

The NAHS model is interesting because the inclusion of a negative (Rαβ < (Rα +Rβ)/2) or
positive (Rαβ > (Rα+Rβ)/2) non additivity is crucial to model several experimental results on
binary systems (compound forming alloys, aqueous electrolyte solutions as well as molten salts
are good examples for negative non additivity. Positive non-additivity could be used to model the
tendency to phase separation in liquid alloys, some alkali metals alloys, or supercritical aqueous
solutions of NaCl. See [52] for the references). Ordering phenomena (compound alternation
or segregation) can often be interpreted in terms of the excluded volume effects due to non
additivity in the repulsive cores.

In this section we will show which are the main difficulties in trying to generalize to NAHS
the work of Baxter [44] on the analytic solution of the PY approximation for a mixture of
additive hard spheres.

Let us consider an homogeneous and isotropic fluid of density ρ made of n different types
of hard spheres of diameter R1, R2, . . . , Rn. Let ρα be the density of the hard spheres of type
α = 1, 2, . . . , n. Moreover let the distance of closest approach between two spheres be

Rαβ =

{

Rα α = β
1
2 (Rα +Rβ)(1 + ∆αβ) α 6= β

, (4.ii:1)

where ∆αβ are the parameters which rules the non additivity: for ∆αβ = 0 the spheres are said
to be additive.

The Ornstein-Zernike (OZ) equation (D.ii:1) give a relationship between the partial total
correlation functions hαβ and the partial direct correlation functions cαβ

hαβ(r) = cαβ(r) +
∑

γ

ργ

∫

cαγ(s)hγβ(|r− s|) , (4.ii:2)

where r = |r| and s = |s|.
Since the pair interaction potential φαβ(r) is infinite for r < Rαβ we must have

hαβ(r) = −1 for r < Rαβ . (4.ii:3)

Since φαβ(r) is zero for r > Rαβ , the PY approximation states that we must have

cαβ(r) = 0 for r > Rαβ . (4.ii:4)

The problem consists in the solution of the system of equations (4.ii:2), (4.ii:3), and (4.ii:4).

ii.1 The Wiener-Hopf factorization is ill defined

Multiplying the OZ equation (4.ii:2) times
√
ραρβe

ik·r and integrating over the whole space in
dr we find in matricial form

H̃(k) = C̃(k) + C̃(k)H̃(k) , (4.ii:5)
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where k = |k| and














H̃αβ(k) = 2π

∫ ∞

−∞
eikrUαβ(r) dr

Uαβ(r) =

∫ ∞

r

√
ραρβshαβ(s) ds

, (4.ii:6)















C̃αβ(k) = 2π

∫ ∞

−∞
eikrVαβ(r) dr

Vαβ(r) =

∫ ∞

r

√
ραρβscαβ(s) ds

. (4.ii:7)

We follow the convention of choosing hαβ(−r) = hαβ(r) and cαβ(−r) = cαβ(r) so that Uαβ and
Vαβ are even functions.

Now we note that I − C̃(k), where I is the identity matrix, is a symmetric matrix and an
even function of k. So following Baxter we perform the following Wiener-Hopf factorization

I − C̃(k) = [I + H̃(k)]−1 = Q̃T (−k)Q̃(k) , (4.ii:8)

where we use the superscript T to denote the transposed matrix and

Q̃αβ(k) = δαβ −
∫ Rαβ

Sαβ

eikrQαβ(r) dr ≡ δαβ − Q̂αβ(k) . (4.ii:9)

The Qαβ(r) are real functions with support in [Sαβ , Rαβ ] and zero everywhere else. The param-
eters Sαβ are for the moment unknowns. We will now prove that they are ill defined for the
NAHS.

We first rewrite equation (4.ii:8) as follows

C̃αβ(k) = Q̂αβ(k) + Q̂βα(−k)−
∑

γ

Q̂γα(−k)Q̂γβ(k) . (4.ii:10)

Then we multiply both sides by e−ikr and integrate in dk/(2π) over the whole real axis. We find
for r > Rαβ

2πVαβ(r) = −
∑

γ

∫

Qγα(t)Qγβ(t+ r) dt , (4.ii:11)

where the integration in dt is over the interval

[Sγα, Rγα] ∩ [Sγβ − r,Rγβ − r] . (4.ii:12)

Now from (4.ii:4) and (4.ii:7) follows that Vαβ(r) = 0 for r > Rαβ . So also the sum of the n
integrals in (4.ii:11) must vanish. One can readily verify that each one of the n integrals vanishes
if we choose

Sγα = Rγβ −Rαβ . (4.ii:13)

For additive hard sphere this choice reduces to Sγα = (Rγ − Rα)/2 independent from β, which
is Baxter’ s choice. We readily realize looking at (4.ii:1) that using (4.ii:13) for NAHS, would
lead to a dependence of Sγα from an intermediate index β, occurrence which is not admissible.
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ii.2 Symmetric binary mixture

For a symmetric binary mixture n = 2, ∆11 = ∆22 = ∆12 = ∆21 = ∆, R1 = R2 = R, and
ρ1 = ρ2 = ρ/2. The problem reduces to determine the direct correlation function for like
species c11(r) and for unlike species c12(r). A good approximation to the true direct correlation
functions has been given by Gazzillo [53].

In this case the determination of the 4 Sαβ is much simplified. Following the argument given
in the previous subsection we have studied the interval (4.ii:12) for r = Rαβ in the 8 cases of
interest, determining in each case the Sαβ for which the intersection vanishes for r > Rαβ . We
found:

• α = β = 1
γ = 1 [S11, R] ∩ [S11 −R, 0]. The intersection vanishes for S11 = 0.
γ = 2 [S21, (1 + ∆)R] ∩ [S21 −R,∆R]. The intersection vanishes for S21 = ∆R.

• α = β = 2
γ = 1 [S12, (1 + ∆)R] ∩ [S12 −R,∆R]. The intersection vanishes for S12 = ∆R.
γ = 2 [S22, R] ∩ [S22 −R, 0]. The intersection vanishes for S22 = 0.

• α = 1, β = 2
γ = 1 [S11, R] ∩ [S12 − (1 + ∆)R, 0].
γ = 2 [S21, (1 + ∆)R] ∩ [S22 − (1 + ∆)R,−∆R].

• α = 2, β = 1
γ = 1 [S12, (1 + ∆)R] ∩ [S11 − (1 + ∆)R,−∆R].
γ = 2 [S22, R] ∩ [S21 − (1 + ∆)R, 0].

We see that with the choice S11 = S22 = 0 and S12 = S21 = ∆R each integral in (4.ii:11)
vanishes. Once the Sαβ have been chosen the determination of the partial direct correlation
function through Baxter’ s method is straightforward. With our choice of the Sαβ we had to
restrict 0 < ∆ < 1/2 and we found for the like direct correlation function

c11(r) = a1 + a2r + a4r
3 for 0 < r < R , (4.ii:14)

where a1, a2, and a4 are functions of ∆ and R. The solution has the correct limit (4.i:15)
as ∆ → 0. Unfortunately despite having the correct functional form and the correct ∆ → 0
limit this solution does not compare well with Gazzillo’s approximation or with the numerically
generated function.

For the unlike direct correlation function we found

c12(r) = c1 for 0 < r < ∆R , (4.ii:15)

c12(r) = a0/r + a1 + a2r + a4r
3 for ∆R < r < (1−∆)R , (4.ii:16)

c12(r) = b0/r + b1 +
1
2a2r +

1
2a4r

3 for (1−∆)R < r < (1 + ∆)R , (4.ii:17)

where c1, a0, b0, and b1 are functions of ∆ and R. c12(r) is discontinuous at r = ∆R,

lim
r→∆R+

c′12(r) = 0 , (4.ii:18)

and c′12(r) is discontinuous at r = (1−∆)R. The discontinuities are unphysical.
So it looks as if the Wiener-Hopf factorization does not give any good result for the NAHS.

An element in favor of this conclusion come from the analysis of the Widom-Rowlinson model
in the next subsection.
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ii.3 The Widom-Rowlinson model

The Widom-Rowlinson model [54] is obtained from the binary mixture of hard spheres by setting

∆ = d/R , (4.ii:19)

and letting R→ 0.
Ahn and Lebowitz find the following solution in one dimension

C̃11(k) = 0 , (4.ii:20)

C̃12(k) = 2µ
sin[d(k2 + 4µ2)1/2]

(k2 + 4µ2)1/2
, (4.ii:21)

where µ is a parameter which can be determined from the following equation

µ =
√
ρ1ρ2 cos(2µd) (4.ii:22)

It is possible to find a factorization like in (4.ii:10) and (4.ii:9). For example choosing
Q̂11 = Q̂22, Q̂12 = Q̂21, and Q̂11, Q̂12 real functions one finds

Q̂11 =
C̃12 − 2

√

(1−
√

1− C̃2
12)/2 + 2[(1 −

√

1− C̃2
12)/2]

3/2

C̃12

C̃12→0−→ C̃2
12/8 +O[C̃4

12] ,

Q̂12 =

√

(1−
√

1− C̃2
12)/2

C̃12→0−→ C̃12/2 +O[C̃3
12] ,

where amongst the 4 solutions to (4.ii:10) we have chosen the one for which limC̃12→0 Q̂11 =

limC̃12→0 Q̂12 = 0. Notice that the solution found indeed give for Q̂11(k) and Q̂12(k) even,
real functions. Infact for a symmetric binary mixture, the partial structure factors Sαβ(k) =
(
√
ραρβ/ρ){[I − C̃(k)]−1}αβ are given by

S(k) =
1

2

1

1− C̃2
12(k)

(

1 C̃12(k)

C̃12(k) 1

)

.

But since limk→∞ C̃12(k) = 0 and the Sαβ(k) has to remain finite for all k then we must have
C̃2
12(k) < 1 for all k.
However even if a factorization is possible, in the Widom-Rowlinson model the h11(r) is

unknown for all r. For the Wiener-Hopf factorization technique to be useful it is necessary that
in the relationship between the Q(r) and the h(r), the h(r) are involved only over the interval
where they are known. But this is not possible in the Widom-Rowlinson model for what we
just said. So it seems as if the Wiener-Hopf factorization is not a useful technique to solve
the Widom-Rowlinson model or the more general non additive hard spheres model in the PY
approximation.

In chapter 7 the structure of the three dimensional Widom-Rowlinson model will be studied
in detail starting from Monte Carlo simulation results. We will also point out several misprints
in the portion of the paper of Ahn and Lebowitz [54] dealing with the three dimensional Widom-
Rowlinson model.
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iii Hard spheres with surface adhesion

In studies on colloidal suspensions of neutral particles with adhesive interaction, Baxter’s “sticky
hard spheres” model [30, 31] has often been used. In Baxter’s original formulation and its
extension to the multicomponent case [32, 33] (refereed in the literature as SHS1 model) the
pair potential, in addition to a hard sphere repulsion, contains an infinitely deep and narrow
attractive square well, obtained according to a particular limiting procedure (“sticky limit”)
that keeps the second virial coefficient finite.

This model has the following positive features:

• when studied within the PY approximation an analytic solution can be found,

• such analytic solution exhibits a gas-liquid phase transition,

• it is appropriate for the description of some properties of colloidal suspensions, micelles,
microemulsions, and protein solutions with short range interactions. It can also describe
some aspects of adsorption, flocculation, and percolation phenomena, solvent-mediated
forces, ionic mixtures, solutions with a small degree of size polydispersity, and fluid of
chain-like molecules (see [34] for a list of references).

Its main drawbacks are:

• Stell found [35] that sticky hard spheres of the same diameter, in the Baxter limit, when
treated exactly, are not thermodynamically stable,

• more importantly, colloidal suspensions are rather commonly polydisperse. Polydispersity
means that mesoscopic suspended particles of a same chemical specie are not necessarily
identical, but some of their properties (size, charge, etc.)may exhibit a discrete or con-
tinuous distribution of values. Even when all macroparticles belong to a unique chemical
specie, a polydisperse fluid must therefore be treated as a multicomponent mixture. The
number n of components may be of order 101 ÷ 103 or more (discrete polydispersity) or
infinite (continuous polydispersity). Now the SHS1 in the PY approximation, when ap-
plied to mixtures, requires the solution of a set of n(n+1)/2 coupled quadratic equations
[32] a task which cannot be accomplished analytically.

More recently there have been attempts to find an alternative SHS model which could be
analytically tractable even in the general multicomponent case (see [34] for the references). In
particular Brey and co-workers [36] proposed to start from a hard sphere Yukawa potential

βφ(r) =

{

+∞ r < R

−Ke−z(r−R)/r r ≥ R
, (4.iii:1)

with K = zK0, K0 = ǫ∗0R
2, ǫ∗0 = βǫ0 ≡ 1/(12T ∗), R denotes the hard sphere diameter, z the

Yukawa inverse range, ǫ0 an energy, and T ∗ a reduced temperature. This other Hamiltonian
(referred to in the literature as SHS2 model) is supplemented by a “sticky limit” which in this
case amounts to taking z → ∞ [36].

For the SHS2 model the OZ equation can be solved analytically within the MSA [37, 38]. It
turns out that this solution is readily usable even in the polydisperse multicomponent case (see
[34] for references). Recently there has been a lot of investigations on the structural properties
of polydisperse fluids using a version of the SHS2 model in which the coupling (stickiness)
parameters which define the strength of the Yukawa attraction are factorizable [39, 40] and one
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in which they are non-factorizable [41]2[42, 43]. More recently Gazzillo and co-workers showed
that the SHS2 model is ill defined: its Hamiltonian leads to an exact second virial coefficient
which diverges [34]. They propose a third model of SHS.

In this section we present the analytic solution to the Percus-Yevick approximation for the
SHS1 model. The derivation is in part alternative to the one originally given by R. J. Baxter
[30] since we use as method of solution the Wiener-Hopf factorization (see section B). The same
method was later used by Baxter himself [31]. The derivation was done without being aware of
the existence of [31] so it is in some sense original. We hope that it may be a useful exercise,
for the reader, in which Dirac delta functions are used within the Wiener-Hopf factorization
method.

Let us consider a system of particles interacting through a pair potential φ∆(r) of the fol-
lowing kind (see figure 4.1)

βφ∆(r) =







+∞ r < R−∆
ǫ(∆) < 0 R−∆ < r < R
0 r > R

, (4.iii:2)

r

∆

R− ∆

ε(∆)

R

β φ

Figure 4.1: Potential (4.iii:2).

The Mayer function is f∆(r) = e−βφ
∆(r) − 1, see figure 4.2

Moreover let

lim
∆→0

ǫ(∆) = −∞ . (4.iii:3)

We want to study the system in the limit of ∆ going to zero. We choose for ǫ the following
expression

ǫ(∆) = ln

(

12τ∆

R

)

. (4.iii:4)

2Notice that there must be a misprint in their equations (8), (9), and (10).
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r∆

f
∆

e −ε(∆) −1 

R

−1

R−

Figure 4.2: Mayer function for the potential (4.iii:2).

It can be shown that in the limit of ∆ going to zero, the Mayer cluster integrals gn(r) (see
[12] section 5.3) remain finite for r = R. For example for g1(r) we have

g∆1 (r) =

∫

f∆(|r− r′|)f∆(r′) dr′

= 2π

∫ R

0
ds sf∆(s)

∫ r+s

|r−s|
dt tf∆(t) . (4.iii:5)

In the limit ∆ → 0 we have

f(r) = lim
∆→0

f∆(r) = −θ(R− r) +
R

12τ
δ(r −R) , (4.iii:6)

where θ(x) = 1 for x > 0 and θ(x) = 0 otherwise, is the Heaviside step function, and δ(x) is the
Dirac delta function. We then find

g1(R) = lim
∆→0

g∆1 (R)

= −2π

∫ R

0
ds s

∫ R+s

R−s
dt tf(t) + 2π

(

R2

12τ

)
∫ 2R

0
dt tf(t)

= −2π

∫ R

0
ds s

1

2

[

s2 − 2sR+
R2

12τ

]

+ 2π

(

R2

12τ

)(

−R
2

2
+
R2

12τ

)

= 2π

[

5R4

24
− R4

12τ
+

(

R2

12τ

)2
]

<∞ . (4.iii:7)

Since φ∆(r) = ∞ for r < R−∆ we must have for the pair distribution function

g∆(r) = 0 r < R−∆ . (4.iii:8)

From the virial expansion for g∆ we find

g∆(r) = e−βφ
∆(r)[1 +

∞
∑

n=1

ρng∆n (r)]

=
R

12τ∆
[1 +

∞
∑

n=1

ρng∆n (r)] R−∆ < r < R , (4.iii:9)
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Where ρ is the number density of the fluid. Let us call

λ∆(r) = [1 +

∞
∑

n=1

ρng∆n (r)]/τ , (4.iii:10)

we then have

λ = lim
∆→0

λ∆(R) <∞ . (4.iii:11)

So we find

g(r) = lim
∆→0

g∆(r) =
Rλ

12
δ(r −R) r ≤ R . (4.iii:12)

Let us introduce next the function H(r) = rh(r) = r[g(r)− 1]. We will have

H(r) =
R2λ

12
δ(r −R)− r r ≤ R . (4.iii:13)

In the Percus-Yevick approximation the direct correlation function is

c(r) =
(

1− eβφ(r)
)

g(r) , (4.iii:14)

where φ(r) = lim∆→0 φ
∆(r). Since φ(r) = 0 when r > R we have

c(r) = 0 r > R . (4.iii:15)

This allows us to solve the Ornstein-Zernike equation using the Wiener-Hopf factorization (see
section B). This involves the functions H(r) and C(r) = rc(r) only over the interval r ∈ [0, R]
and may be written as follows (see equations (B.:44) and (B.:46))

H(r) = −Q′(r) + 2πρ

∫ R

0
H(|r − s|)sgn(r − s)Q(s) ds , (4.iii:16)

C(r) = −Q′(r) + 2πρ

∫ R

r
Q′(s)Q(s − r) ds , (4.iii:17)

where the prime stands for derivative and Q(r) is an auxiliary function that must be continue
on [0, R[ and zero on ]R,∞].

From (4.iii:16) we find Q′ in the interval [0, R]

Q′(r) = − R2λ

12
δ(r −R) + r − 2πρ

∫ R

0
(r − s)Q(s) ds

+ 2πρ

∫ R

0

R2λ

12
δ(|r − s| −R)sgn(r − s)Q(s) ds

= − R2λ

12
δ(r −R) + ar + b , (4.iii:18)

where

a = 1− 2πρ

∫ R

0
Q(s) ds , (4.iii:19)

b = 2πρ

∫ R

0
sQ(s) ds . (4.iii:20)
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Since we must have Q(r) = 0 for r > R it has to be

Q(r) =
1

2
ar2 + br + γ , (4.iii:21)

Q(R) =
R2λ

12
. (4.iii:22)

Using (4.iii:21) into equations (4.iii:19), (4.iii:20), and (4.iii:22) we have three equations in the
three unknown a, b, and γ. Calling µ = λη(1 − η) we find



















a = (1 + 2η − µ)/(1 − η)2 ,

b =
R

2
(µ− 3η)/(1 − η)2 ,

γ = −R
2

12
(6− µ/η)/(1 − η) ,

(4.iii:23)

where η = ρR3π/6 is the hard sphere packing fraction. Notice that we recover the case of hard
spheres [equations (C.:10),(C.:11), and (C.:12)] by setting λ = 0 in equations (4.iii:23).

From (4.iii:17) we find C(r) in the interval [0, R]

C(r) = C̃(r) +
R2λ

12
δ(r −R) , (4.iii:24)

C̃(r) = C0 + C1r + C2r
2 + C4r

4 , (4.iii:25)

where







































C0 = −R

12
λ2η ,

C1 = −(1 + 2η − µ)2/(1 − η)4 ,

C2 =
1

2R
[3η(2 + η)2 − 2µ(1 + 7η + η2) + µ2(2 + η)]/(1 − η)4 ,

C4 =
η

2R3
C1 .

(4.iii:26)

We are left with the task of determining λ. Equating the coefficients of the Dirac deltas in
the Percus-Yevick closure we have

(f(r) + 1)C(r) = f(r)(H(r) + r) , (4.iii:27)

where on the interval [0, R]

f(r) + 1 =
R

12τ
δ(r −R) ,

C(r) =
R2λ

12
δ(r −R) + C̃(r) ,

H(r) + r =
R2λ

12
δ(r −R) .

We then find

R

12τ
C̃(R) = (−1)

R2λ

12
, (4.iii:28)
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or C̃(R) = −Rλτ . From this follows

1 + η/2

(1− η)2
1

λ
− η

1− η
+

η

12
λ− τ = 0 . (4.iii:29)

Equation (4.iii:29) multiplied by λ(1 − η)2 is a quadratic equation in λ which admits two real
roots λ±(τ, η) when the discriminant is non-negative

D = (5− 12τ + 6τ2)η2 + (−2 + 12τ − 12τ2)η + 6τ ≥ 0 . (4.iii:30)

The solutions of D = 0 are

η± =
1− 6τ + 6τ2 ±

√
1− 12τ + 18τ2

5− 12τ + 6τ2
τ→∞−→ 1 (4.iii:31)

The solutions of a = 5− 12τ + 6τ2 = 0 are

{

τ1 = (6 +
√
6)/6

τ2 = (6−
√
6)/6

(4.iii:32)

The solutions of d = 1− 12τ + 18τ2 = 0 are

{

τ3 = (2 +
√
2)/6

τ4 = (2−
√
2)/6

(4.iii:33)

We then have the situation depicted in figure (4.3) We will call τ4 the critical temperature

η

1τ 2τ 3τ 4

η +η + −η> > 0 η + −η> > 0−η

−η η +> 0 >

D > 0    for all  

−η

−η η +

1/3 1

0 > >

a > 0

d > 0

D < 0    for   

D < 0    for

η

η > 

<<

τ

Figure 4.3: Sign of the discriminant D.

τc = τ4 ≃ 0.09763 . (4.iii:34)

We have the following cases

τ < τc (4.iii:29) has no solutions for η− < η < η+

τc < τ < τ2 (4.iii:29) has two real solutions for all η

τ2 < τ < τ1 (4.iii:29) has no solutions for η > η− > 1

τ1 < τ (4.iii:29) has no solutions for η+ > η > η− > 1
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Notice that the value physically accessible for the density are η ∈ [0, η0] where η0 = π/(3
√
2) is

the maximum packing density. Corresponding to the critical temperature τc we have a critical
density

ηc = η±(τc) =

√
2

6 + 25/2
≃ 0.12132 . (4.iii:35)

We are left with the problem of deciding which one of the two solutions λ± is the physically
acceptable one. From the virial expansion for g (4.iii:10), follows that

lim
η→0

λ(τ, η) =
1

τ
. (4.iii:36)

It follows then from equation (4.iii:29) that the physically acceptable solution is λ+ the other
one diverging as η goes to 0.

There is one more physical constraint that must be fulfilled, namely the radial distribution
function has to be a bounded function. Multiplying equation (4.iii:16) times e−tr and integrating
over r from 0 to ∞ (we change variables from (r, s) to (y = r − s, s) and integrate first over y)
we find

H̄(t) = −Q̄′(t) + 2πρQ̄(t)H̄(t) + 2πρI(t) , (4.iii:37)

I(t) =

∫ R

0
dy yety

∫ R

y
dsQ(s)e−ts ,

f̄(t) ≡
∫ ∞

0
f(r)e−tr dr .

From which follows

H̄(t) =
−Q̄′(t) + 2πρI(t)

1− 2πρQ̄(t)
. (4.iii:38)

Moreover we have

Q̄(t) = E(t) + F (t)e−Rt , (4.iii:39)

E(t) = (a+ bt+ ct2)/t3 , (4.iii:40)

F (t) = (aR2/2 + bR+ c)/t+ (Ra+ b)/t2 + a/t3 . (4.iii:41)

The function 1 − 2πρQ̄(t) tends to 1 for t → ∞ and behaves as −2πρ(−Ra)/t2 near t = 0.
Then if a < 0 it must have at least a zero on the positive real axis. We thus conclude that for
µ > 1 + 2η, H(r) (or g(r)) is an unbounded function.

In figure 4.4 we plot the function λ+(τ, η) (bold lines) and λ−(τ, η) for different values of τ .
For τ < τc, λ± end on the curve

A(η) = λ+(τ−(η), η) =

√

6(2 + η)

η(1− η)2
, (4.iii:42)

where τ±(η) are the solutions to D = 0. For solutions above the curve

B(η) =
2η + 1

η(1− η)
, (4.iii:43)

the radial distribution function is unbounded. The physical region is the one below the two
curves A and B. This two curves meet at η = ηc.
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Figure 4.4: Plot of A(η) (4.iii:42), B(η) (4.iii:43), and λ±(τ, η) for τ = 0.13, 0.105, 0.0975,
and 0.092. The physical region for the solutions to equation (4.iii:29) is the one below the
two curves A and B.

iii.1 Compressibility Pressure

The pressure from the compressibility equation is given by

β
∂P

∂ρ

∣

∣

∣

∣

T

=
1

S(0)
=

1

1 + ρĥ(0)
= 1− ρĉ(0)

= 1− 4πρ

∫ R

0
sC(s) ds

= −C1

= [1 + 2η − λ−(τ, η)η(1 − η)]2/(1 − η)4 , (4.iii:44)

where S(k) is the static structure factor and a hat denotes a Fourier transform. Note that the
isothermal compressibility is positive for all η and τ , and diverges on λ = B(η).

We find the pressure integrating over η. If we call v0 = πR3/6 the volume of a sphere we
find

βv0P (τ, η) =

∫ η

0
(1 + 2η′ − µ(τ, η′))2/(1 − η′)4 dη′ (4.iii:45)

=
1

3 (−1 + η)3
[−3 η (1 + η (−11 + 19 η)) + 18 (−1 + η) η

× (−2 + 11 η) τ − 216 (−1 + η)2 η τ2 + 72 (−1 + η)3 τ3 −

2
√
6
(

η (−2 + 5 η)− 12 (−1 + η) η τ + 6 (−1 + η)2 τ2
)

3
2
]

We see from figure 4.5 that, with the Percus-Yevick closure, there is a non accessible region on
the plane (pressure,volume). That region is delimited by the curve

C(η) = βv0P (τ−(η), η)

=
η

3(η − 1)3
[−3− 3η − 3η2 +

√

η(2 + η)(
√
6η +

√
24)] . (4.iii:46)
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Figure 4.5: Plot of several isotherms at τ = 0.2, 0.13, 0.105, 0.0975, and 0.092. The equa-
tion of state is obtained from the compressibility equation (4.iii:44). We plot βv0P against
1/η, the dimensionless volume per particle. The region below the curve C(1/η) (4.iii:46) is
unaccessible with the Percus-Yevick closure.

At the critical point we find

βv0Pc =
2(4 + 3

√
2)

9(2 +
√
2)3

≃ 0.04602 , (4.iii:47)

where Pc = P (τc, ηc). The critical isotherm Pc(η) = P (τc, η) has the following behavior near the
critical point

Pc(η)− Pc =

{

ω+(η − ηc)
3 +O[(η − ηc)

4] η > ηc
ω−(η − ηc)

3 +O[(η − ηc)
4] η < ηc

(4.iii:48)

where ω± = limη→ηc± ∂
3Pc/∂η

3 with ω− ≈ 34ω+.

iii.2 Virial pressure

From the virial theorem we have

βP

ρ
= lim

∆→0

{

1− 2

3
πβρ

∫ ∞

0
r3g∆(r)

dφ∆(r)

dr
dr

}

. (4.iii:49)

Because this equation involves the derivative of the pair potential, it cannot be used directly in
the calculation of the equation of state. This problem can be overcome rewriting the equation
in terms of the function N(r)∆ defined as

N∆(r) = reβφ
∆(r)g∆(r) . (4.iii:50)

Indeed it can be shown that this function must be a continuous function even when g∆ and φ∆

are discontinuous. Using equation (4.iii:50) in (4.iii:49) we find

βP

ρ
= lim

∆→0

{

1− 2

3
πβρ

∫ ∞

0
r2N∆(r)e−βφ

∆(r) dφ
∆(r)

dr
dr

}

= lim
∆→0

{

1 +
4η

R3

∫ ∞

0
r2N∆(r)

de−βφ
∆(r)

dr
dr

}

. (4.iii:51)
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The discontinuities in the pair potential are such (see figure 4.1) that the derivative of the
Boltzmann factor is

de−βφ
∆(r)

dr
= e−ǫ(∆)δ(r −R′)−

(

e−ǫ(∆) − 1
)

δ(r −R) , (4.iii:52)

where R′ = R−∆ and e−ǫ(∆) = R/(12τ∆) (see equation (4.iii:4)). We find then

βP

ρ
= lim

∆→0

{

1 +
4η

R3

R

12τ∆
R′2N∆(R′)− 4η

R3

(

R

12τ∆
− 1

)

R2N∆(R)

}

= lim
∆→0

{

1 +
4η

R
N∆(R)− η

3τ

[

R2N∆(R)−R′2N∆(R′)
R2∆

]}

. (4.iii:53)

We now observe that from the Percus-Yevick closure follows N∆(r) = r + H∆(r) − C∆(r).

From equations (4.iii:13) and (4.iii:24) then follows N∆(r)
∆→0−→ N(r) = −C̃(r) for r ≤ R.Using

equation (4.iii:28) we further find that the second term on the right hand side of equation
(4.iii:53) equals 4ηλτ . To calculate the third term one has to carefully evaluate the ∆ → 0 limit.
Assuming we can evaluate it as follows

η

3τ
lim
∆→0

[

R2C̃(R)−R′2C̃(R′)
R2∆

]

=
η

3τ
[(2/R)C0 + 3C1 + 4RC2 + 6R3C4] , (4.iii:54)

we find for the virial pressure the following expression

βv0P = η

(

βP

ρ

)

= η
{

1 + 4ηλ+τ +
η

3τ
[(2/R)C0 + 3C1 + 4RC2 + 6R3C4]

}

. (4.iii:55)

This expression coincides with equation (38) in [30] apart from the lack of the additional term
η2λ3/24 within the square brackets, present in Baxter’s equation. Indeed the function N∆(r)
is not differentiable in r = R. So our assumption was wrong: we cannot substitute N∆ with N
and then take the limit ∆ → 0. The task of calculating N∆ is a little bit more laborious, since
one cannot work with delta functions, and is left as an exercise to the reader.



Chapter 5

Generating functionals, consistency,
and uniqueness in the integral
equation theory of liquids

In chapter 3 we introduced the most common integral equation theories (IET). IET of the liq-
uid state statistical mechanics are valuable tools for studying structural and thermodynamic
properties of pairwise interacting fluid systems [12, 55]. Many of these approximations to the
exact relation between pair potential and pair correlation functions have been proposed in the
last half century, starting from the pioneering works [56–58] to the most refined and modern ap-
proximations [59–63] which may approach the accuracy of computer simulation with a negligible
computational cost.

The functional method in statistical mechanics [12] provides the most general and sound
starting point to introduce IET as approximations of the exact functional relations and it is the
classical statistical mechanics counterpart of the quantum density functional theory.

Notwithstanding the success of present IET to describe the structure of simple one compo-
nent systems, considerable work is still devoted to derive improved approximations which could
accurately describe the thermodynamics as well. Also applications to non simple or multicom-
ponent systems are still subject of current studies.

Actually, the description of thermodynamics is one weak point of IET approaches: reasonable
and apparently harmless approximations to the potential-correlation relations usually result in
a dramatically inconsistent thermodynamics where many, if not all, among the exact sum rules
derived from statistical mechanics, are violated.

The problem of thermodynamic inconsistency, i.e. the inequivalence between different routes
to thermodynamics, actually plagues the IET approach to the point that the degree of inconsis-
tency between different formulae for the same quantity is used as an intrinsic measurement of
the quality of a closure.

In the past, some discussion of the thermodynamic consistency appeared in the literature.
Hypernetted chain approximation (HNC) was recognized as a closure directly derivable from an
approximation for the free energy functional [64] , thus exhibiting consistency between the virial
formula and the thermodynamic expression for the pressure. However, this limited consistency
is not enough to guarantee a unique and faithful description of the phase diagram. Apart the
problem of the remaining inconsistencies, the descriptions of the critical points and spinodal
lines are seriously inadequate.

Extensive work on HNC [65–67] showed that in place of a true spinodal line, it is more
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appropriate to describe the numerical results as due to a region in the thermodynamic plane
where no real solution of the integral equation exists. In particular, Belloni[65] showed that
the disappearance of the solution originates from a branching point where two solutions merge,
instead than from a line of diverging compressibility. Thus, we have direct evidence that HNC
may have multiple solutions, at least in part of the phase diagram.

Empirical improvements on HNC have been proposed [59, 62, 63] providing in many cases ex-
cellent results for one-component simple fluids. However, although reduced, the thermodynamic
inconsistency problem remains and the multiple solution problem is completely untouched.

In this work we start an investigation of a new approach to IET directly addressing the
two points of uniqueness of the solution and thermodynamic consistency. The basic idea is
to constrain the search for new closures within the class of generating functionals which are
strictly convex free-energy functionals, thus enforcing the virial-energy consistency as well as
the uniqueness of the solution.

In particular, in the present chapter we try to answer the following questions: i) does at
least one strictly convex free-energy functional of the pair correlation function exist? ii) what
is the nature of the resulting spinodal line (if any), iii) what is the quality of the resulting
thermodynamic and structural results? iv) does the simultaneous requirement of consistency
and uniqueness automatically provide improved results?

As we will show, we have a positive answer for i), a thorough and interesting characterization
for ii), some interesting indications for iii), and a partly negative answer for iv).

However, we can show that it is possible to exploit the control provided by the generating
functional approach to easily generate new closures and we feel our procedure could be the basis
of a more systematic approach to IET.

In section i we recall the connections between closures, generating functionals, thermody-
namic consistency and uniqueness of solutions and we illustrate them in the well known case of
HNC approximation. In section ii we introduce two straightforward extensions of HNC intended
to cure its problems. In Section iii numerical results are presented and discussed. In section iv
we show two possible improvements of the closures studied.

i Thermodynamic consistency and uniqueness of the solution of

integral equations

Since the work by Olivares and McQuarrie [68] it is known the general method to obtain the
generating functional whose extremum with respect to variations of the direct (c(r)) or total
(h(r)) correlation functions results in the closure relation, provided the Ornstein-Zernike equa-
tion is satisfied. In a way, here we address the inverse problem of the derivation of a closure:
given a closure (whatever was the way of deriving it) what is the functional of the correlation
functions which has the closure as extremum value equation?

For example, if we have a closure of the form

ρ2c(r) = Ψ{h(r), βφ(r)} , (5.i:1)

where φ(r) is the pair interaction potential and Ψ is an arbitrary function, the functional

Q[h(r), βφ(r)] =
1

2βρ

(
∫

dk

(2π)3
{ρĥ(k) − ln[1− ρĥ(k)]}−

∫

drh(r)

∫ 1

0
dtΨ{th(r), βφ(r)} + constant

)

, (5.i:2)
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is such that the extremum condition
δQ

δh(r)
= 0 , (5.i:3)

is equivalent to

ρ2h(r) = Ψ{h(r), βφ(r)} + ρ

∫

h(|r− r′|)Ψ{h(r′), βφ(r′)} dr′ . (5.i:4)

Olivares and McQuarrie also showed how to find the generating functional if the closure is
expressed in the form

ρ2h(r) = Ψ{c(r), βφ(r)} . (5.i:5)

In section iv.3 we discuss the extension of their method to the case of a closure written as

ρ2c(r) = Ψ{γ(r), βφ(r)} , (5.i:6)

where γ(r) = h(r) − c(r) is the indirect correlation function. Notice that most of the modern
closures correspond to this last case.

The possibility of translating the original integral equation into an extremum problem allows
to get an easy control on two important characteristics of the approximation: thermodynamic
consistency between energy and virial routes to the thermodynamics and uniqueness of the
solution.

Indeed, once we get the generating functional Q, due to the approximations induced by the
closure, there is no guarantee that its value at the extremum is an excess free energy. In order
to be a free energy, the functional should satisfy the condition

δQ

δφ(r)
=
ρ

2
g(r) , (5.i:7)

where g(r) = h(r) + 1 is the pair distribution function.

Even if this condition is not new, and mention to it is present in the literature [69], we
discuss it in appendix F as well as its consequences on the thermodynamic consistency between
the virial pressure and the density derivative of the free energy.

Another issue where the generating functional approach is useful is the problem of multiple
solutions of the integral equations [65]. In particular, the analysis of the convexity properties of
the generating functional is a very powerful tool [70, 71].

Let us illustrate this techniques in the case of HNC closure. It is well known [64, 68] that
the HNC equation with closure

c(r) = h(r)− ln
[

g(r)eβφ(r)
]

, (5.i:8)

can be derived from the variational principle

δF [h]

δh(r)
= 0 , (5.i:9)

where

F [h] = FOZ [h] + FHNC [h] , (5.i:10)
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with



















FOZ [h] =
∫

dk

(2π)3
{ρĥ(k)− ln[1 + ρĥ(k)]} ,

FHNC [h] = ρ2
∫

dr
{

1 + g(r)
[

ln
(

g(r)eβφ(r)
)

− 1
]

− h2(r)/2
}

.

(5.i:11)

Let us call h̄(r) the extremum of F , solution of the variational principle (5.i:9). It can be
shown (see appendix F) that, within an additive constant, F [h̄]/(2βρ) is the excess Helmholtz
free energy per particle of the liquid. This ensure thermodynamic consistency between the
route to the pressure going through the partial derivative of the free energy and the one going
through the virial theorem (see appendix F). In addition, it allows to get a closed expression
for the excess chemical potential without further approximations [72, 73]. This feature is highly
desirable for applications of IET to the determination of the phase diagrams.

Moreover if we can prove that F , defined on some convex set of trial correlation functions
Dc, is a strictly convex functional, then we know that if a solution to (5.i:9) exists, it corresponds
to a minimum and is unique. A functional F is strictly convex if for all y(r) ∈ Dc and y(r) 6= 0,
we have

A =

∫

y(r)
δ2F [h]

δh(r)δh(r′)
y(r′) dr dr′ > 0 . (5.i:12)

We calculate the second functional derivatives as follows























δ2FOZ [h]
δh(r)δh(r′)

= ρ2
∫

dk

(2π)3
e−ik·(r+r′) 1

[1 + ρĥ(k)]2
,

δ2FHNC [h]
δh(r)δh(r′)

= ρ2δ(r − r′)

(

1

g(r)
− 1

)

.

(5.i:13)

Recalling that the static structure factor S(k) = 1 + ρĥ(k), we find for A

A/ρ2 =

∫

dk

(2π)3
ŷ2(k)

S2(k)
+

∫

dr y2(r)

(

1

g(r)
− 1

)

. (5.i:14)

Now, the most interesting results would be to show the strict convexity of the HNC functional
over the convex set of all the admissible pair correlation functions (all the h(r) ≥ −1 and
properly decaying to zero at large distance.

However, this is not the case for HNC. It has not been possible to show the positive definite-
ness of equation (5.i:14) and it has been shown [65] that in some region of the thermodynamic
plane HNC does exhibit multiple solutions.

The best we can do is to obtain a more limited result. Calling g1 = sup g(r) (g1 > 1 is the
height of the first peak of the pair distribution function) and using Parseval theorem, we find

A/ρ2 >

∫

dk

(2π)3
ŷ2(k)

(

1

S2(k)
− 1 +

1

g1

)

, (5.i:15)

from which we deduce that A > 0 on the following set of functions

D =
{

h(r) | 0 < S(k) <
√

g1/(g1 − 1) ∀k
}

. (5.i:16)
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We conclude that F defined on any convex set of functions Dc ⊂ D is strictly convex. Near the
triple point we are sure we are out from such set since the first peak of the pair distribution
function for the Lennard-Jones fluid is g1 ≃ 3 [74], so that

√

g1/(g1 − 1) ≃ 1.2. The first
peak of the static structure factor is also close to 3. Then we are not inside D and the HNC
approximation may have multiple solutions [65].

Instead, if we are in the weak coupling regime, the previous conditions tells us that there is
a range where the branch of solutions going to the perfect gas limit is unique and quite isolated
from other solutions.

ii Extensions of HNC

The generating functional approach can be used in a systematic way to look for better closures.
We think that this way, we can obtain a less empirical search method for improving closures.

In the following we report some preliminary analysis we have done. As a first test of our
program, we have restricted our investigations to simple modifications of HNC functional. As
we will discuss later, such a choice is certainly not optimal. However, we can learn enough to
consider the approach worthwhile of further investigations and we feel the results are interesting
in order to reveal more details about the characteristics of the solutions of the highly non linear
IET.

ii.1 The HNC/H2 approximation

We want to modify the HNC closure in order to have an integral equation with a generating
functional which is strictly convex without having to restrict its definition domain. We choose
as our modified HNC (HNC/H2) closure 1

c(r) = h(r)− ln[g(r)] − βφ(r)− αh2(r) , (5.ii:1)

with α a parameter to be determined. The new closure generating functional is

FHNC/H2[h] = ρ2
∫

dr
{

1 + g(r)
[

ln
(

g(r)eβφ(r)
)

− 1
]

− h2(r)/2 + αh3(r)/3
}

. (5.ii:2)

Its second functional derivative with respect to h is

δ2FHNC/H2[h]

δh(r)δh(r′)
= ρ2δ(r − r′)

[

1

g(r)
− 1 + 2αh(r)

]

. (5.ii:3)

Recalling that h = g − 1 and g(r) > 0 for all r, we see that for α = 1/2

1

g
− 1 + 2αh =

(1− g)2

g
≥ 0 ∀g . (5.ii:4)

Then FHNC/H2 is a convex functional and since FOZ is unchanged and strictly convex (see
appendix G), their sum, the generating functional of the integral equation, is strictly convex.

Moreover {FOZ [h̄] + FHNC/H2[h̄]}/(2βρ) continues to be the excess Helmholtz free energy
per particle of the liquid since equation (5.i:7) holds (see appendix F).

1Our first trial should really be c = − ln g−βφ. Which should be called HNC/H1. We have tested numerically
this closure and we found that it performed worst than HNC/H2 both for the structure and for the thermodynamics
of the system under exam.
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We have then an integral equation which is both thermodynamically consistent (the pressure
calculated from the virial theorem coincides with that one calculated from the Helmholtz free
energy) and with a solution which, when it exists, is unique.

ii.2 The HNC/H3 approximation

In the same spirit as in subsection ii.1 we can try to add a term h3 in the HNC/H2 closure

c(r) = h(r)− ln[g(r)]− βφ(r)− αh2(r)− γh3(r) , (5.ii:5)

with α and γ parameters to be determined. We call this approximation HNC/H3. The closure
generating functional is

FHNC/H3[h] = ρ2
∫

dr
{

1 + g(r)
[

ln
(

g(r)eβφ(r)
)

− 1
]

− h2(r)/2+

αh3(r)/3 + γh4(r)/4
}

. (5.ii:6)

Its second functional derivative with respect to h is

δ2FHNC/H3[h]

δh(r)δh(r′)
= ρ2δ(r− r′)

[

1

g(r)
− 1 + 2αh(r) + 3γh2(r)

]

= ρ2δ(r− r′)
1− g(r)

g(r)
{1− 2αg(r) + 3γg(r)[1 − g(r)]} . (5.ii:7)

In order to have the right hand side of this expression positive for g > 0 the only choice we have
is to set α = 1/2. In this way

(1− g)[1 − 2αg + 3γg(1 − g)] = (1− g)2(1 + 3γg) , (5.ii:8)

and we see that FHNC/H3 is a convex functional if we additionally choose γ > −1/[3 sup g(r)].
Once again {FOZ [h̄] + FHNC/H3[h̄]}/(2βρ) is the excess Helmholtz free energy per particle

of the liquid and the thermodynamic consistency virial-free energy is ensured.

iii Numerical results

To solve numerically the OZ plus closure system of nonlinear equations we used Zerah’ s al-
gorithm [75]. We performed Fourier transforms using a fast Fourier transform routine taken
from CERN library. In the code we always work with adimensional thermodynamic variables
T ∗ = 1/(βǫ),ρ∗ = ρσ3, and P ∗ = Pσ3/ǫ, where σ and ǫ are the characteristic length and char-
acteristic energy of the system respectively.We always used 1024 grid points and a step size
∆r = 0.025σ.

The thermodynamic quantities were calculated according to the statistical mechanics formu-
lae for: the excess internal energy per particle

U exc/N = 2πρ

∫ ∞

0
φ(r)g(r)r2 dr , (5.iii:1)

the excess virial pressure

βP v/ρ− 1 = −2

3
πβρ

∫ ∞

0

dφ(r)

dr
g(r)r3 dr , (5.iii:2)
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the bulk modulus calculated from the compressibility equation

Bc =
β

ρχT
=

1

S(k = 0)
, (5.iii:3)

where χT is the isothermal compressibility, and the bulk modulus calculated from the virial
equation

Bp = β
∂P v

∂ρ

= 1− 4

3
πβρ

∫ ∞

0

dφ(r)

dr
g(r)r3 dr − 2

3
πβρ2

∫ ∞

0

dφ(r)

dr

∂g(r)

∂ρ
r3 dr . (5.iii:4)

For the calculation of Bp once g(r) and c(r) had been calculated, Lado’ s scheme for Fourier
transforms [76] was used to determine ∂ĝ(k)/∂ρ. Even if slow, this allows us to explicitly
calculate and later invert the coefficients matrix of the linear system of equations which enters
the calculation of ∂ĝ(k)/∂ρ.

iii.1 Inverse power potentials

The general form of the inverse power potential is

φ(r) = ǫ
(σ

r

)n
, (5.iii:5)

where 3 < n < ∞. For this class of fluids the thermodynamics depends only from the dimen-
sionless coupling parameter

z = (ρσ3/
√
2)(βǫ)3/n . (5.iii:6)

In this subsection we choose to fix ρ∗ = 1 so that equation (5.iii:6) gives the relation between z
and T ∗.

We performed our calculations on the n =12, 6, and 4 fluids at the freezing point. We
compared three kind of closures: the thermodynamically consistent one of Rogers and Young
[77] (RY) with thermodynamic consistency virial-compressibility and known to be very close
to the simulation results, the hypernetted-chain (HNC) closure, and the HNC/H2 described in
subsection ii.1. In each case we compared our data with the Monte Carlo (MC) results of Hansen
and Schiff [78].

iii.1.1 The inverse 12th power potential

The freezing point for this fluid is at z = 0.813. In figure 5.1 we compare the MC and RY results
for the pair distribution function. The RY α parameter to achieve thermodynamic consistency
at this value of z is 0.603. Notice that we express α in units of σ and not of a = (3/4πρ)1/3 as
in the original Rogers and Young’ s paper [77]. In figure 5.2 we compare the MC, the HNC, and
the HNC/H2 results for the pair distribution function.

In table 5.1 we compare various thermodynamic quantities (the excess internal energy per
particle, the excess virial pressure, the bulk moduli) obtained from the RY, the HNC, and the
HNC/H2 closures. In the MC calculation of Hansen and Schiff the excess internal energy per
particle is 2.675, the excess virial pressure is 18.7, and the bulk modulus 72.7.
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Figure 5.1: Comparison of the Monte Carlo (MC) and Rogers Young (RY) results for the
pair distribution function of the inverse 12th-power fluid at z = 0.813.
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Figure 5.2: Comparison of the Monte Carlo (MC), the HNC, and HNC/H2 results for the
pair distribution function of the inverse 12th-power fluid at z = 0.813.

iii.1.2 The inverse 6th power potential

The freezing point for this fluid is at z = 1.54. In figure 5.3 we compare the MC and RY results
for the pair distribution function. The RY α parameter to achieve thermodynamic consistency
at this value of z is 1.209. In figure 5.4 we compare the MC, the HNC, and the HNC/H2 results
for the pair distribution function.
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closure U exc/(Nǫ) βP (v)/ρ− 1 Bc Bp
RY (α = 0.603) 2.626 18.359 69.782 70.125

HNC 3.009 21.036 45.278 80.430

HNC/H2 3.200 22.372 52.661 87.255

Table 5.1: We compare various thermodynamic quantities as obtained from the RY, the
HNC, and the HNC/H2 closure, for the inverse 12th-power fluid at the freezing point (z =
0.813). Uexc/(Nǫ) is the excess internal energy per particle, βP (v)/ρ − 1 the excess virial
pressure, Bc and Bp are the bulk moduli from the compressibility and the virial equation
respectively.
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Figure 5.3: Comparison of the Monte Carlo (MC) and Rogers Young (RY) results for the
pair distribution function of the inverse 6th-power fluid at z = 1.54.

In table 5.2 we compare various thermodynamic quantities (the excess internal energy per
particle, the excess virial pressure, the bulk moduli) obtained from the RY, the HNC, and the
HNC/H2 closures. In the MC calculation of Hansen and Schiff the excess internal energy per
particle is 4.090, the excess virial pressure is 38.8 and the bulk modulus 110.1.

iii.1.3 The inverse 4th power potential

The freezing point for this fluid is at z = 3.92. In figure 5.5 we compare the MC and RY results
for the pair distribution function. The RY α parameter to achieve thermodynamic consistency
at this value of z is 1.794. In figure 5.6 we compare the MC, the HNC, and the HNC/H2 results
for the pair distribution function.

In table 5.3 we compare various thermodynamic quantities (the excess internal energy per
particle, the excess virial pressure, the bulk moduli) obtained from the RY, the HNC, and the
HNC/H2 closures. In the MC calculation of Hansen and Schiff the excess internal energy per
particle is 8.233, the excess virial pressure is 107.7 and the bulk modulus 156.
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Figure 5.4: Comparison of the Monte Carlo (MC), the HNC, and HNC/H2 results for the
pair distribution function of the inverse 6th-power fluid at z = 1.54.

closure U exc/(Nǫ) βP (v)/ρ− 1 Bc Bp
RY (α = 1.209) 4.114 39.027 110.952 111.420

HNC 4.235 40.178 84.016 113.733

HNC/H2 4.283 40.635 88.289 115.757

Table 5.2: We compare various thermodynamic quantities as obtained from the RY, the
HNC, and the HNC/H2 closure, for the inverse 6th-power fluid at the freezing point (z =
1.54). Uexc/(Nǫ) is the excess internal energy per particle, βP (v)/ρ − 1 the excess virial
pressure, Bc and Bp are the bulk moduli from the compressibility and the virial equation
respectively.

iii.2 The spinodal line

In this subsection we study a pair potential with a minimum In particular we chose the Lennard-
Jones potential

φ(r) = 4ǫ

[

(σ

r

)12
−
(σ

r

)6
]

, (5.iii:7)

where ǫ and σ are positive parameters. The critical point for this fluid is at [79]

T ∗
c = 1.3120 ± 0.0007

ρ∗c = 0.316 ± 0.001

P ∗
c = 0.1279 ± 0.0006

Integral equations fail to have a solution at low temperature and intermediate density, i.e.
in the two-phase unstable region of the phase diagram. In particular it is well known that the
HNC approximation is unable to reproduce the spinodal line, the locus of points of infinite
compressibility in the phase diagram [65]. This is due to the loss of solution as one approaches
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Figure 5.5: Comparison of the Monte Carlo (MC) and Rogers Young (RY) results for the
pair distribution function of the inverse 4th-power fluid at z = 3.92.
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Figure 5.6: Comparison of the Monte Carlo (MC), HNC, and HNC/H2 results for the pair
distribution function of the inverse 4th-power fluid at z = 3.92.

the spinodal line on an isotherm from high or from low densities. The line of loss of solution, in
the phase diagram, is called termination line. The loss of solution for the HNC approximation
is due to the loss of strict convexity of the generating functional [80]. Indeed, using HNC
approximation, we computed the bulk modulus from the compressibility equation Bc, on several
isotherms as a function of the density. At low temperatures we found that both at high density
and at low density we were unable to continue the isotherm at low values of Bc. Zerah’ s
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closure U exc/(Nǫ) βP (v)/ρ− 1 Bc Bp
RY (α = 1.794) 8.001 104.664 250.106 242.948

HNC 8.047 105.277 223.328 244.212

HNC/H2 8.068 105.542 226.966 257.678

Table 5.3: We compare various thermodynamic quantities as obtained from the RY (notice
that the bulk moduli were not given in the Rogers and Young’ s paper and the value of the
virial pressure as reported in our table was not corrected to take into account the long
range nature of the potential), the HNC and the HNC/H2 closure, for the inverse 4th-
power fluid at the freezing point (z = 3.92). Uexc/(Nǫ) is the excess internal energy per
particle, βP (v)/ρ − 1 the excess virial pressure, Bc and Bp are the bulk moduli from the
compressibility and the virial equation respectively.

algorithm either could not get to convergence or it would converge at a non physical solution
(with a structure factor negative at some wavevector k). Since HNC/H2 has, by construction,
an always strictly convex generating functional, we expect it to be able to reproduce a spinodal
line (there should be no termination line).

In Figure 5.7 we show the behavior of Bc on several isotherms as a function of density,
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Figure 5.7: Behavior of Bc of the Lennard-Jones fluid, on several isotherms as a function
of the density for the HNC/H2 approximation.

calculated with the HNC/H2 approximation. We see that now there are no termination points.
Bc never becomes exactly zero and the low temperature isotherms develop a bump in the inter-
mediate density region. The same plot for the bulk modulus calculated from the virial pressure
Bp, shows that at low temperatures this bulk modulus indeed becomes zero along the isotherms
both at high and low densities.

In figure 5.8 the pressure is plotted as a function of the density on several isotherms for the
HNC/H2 approximation. Apart from the fact that we find negative pressures, the isotherms has
a Van der Waals like behavior.
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Figure 5.8: Behavior of the pressure of the Lennard-Jones fluid, on several isotherms as a
function of the density for the HNC/H2 approximation.

iv Improving the closures

The numerical results for HNC/H2 exhibit interesting features as far as the coexistence re-
gion is concerned but show unambiguously a worst agreement with the MC structural data in
correspondence with a marginal improvement in the thermodynamics.

We feel that the main problem is the difficulty of an accurate description of the bridge
functions in terms of powers of the pair correlation function. Recent investigations on improved
closures seem to point to the indirect correlation function γ(r) or some renormalized version of
it, as the best starting point for progress. However, before moving to more complex relations
or functional dependences, we have explored two possible directions for improving the HNC/H2
closure. In the first approach we have tried to follow the MHNC approach by Lado et al. [81]. In
the second we have explored the possibilities of optimization offered by the numerical coefficient
of the cubic term in the generating functional.

iv.1 The reference HNC/H2 approximation

From the graphical analysis of the pair distribution function it is known [12] that g(r) may be
written as

g(r) = e−βφ(r)+γ(r)+B(r) , (5.iv:1)

where γ(r) = h(r)− c(r) is the sum of all the series type diagrams and B(r) the sum of bridge
type diagrams. If we take

B(r) = −1

2
h2(r) +G(r) , (5.iv:2)

we have that our HNC/H2 approximation amounts to setting G(r) = 0. Rosenfeld and Ashcroft
[59] proposed that B(r) should be essentially the same for all potentials φ(r). We now make
the same proposal for the G function. In the same spirit of the RHNC approximation of Lado
[81] we will approximate G(r) with the G function of a short range (reference) potential φ0(r).
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Assuming known the properties of the reference system, we can calculate the G function as
follows

G0(r) = ln
[

g0(r)e
βφ0(r)

]

− γ0(r) +
1

2
h20(r) . (5.iv:3)

The reference HNC/H2 (RHNC/H2) approximation is then

g(r) = e−βφ(r)+γ(r)−
1
2
h2(r)+G0(r) . (5.iv:4)

An expression for the free energy functional can be obtained turning on the potential φ(r)
in two stages: first, from the noninteracting state to the reference potential φ0(r) and then from
there to the full potential φ(r). To this end we write

φ(r;λ0, λ1) = λ0φ0(r) + λ1∆φ(r) , (5.iv:5)

with ∆φ(r) = φ(r) − φ0(r). Following the same steps as in [60] we obtain for the excess free
energy per particle

f exc = f1 + f2 + f
(0)
3 +∆f3 (5.iv:6)

where the first two terms were already encountered in section i

βf1 =
1

2
ρ

∫

dr
{

1 + g(r)
[

ln
(

g(r)eβφ(r)
)

− 1
]

− h2(r)/2 + h3(r)/6
}

, (5.iv:7)

βf2 =
1

2ρ

∫

dk

(2π)3
{ρĥ(k)− ln[1 + ρĥ(k)]} . (5.iv:8)

The third term is assumed known

βf
(0)
3 = −1

2
ρ

∫

dr

∫ 1

0
dλ0G(r;λ0, 0)

∂g(r;λ0, 0)

∂λ0
= β(f (0) − f

(0)
1 − f

(0)
2 ) , (5.iv:9)

here f (0) is the excess free energy per particle of the reference system and f
(0)
1 , f

(0)
2 are defined

as in equations (5.iv:7), (5.iv:8) for the reference potential and its corresponding correlation
functions. The last term is

β∆f3 = −1

2
ρ

∫

dr

∫ 1

0
dλ1G(r; 1, λ1)

∂g(r; 1, λ1)

∂λ1
. (5.iv:10)

According to our proposal, G is insensitive to a change in potential from φ0 to φ. We may then
approximate this last term as follows

β∆f3 ≈ −1

2
ρ

∫

drG0(r)[g(r) − g0(r)] . (5.iv:11)

Now that we have the free energy we may consider it as a functional of both h(r) and G0(r)
and take its variation with respect to these functions. We find,

β δf exc =
1

2
ρ

∫

dr
{

c(r)− h(r) + h2(r)/2 + ln
[

g(r)eβφ(r)
]

−G0(r)
}

δh(r) −

1

2
ρ

∫

dr[g(r) − g0(r)]δG0(r) . (5.iv:12)
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It follows that the free energy is minimized when both the RHNC/H2 closure (equation (5.iv:4))
is satisfied and when the following constraint

∫

dr[g(r) − g0(r)]δG0(r) = 0 , (5.iv:13)

is fulfilled.
Taking the second functional derivative of f exc with respect to h(r) we find that also this

free energy is a strictly convex functional of the total correlation function. This property was
lacking in the RHNC theory and constitutes the main feature of the RHNC/H2 closure. As
already stressed in section ii.1 it ensures that if a solution to the integral equation exists it has
to be unique.

The constraint, as for RHNC, gives a certain thermodynamic consistency to the theory (see
[60]). If we choose a reference potential φ0(r) = φ0(r;σ, ǫ) which depends on some length and
energy parameters σ and ǫ, the optimum values of the parameters that minimize the free energy
can be determined by the constraint (5.iv:13) which becomes

∫

dr[g(r) − g0(r)]
∂G0(r)

∂σ
= 0 , (5.iv:14)

and
∫

dr[g(r) − g0(r)]
∂G0(r)

∂ǫ
= 0 , (5.iv:15)

However, neither the hard-sphere pseudo bridge functions nor some empirical attempt to
model the unknown function via a Yukawa function provided useful results.

iv.1.1 Results from the RHNC/H2 approximation

For the Lennard-Jones fluid near its triple point (ρ∗ = 0.85 and T ∗ = 0.719) we tried to mimic
the G function with a Yukawian. We chose

G0(r) = −Ae
−r/λ

r
, (5.iv:16)

where A and λ are two positive constants. Setting λ equal to the first minimum of the pair
distribution function obtained from a molecular dynamics simulation [74] (λ ≃ 1.5), we varied
A to fit the excess internal energy obtained in the simulation [82] (U exc/(Nǫ) = −6.12). The
resulting value for A was around 124. The values of the pressure and of the bulk modulus did
not match with the ones of the simulation and the pair distribution function had a lower first
peak and the successive peaks shifted forward respect to the g(r) of the simulation as is shown
in figure 5.9.

iv.2 Optimized HNC/H3 approximation

For γ = 0 HNC/H3 reduces to HNC/H2. For γ > 0 the first peak of the pair distribution function
is dumped respect to the one of the pair distribution function calculated with HNC/H2. For
γ < 0 the first peak increases giving in general a better fit to the simulation data.

In figure 5.10 we compare the pair distribution function of the Lennard-Jones fluid near its
triple point, calculated with a molecular dynamic simulation [74], the HNC/H2 approximation,
the approximation HNC/H3 with γ = −0.203 (at lower values of γ Zerah’ s algorithm would fail
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Figure 5.9: Comparison of the pair distribution function computed from the RHNC/H2
with a yukawian G function and from a molecular dynamics (MD) simulation, for a Lennard-
Jones fluid at ρ∗ = 0.85 and T ∗ = 0.719.
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Figure 5.10: Comparison of the pair distribution function of a Lennard-Jones fluid at
ρ∗ = 0.85 and T ∗ = 0.719 computed from the molecular dynamic (MD) simulation of Verlet,
the HNC/H2 approximation, and the HNC/H3 approximation. For HNC/H3 we present
results obtained setting γ = −0.1 (when the generating functional of the approximation is
still strictly convex) and γ = −0.203 (which gives the best fit possible to the simulation data
but does not ensure the strict convexity of the generating functional).

to converge), and the approximation HNC/H3 with γ = −0.1 (when the generating functional
of HNC/H3 is still strictly convex). As we can see HNC/H3 fits the simulation data better than
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HNC/H2 even if the first peak is still slightly displaced to the left of the simulation data, a well
known problem of the HNC approximation [59].

The best results are given by HNC/H3 with γ = −0.203. Note that the HNC/H3 generating
functional at this value of γ is not strictly convex (strict convexity is lost for γ . −1/9). The
first peak of the static structure factor is at kσ ≃ 6.75 and has a magnitude of 2.41, a quite low
value for a liquid near the triple point. We have calculated the pressure and the internal energy.
We found βP/ρ ≃ 3.87 and U exc/(Nǫ) ≃ −5.72 (very close to the HNC results βP/ρ ≃ 3.12 and
U exc/(Nǫ) ≃ −5.87) to be compared with the simulation results [82] 0.36 and −6.12 respectively.
The bulk moduli are Bc ≃ 11.74 and Bp ≃ 36.61 which shows that at the chosen value of γ
we do not have the thermodynamic consistency virial-compressibility and we do not improve on
HNC inconsistency (using HNC we find Bc ≃ 7.09 and Bp ≃ 32.72).

iv.3 Functionals of γ

Often in the numerical solution of the OZ + closure integral equation use is made of the auxiliary
function γ(r) = h(r)− c(r). Suppose that the closure relation can be written as

ρ2c(r) = −Ψ{γ(r)} , (5.iv:17)

where Ψ is a function of a function.

We want to translate the integral equation into a variational principle involving functionals
of γ(r). Then we introduce a closure functional Fcl[γ] such that

δFcl[γ]
δγ(r)

= Ψ{γ(r)} , (5.iv:18)

and an OZ functional FOZ,c[γ] such that, when c(r) and γ(r) satisfy the OZ equation, we have

δFOZ,c[γ]
δγ(r)

= ρ2c(r) . (5.iv:19)

Then when both the closure and the OZ relations are satisfied, the functional F = Fcl + FOZ,c
is stationary with respect to variations of γ(r), i.e.

δF [γ]

δγ(r)
= 0 . (5.iv:20)

This is the variational principle sought.

We want now find FOZ,c. The OZ equation in k space is

ρĉ2(k) + ργ̂(k)ĉ(k)− γ̂(k) = 0 . (5.iv:21)

When we solve it for ĉ we find two solutions

ĉ =
−Γ̂±

√

Γ̂2 + 4Γ̂

2ρ
, (5.iv:22)

where Γ̂(k) = ργ̂(k) is always positive since

Γ̂ = ρ2ĥĉ = ρ2
ĥ2

1 + ρĥ
= ρ2

ĥ2

S(k)
, (5.iv:23)
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S(k) being the liquid static structure factor which is positive definite for all k. Since ĉ(k) is
a function which oscillates around 0, where ĉ is negative we have to choose the solution with
the minus sign, where it is positive the one with the plus sign. In particular if the isothermal
compressibility of the liquid χT , is smaller than the one of the ideal gas χ0

T , we have that

ĉ(0) =
1

ρ

(

1− χ0
T

χT

)

< 0 , (5.iv:24)

and we have to start with the minus sign.
The functional we are looking for is then (see equation (30) in [68] with the constant set

equal to zero)

FOZ,c[γ] =
∫ 1

0
dt

∫

dr γ(r)

∫

dk

(2π)3
ρ

2
eik·r

[

−tΓ̂(k) + sc(k)

√

t2Γ̂2(k) + 4tΓ̂(k)

]

, (5.iv:25)

where sc(k) is +1 when ĉ(k) ≥ 0 and -1 when ĉ(k) < 0. Rearranging the integrals and making
the change of variable y = tΓ̂ we find

FOZ,c[γ] =
1

2

∫

dk

(2π)3

∫ Γ̂(k)

0
dy
(

−y + sc(k)
√

y2 + 4y
)

=

∫

dk

(2π)3

{

−Γ̂2/4 + sc(k)

[

(

1 + Γ̂/2
)

√

(

1 + Γ̂/2
)2

− 1

− ln

(

1 + Γ̂/2 +

√

(

1 + Γ̂/2
)2

− 1

)]}

. (5.iv:26)

If the closure relation was

ρ2h(r) = −Ψ{γ(r)} , (5.iv:27)

we would have introduced a closure functional Fcl[γ] such that

δFcl[γ]
δγ(r)

= Ψ{γ(r)} , (5.iv:28)

and an OZ functional FOZ,h[γ] such that, when h(r) and γ(r) satisfy the OZ equation, we have

δFOZ,h[γ]
δγ(r)

= ρ2h(r) . (5.iv:29)

To find FOZ,h we notice that the OZ equation in k space relating ĥ and γ̂, now is

ρĥ2(k)− ργ̂(k)ĥ(k)− γ̂(k) = 0 . (5.iv:30)

When we solve it for ĥ we find

ĥ =
Γ̂±

√

Γ̂2 + 4Γ̂

2ρ
. (5.iv:31)

We now have,

FOZ,h[γ] =
∫

dk

(2π)3

{

Γ̂2/4 + sh(k)

[

(

1 + Γ̂/2
)

√

(

1 + Γ̂/2
)2

− 1

− ln

(

1 + Γ̂/2 +

√

(

1 + Γ̂/2
)2

− 1

)]}

, (5.iv:32)
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where sh(k) is +1 when ĥ(k) > 0 and -1 when ĥ(k) ≤ 0. Note that since ĥĉ ≥ 0 (see (5.iv:23))
we must have sh = sc.

The second functional derivative of FOZ,h is

δ2FOZ,h[γ]
δΓ(r)δΓ(r′)

=

∫

dk

(2π)3
e−ik·(r+r′)

√

Γ̂2 + 4Γ̂ + sh(k)(2 + Γ̂)

2
√

Γ̂2 + 4Γ̂
, (5.iv:33)

which shows that due to the presence of the sign sh the functional FOZ,h is neither convex
nor concave. Thus, any check of the convexity properties of generating functionals of the γ(r)
function should be done on the full functional.

v Conclusions

In this chapter we have analyzed the relations between generating functionals, thermodynamic
consistency and uniqueness of the solution of the integral equations of liquid state theory. We
think that the requirement of deriving from a free energy and the uniqueness of the solution are
two important ingredients to enforce in the quest for better closures. The former requirement is
of course crucial to get virial-energy consistency. But it is also important to get integral equations
able to provide a closed formula for the chemical potential without additional approximations.
This last issue looks highly desirable for applications of IET to the determination of phase
diagrams. The latter is certainly a useful constraint from the numerical point of view but it is
also a very strong condition, probably able to avoid some non physical behavior in the coexistence
region, although this point would deserve further investigation. Most of the existing closures fail
to satisfy the condition of uniqueness of the solution. Among them, only the Optimized Random
Phase Approximation by Andersen and Chandler [71, 83] satisfies both constraints although they
were not used in the original derivation of the approximation. One obvious question is whether
the enforcement of these constraints automatically results in improved closures.

In this work, we have started an exploration of the capabilities of the combined requirement
of consistency and uniqueness, starting with simple modifications to the HNC closure, corre-
sponding to the addition of a square and a cubic power of h(r) in the HNC functional. We found
a couple of approximations (HNC/H2 and HNC/H3), which have built in the virial-free energy
thermodynamic consistency and have a unique solution.

We numerically tested these closures on inverse power and the Lennard-Jones fluid. From
the tests on the inverse power potential fluids one can see that the HNC/H2 approximation
is comparable to HNC for the thermodynamic quantities and performs worst than RY and
even HNC for structural properties. The tests on the Lennard-Jones fluid revealed as this
approximation does not suffer from the presence of a termination line (present in HNC and
almost all the existing closures). This allowed us to follow isotherms from the low density
to the high density region and this behavior would be very useful in the study of the phase
coexistence. However, the thermodynamic results show only a marginal improvement on HNC
and the structure is definitely worse.

Our trials to improve HNC/H2 in the same spirit of the modified HNC approaches did not
succeed. We feel that the main reason is in the difficulty of modeling the real bridge functions
through a polynomial in the function h(r). In this respect, approaches based on generating
functionals depending on the indirect correlation function γ(r) look more promising but we
have not tried them yet.

Much better results for the structure are found with HNC/H3 as is shown in figure 5.10.
However, probably for the same reasons just discussed, one has to renounce to have an approx-
imation with a strictly convex generating functional depending on h(r). The thermodynamics
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reproduced by HNC/H3 is not yet satisfactory: due to the slight left shift of the main peak of the
g(r) the calculated pressure misses the simulation result. Nonetheless the presence of the free
parameter γ in HNC/H3 leaves open the possibility of imposing the thermodynamic consistency
virial-compressibility. If the value of the parameter needed to have the consistency is bigger than
−1/[3 sup g(r)] then we would have an approximation which is completely thermodynamically
consistent and have a unique solution. This strategy may eventually lead to discover that the
price we have to pay to have a completely thermodynamically consistent approximation is the
loss of strict convexity of the generating functional.



Chapter 6

Stability of the iterative solutions of
integral equations as one phase
freezing criterion

A recently proposed connection between the threshold for the stability of the iterative solution
of integral equations for the pair correlation functions of a classical fluid and the structural in-
stability of the corresponding real fluid is carefully analyzed. Direct calculation of the Lyapunov
exponent of the standard iterative solution of HNC and PY integral equations for the 1D hard
rods fluid shows the same behavior observed in 3D systems. Since no phase transition is allowed
in such 1D system, our analysis shows that the proposed one phase criterion, at least in this
case, fails. We argue that the observed proximity between the numerical and the structural
instability in 3D originates from the enhanced structure present in the fluid but, in view of the
arbitrary dependence on the iteration scheme, it seems uneasy to relate the numerical stability
analysis to a robust one-phase criterion for predicting a thermodynamic phase transition.

i Introduction

When studying the structure and thermodynamics of classical fluids one is often faced with
the task of solving the nonlinear integral equation which stems out of the combination of the
Ornstein-Zernike equation and an approximate relation between pair potential and correlation
functions (the closure) [12]. Integral equations can be generally written in the form

γ(r) = Aγ(r) , (6.i:1)

where γ(r) ∈ S may be the total correlation function h(r), the direct correlation function c(r),
or a combination of the two, S is a set of a metric space of functions, and A : S → S is a non
linear operator mapping S into itself.

Numerical analysis of integral equations suggests the use of the following combination

γ(r) = h(r)− c(r) , (6.i:2)

since γ is a much smoother function than h or c, especially in the core region.

It has been pointed out by Malescio et. al. [84–86] that, amongst the different numerical
schemes that one may choose to solve (6.i:1), the simple iterative scheme of Picard plays a special

73
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role. Picard scheme consists in generating successive approximations to the solution through
the relationship

γn+1 = Aγn , (6.i:3)

starting from some initial value γ0. If the sequence of successive approximations {γn} converges
toward a value γ⋆, then γ⋆ is a fixed point for the operator A, i.e. it is a solution of Eq. (6.i:1),
γ⋆ = Aγ⋆. Banach’ s fixed point theorem (see chapter 1 in [87] especially theorem 1.A) states
that, given an operator A : S → S, where S is a closed nonempty set in a complete metric space,
the simple iteration (6.i:3) may converge toward the only fixed point in S (A is k contractive) or
it may not converge (A is non expansive). So the simple iterative method can be used to signal
a fundamental change in the properties of the underlying operator.

The operator A will in general depend on the thermodynamic state of the fluid. In order
to determine the properties of the operator at a given state we can proceed as follows. First,
we find the fixed point γ⋆ using a numerical scheme (more refined then Picard’ s) capable of
converging in the high density region. Next, we perturb the fixed point with an arbitrary initial
perturbation δ0(r) so that

A(γ⋆ + δ0) ≃ Aγ⋆ +
∂A

∂γ

∣

∣

∣

∣

γ⋆
δ0 = γ⋆ +Mδ0 , (6.i:4)

where we have introduced the Floquet matrix M . Now δ1 =Mδ0 may be considered as the new
perturbation. We then generate the succession {δn} where

δn =Mδn−1 . (6.i:5)

If the succession converges to zero then the operator A is k contractive, if it diverges the operator
is non expansive. Malescio et. al. call {δn} fictitious dynamics and associate to the resulting fate
of the initial perturbation the nature of the structural equilibrium of the fluid. If the succession
converges to zero they say that the fluid is structurally stable and structurally unstable otherwise.
We will call ρinst the density where the transition between a structurally stable and unstable
fluid occurs.

Following Malescio et. al. it is possible to define a measure for the structural stability of the
system as follows. We define

Si =
||Mδi(r)||
||δi(r)||

, (6.i:6)

where ||f(r)|| =
√

∑N
i=1 f

2(ri) is the norm of a function f defined over a mesh of N points. We
assume that the norm of the perturbation depends exponentially on the number of iterations

||δn|| = ||δ0||2λn , (6.i:7)

where λ is the Lyapunov exponent related to the fictitious dynamics. Then one can write the
average exponential stretching of initially nearby points as

λ = lim
n→∞

1

n
log2

(

n−1
∏

i=0

Si

)

. (6.i:8)

Malescio et. al. have calculated the dependence of λ on the density for various simple
three dimensional liquids (and various closures): hard spheres [84], Yukawa, inverse power and
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Lennard-Jones potentials [85]. For all these systems they found that λ increases with the density
and the density at which λ becomes positive, ρinst, falls close to the freezing density ρf of the
fluid system. This occurrence lead them to propose this kind of analysis as a one-phase criterion
to predict the freezing transition of a dense fluid and to estimate ρf . However, we think that
there are some practical and conceptual difficulties with such one-phase criterion.

First of all, it does not depend only on the closure adopted but also on the kind of algorithm
used to solve the integral equation. Indeed, different algorithms give different ρinst and Malescio
et. al. choose to use as instability threshold for their criterion the one obtained using Picard
algorithm, thus giving to it a special status. However, it is hard to understand why the particular
algorithm adopted in the solution of the integral equation should be directly related to a phase
boundary.

Moreover, one would expect that the estimate of ρinst would improve in connection with
improved closures. This is not the case, at least in the one component hard sphere fluid.

Even a more serious doubt about the validity of the proposed criterion comes from its
behavior in one dimensional systems. In this chapter we present the same Lyapunov exponent
analysis on a system of hard rods in one dimension treated using either the Percus-Yevick (PY)
or the hypernetted chain (HNC) approximations. What we find is that the Lyapunov exponent
as a function of density has the same behavior as that for the three dimensional system (hard
spheres): it becomes positive beyond a certain ρinst. Since it is known [10] that a one dimensional
fluid of hard rods does not have a phase transition, our result sheds some doubts on the validity
of the proposed criterion.

ii Technical details

As numerical scheme to calculate the fixed point we used Zerah’ s algorithm [75] for the three
dimensional systems and a modified iterative method for the hard rods in one dimension. In the
modified iterative method input and output are mixed at each iteration

γn+1 = Amixγn = αAγn + (1− α)γn , (6.ii:1)

where α is a real parameter 0 < α < 1. Note that while for a non expansive operator A the
Picard iterative method (6.i:3) needs not converge, one can prove convergence results on an
Hilbert space for the modified iterative method with fixed α (see proposition 10.16 in [87]). In
all the computations we used a uniform grid of N = 1024 points with a spacing δr = 0.025.
Generally, we observed a marginal increase of ρinst by lowering N .

A method to find a Lyapunov exponent, equivalent but more accurate than the one of
Malescio et. al. (6.i:8), goes through the diagonalization of the Floquet matrix. Note that in
general this matrix is non symmetric, thus yielding complex eigenvalues. A Lyapunov exponent
can then be defined as [88]

λ′ = log

[

max
i

(

√

er2i + ei2i

)]

, (6.ii:2)

where eri and eii are respectively the real and imaginary part of the i-th eigenvalue. In our
numerical computations we always used recipe (6.ii:2) to calculate the Lyapunov exponents since
it is explicitly independent from the choice of an initial perturbation.

We constructed the Floquet matrix in the following way [89]. In a Picard iteration we start
from γ(r) we calculate c(r) from the closure approximation, we calculate its Fourier transform
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c̃(k), we calculate γ̃(k) from the OZ equation, and finally we anti transform γ̃ to get γ′(r). For
example for a three dimensional system a PY iteration in discrete form can be written as follows

ci = (1 + γi)
(

e−βφi − 1
)

, (6.ii:3)

c̃j =
4πδr

kj

N−1
∑

i=1

ri sin(kjri)ci , (6.ii:4)

γ̃j = ρc̃2j/(1 − ρc̃j) (6.ii:5)

γ′i =
δk

2π2ri

N−1
∑

j=1

kj sin(kjri)γ̃j , (6.ii:6)

where ri = iδr are the N mesh points in r space, kj = jδk are the N mesh points in k space, with
δk = π/(Nδr), ci = c(ri), γi = γ(ri), c̃j = c̃(kj), γ̃j = γ̃(kj), and φi = φ(ri) is the interparticle
potential calculated on the grid points. The Floquet matrix will then be

Mij =
∂γ′i
∂γj

=
N−1
∑

m=1

∂γ′i
∂γ̃m

∂γ̃m
∂c̃m

∂c̃m
∂cj

∂cj
∂γj

=
δrδk

π

(

rj
ri

)

(

e−βφj − 1
)

(Di−j −Di+j) , (6.ii:7)

where

Dl =

N−1
∑

m=1

cos(kmrl)

[

2ρc̃m
1− ρc̃m

+

(

ρc̃m
1− ρc̃m

)2
]

. (6.ii:8)

The HNC case can be obtained replacing in (6.ii:7) [exp(−βφj)−1] with [exp(−βφj+γj)−1]
and the Martynov Sarkisov (MS) [62] closure can be implemented replacing it with [exp(−βφj+
√

1 + 2γj − 1)/
√

1 + 2γj − 1].
To derive the expression for the Floquet matrix valid for the one dimensional system and

consistent with a trapezoidal discretization of the integrals, we need to replace (6.ii:4) and (6.ii:6)
with

c̃j = 2δr

(

N−1
∑

i=1

cos(kjri)ci +
1

2
c0

)

, (6.ii:9)

γ′i =
δk

π

(

N−1
∑

i=1

cos(kjri)γ̃j +
1

2
γ̃0

)

. (6.ii:10)

iii Numerical results

iii.1 Three dimensional systems

We have calculated the Lyapunov exponent (6.ii:2) as a function of the density for a three
dimensional hard spheres fluid and a Lennard-Jones fluid at a reduced temperature T ∗ = 2.74,
using both the PY and the HNC closures. For the hard spheres we have also used the MS closure.
The results of the calculations are shown in figure 6.1 and 6.2 respectively. In good agreement
with the results of Malescio et. al. [84, 85], we can see how the slope of the curves starts high at
low densities and decreases rapidly with ρ. At high densities the Lyapunov exponent becomes
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Figure 6.1: We show the Lyapunov exponent as a function of the packing fraction η =
ρπd3/6 for a system of three dimensional hard spheres of diameter d as calculated using the
PY, the HNC, and the MS closures.

zero at ρinst. Before reaching the instability threshold the curves show a rapid change in their
slope at ρc < ρinst. The insets show a magnification of the region around ρc from which we are
lead to conclude that, within the numerical accuracy of the calculations, the slope of the curves
dλ′/dρ undergoes a jump at ρc.

For the hard spheres fluid we found ηinst = ρinstπd
3/6 of about 0.445 in the PY approxima-

tion, around 0.461 in the HNC approximation, and around 0.543 in the MS approximation. For
the Lennard-Jones fluid our results were indistinguishable from those of Malescio et. al. [85].
We found a reduced instability density ρ∗inst around 1.09 in the PY approximation and around
1.06 in the HNC approximation.

iii.2 The one dimensional hard spheres

We have calculated the Lyapunov exponent (6.ii:2) as a function of the density for a one dimen-
sional hard spheres fluid using both PY and HNC closures. The results of the calculation are
shown in figure 6.3. The curves show the same qualitative behavior as the ones for the three
dimensional fluids.

iii.3 The Floquet matrix

In figure 6.4 we show a surface plot of the non-zero region of the Floquet matrix (6.ii:7) as
calculated for the three dimensional hard spheres fluid in HNC approximation at η = 0.3. As
we approach the critical density the peaks near i = 1 accentuate themselves. This suggests that
the trace of the transition of operator A from k contractive to nonexpansive can be found in a
local change of the Floquet matrix.



CHAPTER 6. STABILITY OF THE ITERATIVE SOLUTIONS OF INTEGRAL EQUATIONS AS
ONE PHASE FREEZING CRITERION

IV. CONCLUSIONS 78

-2

-1.5

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

L
ya

pu
no

v 
ex

po
ne

nt

ρ*

PY
HNC

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

1 1.02 1.04 1.06 1.08 1.1

Figure 6.2: We show the Lyapunov exponent as a function of the reduced density for a
Lennard-Jones fluid at a reduced temperature T ∗ = 2.74 as calculated using the PY and
the HNC closures.

iv Conclusions

The fictitious dynamics associated to the iterative solution of an integral equation can signal
the transition of the map of the integral equation from k contractive to non expansive. If the
Lyapunov exponent is negative the map is k contractive, if it is positive the map is non expansive.

Since it is possible to modify in an arbitrary way the fictitious dynamics keeping the same
fixed point, it is difficult to understand a deep direct connection between the stability properties
of the map and a one-phase criterion for a thermodynamic transition.

Admittedly the correlations shown by Malescio et al. are striking. We calculated the Lya-
punov exponent as a function of the density for various fluids (hard spheres in one and three
dimensions and three dimensional Lennard-Jones fluid) both in the HNC and PY approxima-
tions. For the three dimensional fluids the instability density falls close to the freezing density
ρf . For example, the Lennard-Jones fluid studied with HNC should undergo a freezing tran-
sition at ρ∗ ≃ 1.06 or at ρ∗ ≃ 1.09, if studied with PY , rather close to the freezing density
ρ∗f ≃ 1.113. For hard spheres ρ∗inst is about 10% smaller than ρ∗f ∼ 0.948. The Hansen-Verlet
“rule” states that a simple fluid freezes when the maximum of the structure factor is about 2.85
[9]. According to this rule the three dimensional hard spheres fluid studied with HNC should
undergo a freezing transition at ρ ≃ 1.01 while when studied with PY the transition should be
at ρ ≃ 0.936. The corresponding estimates obtained through ρ∗inst, 0.879 (HNC) and 0.850 (PY)
are poorer and, more important, are not consistent with the well known better performance of
PY in the case of hard spheres.

In one dimension, a fluid of hard spheres (hard rods), cannot undergo a phase transition [10].
From Fig. 6.3 we see that the system still becomes structurally unstable. This can be explained
by observing that the structural stability as defined by Malescio et. al. is a property of the map
A and in particular of the algorithm used to get solution of the integral equation under study.
As such, it is not directly related to the thermodynamic properties even at the approximate level
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Figure 6.3: We show the Lyapunov exponent as a function of the reduced density for a
one dimensional fluid of hard spheres as calculated using the PY and the HNC closures.
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Figure 6.4: We show a surface plot of the Floquet matrix (6.ii:7) calculated for three
dimensional hard spheres in HNC approximation at η = 0.3. The matrix was generated
using N = 256 grid points but only the region significantly different from zero is shown.

of the theory (there is no direct relation between the contractiveness properties of A and the
thermodynamics). It looks more reasonable that the increase of the correlations would be the
common origin of the numerical instability of the Picard iteration and, whenever it is possible,
of thermodynamic phase transitions.



Chapter 7

Direct correlation functions of the
Widom-Rowlinson model

In this chapter we calculate, through Monte Carlo numerical simulations, the partial total and
direct correlation functions of the three dimensional symmetric Widom-Rowlinson mixture. We
find that the differences between the partial direct correlation functions from simulation and
from the Percus-Yevick approximation (calculated analytically by Ahn and Lebowitz) are well
fitted by Gaussians. We provide an analytical expression for the fit parameters as function of
the density. We also present Monte Carlo simulation data for the direct correlation functions of
a couple of non additive hard sphere systems to discuss the modification induced by finite like
diameters.

i Introduction

Fluid binary mixtures may exhibit the phenomenon of phase separation. The simplest system
able to undergo a demixing phase transition is the model introduced by Widom and Rowlinson
some years ago [90]. Consider a binary mixture of non-additive hard spheres. This is a fluid
made of hard spheres of specie 1 of diameter R11 and number density ρ1 and hard spheres
of specie 2 of diameter R22 and number density ρ2, with a pair interaction potential between
species i and j that can be written as follows

vij(r) =

{

∞ r < Rij
0 r > Rij

, (7.i:1)

where R12 = (R11 +R22)/2 + α. The Widom-Rowlinson (WR) model is obtained choosing the
diameters of the spheres equal to 0,

R11 = R22 = 0 , (7.i:2)

so that there is no interaction between like spheres and there is a hard core repulsion of diameter
α between unlike spheres. The symmetry of the system induces the symmetry of the unlike
correlations [h12(r) = h21(r), c12(r) = c21(r)]. The WR model has been studied in the past by
exact [91] and approximate [54, 92–94] methods and it has been shown that it exhibits a phase
transition at high density. More recently, additional studies have appeared and theoretical
predictions have been confirmed by Monte Carlo (MC) computer simulations [95–100]

80
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In this chapter we will study the three dimensional symmetric Widom-Rowlinson mixture
for which ρ1 = ρ2 = ρ/2, where ρ is the total number density of the fluid, and

h11(r) = h22(r) , (7.i:3)

c11(r) = c22(r) . (7.i:4)

Moreover we know from (7.i:1) that the partial pair correlation function gij = hij +1 must obey

gij(r) = 0 for r < Rij . (7.i:5)

Our main goal is to focus on the direct correlation functions (dcf) of the WR model as a
simplified prototype of non-additive hard spheres (NAHS) systems. The reasons to focus on
the dcf’s is twofold: on the one hand, they are easier functions to model and fit. On the other
hand, they play a central role in approximate theories like the Percus-Yevick approximation or
mean spherical approximation (MSA) [12]. We hope that a better understanding of the dcf’s
properties in the WR model, could help in developing accurate analytical theories for the NAHS
systems.

We calculate through Monte Carlo simulations the like g
(MC)
11 (r) and unlike g

(MC)
12 (r) pair

distribution functions for a system large enough to allow a meaningful determination of the

correspondent partial direct correlation functions c
(MC)
11 (r) and c

(MC)
12 (r), using the Ornstein-

Zernike equation [12]. We compare the results for the unlike direct correlation function with the
results of the Percus-Yevick (PY) analytic solution found by Ahn and Lebowitz [54, 92]. In the
same spirit as the work of Grundke and Henderson for a mixture of additive hard spheres [101],

we propose a fit for the functions ∆c
11(r) = c

(MC)
11 (r) and ∆c

12(r) = c
(MC)
12 (r)− c

(PY )
12 (r).

At the end of the chapter we also show the results from two Monte Carlo simulations on a
mixture of non-additive hard spheres with equal diameter spheres R11 = R22 = R12/2 and on
one with different diameter spheres R11 = 0 and R22 = R12 to study the effect of non zero like
diameters on the WR dcf’s.

ii Monte Carlo simulation and PY solution

The Monte Carlo simulation was performed with a standard NVT Metropolis algorithm [14]
using N = 4000 particles. Linked lists [14] have been used to reduce the computational cost.
We generally used 5.2 × 108 Monte Carlo steps where one step corresponds to the attempt to
move a single particle. The typical CPU time for each density was around 20 hours (runs at
higher densities took longer than runs at smaller densities) on a Compaq AlphaServer 4100
5/533.

We run the simulation of WR model at 6 different densities ρ̄ = ρα3 = 0.28748, 0.4, 0.45,
0.5, 0.575, and 0.65. Notice that the most recent computer simulation calculations [97, 98] give
consistent estimates of the critical density around 0.75. Our data at the highest density (0.65)
are consistent with a one phase system.

The Monte Carlo simulation returned the gij(r) over a range not less than 9.175α for the
densest system. In all the studied cases the pair distribution functions attained their asymptotic
value well inside the maximum distance they were evaluated. Thus, it has been possible to obtain
accurate Fourier transforms of the correlation functions [hij(k)]. To obtain the cij(r) we used
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Ornstein-Zernike equation as follows

c11(k) =
h11(k)

[

1 + ρ
2h11(k)

]

− ρ
2h

2
12(k)

[

1 + ρ
2h11(k)

]2 −
[ρ
2h12(k)

]2 (7.ii:1)

c12(k) =
h12(k)

[

1 + ρ
2h11(k)

]2 −
[ρ
2h12(k)

]2 (7.ii:2)

From the hij(k) and cij(k) we get the difference γij(k) = hij(k) − cij(k) which is the Fourier
transform of a continuous function in real space. So it is safe to transform back in real space [to
get γij(r)]. Finally, the dcf’s are obtained from the differences hij(r)− γij(r).

While for a system of non-additive hard sphere in three dimensions a closed form solution
to the PY approximation is still lacking, Ahn and Lebowitz have found an analytic solution of
this approximation for the WR model (in one and three dimensions).

The PY approximation consists of the assumption that cij(r) does not extend beyond the
range of the potential

cij(r) = 0 for r > Rij . (7.ii:3)

Combining this with the exact relation (7.i:5) and using the Ornstein-Zernike equation we are
left with a set of equations for cij(r) and gij(r) which have been solved analytically by Ahn and
Lebowitz.

Their solution is parameterized by a parameter z0. They introduce the following two func-
tions of z0 (which can be written in terms of elliptic integrals of the first and third kind)

I1 ≡
∫ ∞

z0

dz

z
√

z3 + 4z/z0 − 4
, (7.ii:4)

I2 ≡
∫ ∞

z0

dz
√

z3 + 4z/z0 − 4
, (7.ii:5)

and define z0 in terms of the partial densities ρ1 and ρ2 as follows

η ≡ 2π
√
ρ1ρ2 =

(I2/2)
3

cos I1
. (7.ii:6)

They then define the following functions (note that in the last equality of equation (3.76) in [54]
there is a misprint)

c̄12(k) ≡ − 2√
ρ1ρ2

√

1 + Y

z30Y
3 + 4Y + 4

× sin

[

1

2

√

z30Y
3 + 4Y + 4

∫ ∞

1

dz

(z + Y )
√

z30z
3 + 4z − 4

]

, (7.ii:7)

h̄12(k) ≡ c̄12(k)[1 − ρ1ρ2c̄
2
12(k)]

−1 , (7.ii:8)

where Y ≡ (2k/I2)
2.

We also realized that some other misprint should be present in the Ahn and Lebowitz paper
since we have found empirically that the PY solution (with k in units of α) should be given by

c12(k) = c̄12(ks) , (7.ii:9)
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where s is a scale parameter to be determined as follows

s = −[h̄12(r = 0)]1/3 . (7.ii:10)

Notice that for the symmetric case ρ1 = ρ2 = ρ/2 and η = πρ = 0.90316 . . . we find z0 = 1 and
s = 1.

In Figs. 7.1, 7.2, and 7.3 we show three cases corresponding to the extreme and one inter-
mediate density. In the figures, we compare the MC simulation data with the PY solution for

Figure 7.1: Top panel: partial direct correlation functions obtained from the Monte Carlo

simulation (points) with the c
(PY )
12 (r) obtained from the PY approximation (line) at a density

ρα3 = 0.28748. Bottom panel: partial pair distribution functions obtained from the Monte
Carlo simulation compared with the ones obtained from the PY approximation at the same
density. The open circles and the dashed line: the like correlation functions. Closed circles
and the continuous line: the unlike correlation functions.

the partial pair distribution functions and the partial direct correlation functions. Our results
for the partial pair distribution functions at ρα3 = 0.65 are in good agreement with the ones of
Shew and Yethiraj [97]. The figures show how the like correlation functions obtained from the
PY approximation are the ones that differ most from the MC simulation data. The difference is
more marked in a neighborhood of r = 0 and becomes more pronounced as the density increases.

In Fig. 7.4 we also show the results for the partial direct correlation function in k space at
a density ρα3 = 0.28748.
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Figure 7.2: Same as in Fig. 7.1 at a density ρα3 = 0.4.

iii Fit of the data

From the simulations we found that c
(MC)
12 (r) < 8× 10−3 for r > α at all the densities studied.

This allows us to say that ∆c
12(r) ≃ 0 for r > α. Moreover we found that both ∆c

12(r) for r < α,
and ∆c

11(r) are very well fitted by Gaussians

∆c
11(r) ≃ b11 exp[−a11(r + d11)

2] for all r > 0, (7.iii:1)

∆c
12(r) ≃ b12 exp[−a12r2] for 0 < r < α, (7.iii:2)

In Figs. 7.5 and 7.6 we show the behaviors of the parameters of the best fit (7.iii:1) and (7.iii:2),
with density. In order to check the quality of the fit, we did not use the data at ρ̄ = 0.45 in the
determination of the parameters. The points for a12 and b12 are well fitted by a straight line or
a parabola. As shown in Fig. 7.5 the best parabolae are

a12(ρ̄) = 0.839 + 0.096ρ̄ − 1.287ρ̄2 , (7.iii:3)

b12(ρ̄) = −0.155 + 0.759ρ̄ − 0.159ρ̄2 . (7.iii:4)

Fig. 7.6 shows how the parameters for ∆c
11(r) are much more scattered and hard to fit. The

quartic polynomial going through the five points, for each coefficient, are

a11(ρ̄) = −55.25 + 504.8ρ̄ − 1659.ρ̄2 + 2364.ρ̄3 − 1236.ρ̄4 , (7.iii:5)

b11(ρ̄) = 171.4 − 1556.ρ̄ + 5166.ρ̄2 − 7421.ρ̄3 + 3906.ρ̄4 , (7.iii:6)

d11(ρ̄) = 128.9 − 1144.ρ̄ + 3747.ρ̄2 − 5328.ρ̄3 + 2782.ρ̄4 , (7.iii:7)
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Figure 7.3: Same as in Fig. 7.1 at a density ρα3 = 0.65.
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Figure 7.4: We compare the partial direct correlation function in k space obtained from
the Monte Carlo simulation (with superscript MC) with the one obtained from the PY
approximation (with superscript PY) at a density ρα3 = 0.28748.

The difficulty in finding a good fit for these parameters may be twofold: first we are fitting
∆c

11(r) with a three (instead of two) parameters curve and second the partial pair distribution
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Figure 7.5: We plot, for five different values of the density, the parameters a12 (diagonal
crosses) and b12 (starred crosses) of the best Gaussian fit (7.iii:2) to ∆c

12(r) for r < α, and fit
them with parabolae (lines). The parameters at ρα3 = 0.45 where not used for the parabolic
fit and give an indication of the quality of the fit.

functions obtained from the Monte Carlo simulation are less accurate in a neighborhood of the
origin (due to the reduced statistics there). This inaccuracy is amplified in the process of finding
the partial direct correlation functions. Such inaccuracy will not affect significantly ∆c

12(r) which
has a derivative very close or equal to zero near the origin, but it will significantly affect ∆c

11(r)
which is very steep near the origin.

In order to estimate the quality of the fit we have used the simulation data at ρ̄ = 0.45.
From Fig. 7.5 we can see how the parabolic fit is a very good one. In Fig. 7.6 the point at
ρ̄ = 0.45 gives an indication of the accuracy of the quartic fit. We have also compared the pair
distribution and direct correlation functions obtained from the fit with those from MC: both the
like and unlike distribution functions are well reproduced while there is a visible discrepancy in
the dcf from the origin up to r = 0.5α. However we expect that moving on the high density or
low density regions (where the quartic polynomial becomes more steep) the quality of the fit will
get worst. In particular the predicted negative values for a11, in those regions, are completely
unphysical and the fit should not be used to extrapolate beyond the range 0.28 < ρ̄ < 0.65.

iv From WR to non additive hard spheres

In order to see how the structure, and in particular the dcf’s of the Widom-Rowlinson model
change as one switches on the spheres diameters we have made two additional Monte Carlo
simulations. In the first one we chose ρ1 = ρ2 = 0.65/R3

12 and R11 = R22 = R12/2. The
resulting partial pair distribution functions and partial direct correlation functions are shown
in Fig. 7.7. From a comparison with Fig. 7.3 we see how in this case the switching on of the
like diameters causes both c12(r) for r < R12 and g12(r) for r > R12 to approach r = R12 with
a slope close to zero.

In the second simulation we chose ρ1 = ρ2 = 0.65/R3
12 and R11 = 0, R22 = R12. The



CHAPTER 7. DIRECT CORRELATION FUNCTIONS OF THE WIDOM-ROWLINSON MODEL
V. CONCLUSIONS 87

Figure 7.6: We plot, for five different values of the density, the parameters a11, b11 and d11
(stars) of the best Gaussian fit (7.iii:1) to ∆c

11(r), and draw the quartic polynomial (lines)
through them. The parameters at ρα3 = 0.45 where not used to determine the quartic
polynomial and give an indication of the quality of the fit.

resulting partial pair distribution functions and partial direct correlation functions are shown
in Fig. 7.8. From a comparison with Fig. 7.3 we see how in this case the switching on of the
like diameters causes both g11(0) and c11(0) to increase, and c12(r) to lose the nearly zero slope
at r = 0. As in the previous case g12(r) for r > R12 approaches r = R12 with a slope close to
zero. The like 22 correlation functions for r > R12 vary over a range comparable to the one over
which vary the like 11 correlation functions of the WR model.

For both these cases there is no analytic solution of the PY approximation available and
a better understanding of the behavior of the direct correlation functions may help in finding
approximate expressions [53].

v Conclusions

In this chapter we have evaluated the direct correlation functions of a Widom-Rowlinson mixture
at different densities through Monte Carlo simulation and we have studied the possibility of
fitting the difference between MC data and the PY dcf’s. We found a very good parameterization
of c12(r) for r < α [see equations (7.iii:2) and (7.iii:3)-(7.iii:4)] and a poorer one for c11(r)
[see equations (7.iii:1) and (7.iii:5)-(7.iii:7)]. The difficulty in this last case probably arises
from the necessity of using three parameters [instead of just two needed for parameterizing
c12(r)], although it cannot be completely excluded some effect of the decreasing precision of the
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Figure 7.7: Monte Carlo results at a density ρ = ρ1 = ρ2 = 0.65/R3
12 for the partial direct

correlation function (on top) and the partial pair distribution function (below) of a mixture
of non additive hard spheres with R11 = R22 = R12/2. The open circles denote the like
correlation functions. The closed circles denote the unlike correlation functions.

simulation data near the origin.
In the last part of the chapter we have illustrated with additional Monte Carlo data the

changes induced in the WR dcf’s by a finite size of the excluded volume of like correlations.
These results are meant to provide a guide in the search of a manageable, simple analytical
parameterization of the structure of mixtures of non additive hard spheres which is still not
available although highly desirable.
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Figure 7.8: Monte Carlo results at a density ρ = ρ1 = ρ2 = 0.65/R3
12 for the partial direct

correlation function (on top) and the partial pair distribution function (below) of a mixture
of non additive hard spheres with R11 = 0 and R22 = R12. The open circles denote the like
11 correlation functions. The open triangles denote the like 22 correlation functions. The
closed circles denote the unlike correlation functions.



Chapter 8

Pressures for a One-Component
Plasma on a pseudosphere

The classical (i.e. non-quantum) equilibrium statistical mechanics of a two dimensional one
component plasma (a system of charged point-particles embedded in a neutralizing background)
living on a pseudosphere (an infinite surface of constant negative curvature) is considered. In the
case of a flat space, it is known that, for a one-component plasma, there are several reasonable
definitions of the pressure, and that some of them are not equivalent to each other. In the present
chapter, this problem is revisited in the case of a pseudosphere. General relations between the
different pressures are given. At one special temperature, the model is exactly solvable in the
grand canonical ensemble. The grand potential and the one-body density are calculated in a
disk, and the thermodynamic limit is investigated. The general relations between the different
pressures are checked on the solvable model.

We study the ergodicity of a classical finite dynamical system moving in a connected and
compact domain of a pseudosphere. In particular we derive a condition on its potential and
kinetic energy sufficient for the system to be ergodic. We discuss the existence and uniqueness
of the grand canonical Gibbs distribution as the limit distribution for the system with an infinite
number of particles. We consider the special case of the one component Coulomb plasma on
a pseudosphere and prove the ergodicity of the system obtained by switching off the mutual
interaction amongst the particles.

We also derive an equation of state for the one component Coulomb plasma on a pseudosphere
using a field theoretical argument, and argue that the same equation of state holds for the same
system on a large class of Riemannian surfaces.

i Introduction

This chapter is divided into four parts: in the first part (from subsection i.1 to subsection
iii.1) we study a two dimensional one component Coulomb plasma (2D OCP) as a dynamical
system moving in a connected and compact domain of a pseudosphere. In the second part (from
subsection iii.2 to subsection iii.6) we compare four different definitions for the pressure of this
system and derive some general sum rules. In the third part (section iv) we study a swarm of free
particles moving on a pseudosphere and coupled to a massive scalar field, a Yukawa field. This
is a field theoretical description of a system of particles interacting through a screened Coulomb
potential of the Debye-Yukawa form. When the Yukawa interaction tends to the Coulomb
interaction the system reduces to a one component Coulomb plasma. In the last part (section
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v) we solve exactly the 2D OCP on a finite disk of the pseudosphere, in the grand canonical
ensemble, at a special temperature. The thermodynamic limit is also investigated and the sum
rules among the different definitions for the pressure are checked.

Coulomb systems such as plasmas or electrolytes are made of charged particles interacting
through Coulomb’ s law. The simplest model of a Coulomb system is the one component
plasma, also called Jellium: an assembly of identical point charges, embedded in a neutralizing
uniform background of the opposite sign. Here we consider the classical (i.e. non quantum)
equilibrium statistical mechanics of the one component plasma. Although many features of
more realistic systems are correctly reproduced, this model has the peculiarity that there are
several reasonable definitions of its pressure, and some of these definitions are not equivalent to
each other [102, 103].

The two-dimensional version of the one component plasma has been much studied. Provided
that the Coulomb potential due to a point-charge is defined as the solution of the Poisson
equation in a two-dimensional world (i.e. is a logarithmic function − ln r of the distance r to that
point-charge), the two dimensional one component plasma mimics many generic properties of the
three-dimensional Coulomb systems. Of course, this toy logarithmic model does not describe
real charged particles, such as electrons, confined on a surface, which nevertheless interact
through the three dimensional Coulomb potential 1/r (with the electric field lines coming out
of the surface). One motivation for studying the two dimensional one component plasma is that
its equilibrium statistical mechanics is exactly solvable at one special temperature: both the
thermodynamical quantities and the correlation functions are available [104].

How the properties of a system are affected by the curvature of the space in which the system
lives is a question which arises in general relativity. This is an incentive for studying simple
models. Thus, the problem of a two dimensional one component plasma on a pseudosphere has
been considered [105].

For this two dimensional one component plasma on a pseudosphere, the problem of studying
and comparing the different possible definitions of the pressure also arises. This is the subject
of the present chapter.

A pseudosphere is a non compact Riemannian surface of constant negative curvature. Unlike
the sphere it has an infinite area and it is not embeddable in the three dimensional Euclidean
space. The property of having an infinite area makes it interesting from the point of view of
Statistical Physics because one can take the thermodynamic limit on it.

Riemannian surfaces of negative curvature play a special role in the theory of dynamical
systems [106]. Hadamard study of the geodesic flow of a point particle on a such surface [107]
has been of great importance for the future development of ergodic theory and of modern chaos
theory. In 1924 the mathematician Emil Artin [108] studied the dynamics of a free point particle
of mass m on a pseudosphere closed at infinity by a reflective boundary (a billiard). Artin’ s
billiard belongs to the class of the so called Anosov systems. All Anosov systems are ergodic and
posses the mixing property [109]. Sinai [110] translated the problem of the Boltzmann-Gibbs gas
into a study of the by now famous “Sinai’ s billiard”, which in turn could relate to Hadamard’ s
model of 1898. Recently, smooth experimental versions of Sinai’ s billiard have been fabricated
at semiconductor interfaces as arrays of nanometer potential wells and have opened the new
field of mesoscopic physics [111].

The following important theorem holds for Anosov systems [112],[113]:

Theorem i.1 Let M be a connected, compact, orientable analytic surface which serves as the
configurational manifold of a dynamical system whose Hamiltonian is H = T + U . Let the
dynamical system be closed and its total energy be h. Consider the manifold M defined by



CHAPTER 8. PRESSURES FOR A ONE-COMPONENT PLASMA ON A PSEUDOSPHERE
I. INTRODUCTION 92

the Maupertuis Riemannian metric (ds)2 = 2(h − U)T (dt)2 on M . If the curvature of M is
negative everywhere then the dynamical system is an Anosov system and in particular is ergodic
on Mh = {h = H}.

If the dynamical system is composed of N particles, the same conclusions hold, we need only
require that the curvature be negative when we keep the coordinates of all the particles but anyone
constant.

A simple example for the application of this theorem is given by the free symmetrical top. In
this case the configurational manifoldM is given by the Euler angles ~q = (qθ, qϕ, qψ) = (θ, ϕ, ψ).
Since the potential energy U is zero the Maupertuis Riemannian metric is ds2/(2h) = T dt2 =
gµ,νdq

µdqν where the kinetic energy is

T =
1

2
{θ̇2I1 + ϕ̇2[I3 + (I2 − I3) sin

2 θ] + ψ̇2I3 + ϕ̇ψ̇2I3 cos θ} , (8.i:1)

with I1 = I2, and I3 the three moments of inertia. The manifold M is then SO(3) with the
following metric tensor















gθθ =
1
2I1 ,

gϕϕ = 1
2 [I3 + (I2 − I3) sin

2 θ] ,
gψψ = 1

2I3 ,
gϕψ = 1

2I3 cos θ .

If we calculate the scalar curvature of M, this is what we find

R =
1

I1

[

4− I3
I2

]

. (8.i:2)

We conclude that when I3 > 4I2 the system is ergodic. This is also shown at the end of section
37 of [114] where it is said that “. . . the top does not at any time return exactly at its original
position”.

The chapter has the following structure. In subsection i.1 we give a brief description of
the pseudosphere. In subsection i.2 we introduce the one component Coulomb plasma as a
dynamical system confined in a connected and compact domain of the pseudosphere.

We discuss the ergodicity of the system in section ii: we calculate the curvature of M for
a general dynamical system with potential energy U . Requiring the curvature to be negative
we find a disequality containing T and partial derivatives of U whose fulfillment we are able
to prove for the one component Coulomb plasma with the Coulomb interaction amongst the
particles switched off. In subsection ii.3 we discuss the thermodynamic limit from the point of
view of ergodic theory.

In section iii we compare four different definitions of pressure for the one component plasma
on the pseudosphere. In subsection iii.1 we use the virial theorem to derive an expression for
the virial pressure of the finite or infinite one component plasma in terms of the one and two
particle correlation functions. It is known that, due to the presence of an inert background
without kinetic energy, the thermal pressure of a flat one component plasma is negative for
particular values of the temperature [115, 116] (this pathology occurs also in three dimensions).
A pressure that is always positive is the kinetic pressure which is defined [102, 103] as one would
define the pressure in the kinetic theory of gases. In subsection iii.2 we show the equivalence
between the virial pressure and the kinetic pressure for the one component plasma on the
pseudosphere. In subsection iii.3 we derive a relationship between the thermal pressure and
the kinetic pressure in the thermodynamic limit (although for usual fluids the thermal pressure
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and the kinetic pressure are equivalent, in the presence of a background they are different). In
subsection iii.4 we extend a “contact theorem” proved by Totsuji [117] for the flat one component
plasma, to the plasma on the pseudosphere. In subsection iii.5 we treat the non neutral one
component plasma on the pseudosphere: we review the previous definitions of pressure, define
the mechanical pressure [102], and determine the relationship between the mechanical pressure
and the kinetic pressure in the thermodynamic limit. In subsection iii.6 we derive expressions
of the thermal and mechanical pressures appropriate for the grand canonical ensemble. These
will be used in the last section.

On a pseudosphere since the area of a large domain is of the same order as the area of the
neighborhood of the boundary, all the above definitions of pressure depend on the boundary
conditions. In section iv we show that a bulk pressure independent of the boundary conditions
can be defined from the Maxwell stress tensor [118, 119] at some point well inside the fluid. We
derive an equation of state for this Maxwell tensor pressure and show that it holds for the one
component plasma on a large class of Riemannian surfaces including the plane, the sphere, and
the pseudosphere.

In the last section v, we illustrate the general properties of the one component plasma on
the pseudosphere at the special value of the Coulombic coupling constant at which all properties
can be explicitly and exactly calculated. The grand potential and the one particle density are
calculated in a disk, and the thermodynamic limit is investigated. The general relations between
the different pressures are checked on the solvable model.

i.1 The pseudosphere

There are at least three commonly known sets of coordinates to describe a pseudosphere S.
The one which render explicit the “similarity” with the sphere is ~q = (q1, q2) = (qτ , qϕ) =

(τ, ϕ) with τ ∈ [0,∞[ and ϕ ∈ [0, 2π) the metric being,

ds2 = gµν dq
µdqν = a2(dτ2 + sinh2 τ dϕ2) . (8.i:3)

Another set of coordinates often used is (r, ϕ) with r = tanh(τ/2). They are the polar
coordinates of the unitary disk,

D = {ω ∈ C | |ω| < 1} . (8.i:4)

The metric in terms of this new coordinates is,

ds2 = 4a2
dr2 + r2dϕ2

(1− r2)2
. (8.i:5)

The unitary disk with such a metric is called the Poincaré disk 1 .
A third set of coordinates used is (x, y) obtained from (r, ϕ) through the Cayley transforma-

tion,

z ≡ x+ iy =
ω + i

1 + iω
. (8.i:6)

which establishes a bijective transformation between the unitary disk and the complex half
plane,

H = {z = x+ iy | x ∈ R, y > 0} . (8.i:7)

1Notice that in this chapter, instead of working with a dimensionless r, we preferred to work with r =
2a tanh(τ/2), so that at small r, the geodesic distance (8.i:9) of a point (r,ϕ) from the origin would simply have
r as its leading term.
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The center of the unitary disk corresponds to the point zo = i, “the center of the plane”. The
metric becomes,

ds2 = a2
dx2 + dy2

y2
. (8.i:8)

The complex half plane with such a metric is called the hyperbolic plane, and the metric the
Poincaré’ s metric.

Cayley transformation is a particular Möbius transformation. Poincaré metric is invariant
under Möbius transformations. And any transformation that preserves Poincaré metric is a
Möbius transformation.

The geodesic distance d01 between any two points q0 = (τ0, ϕ0) and q1 = (τ1, ϕ1) on S is
given by,

cosh(d01/a) = cosh τ1 cosh τ0 − sinh τ1 sinh τ0 cos(ϕ1 − ϕ0) . (8.i:9)

Given the set of points Ωd at a geodesic distance from the origin less or equal to d,

Ωd = {(τ, ϕ) | τa ≤ d, ϕ ∈ [0, 2π)} , (8.i:10)

that we shall call a disk of radius d, we can determine its circumference,

C = L(∂Ωd) = a

∫

τ=d/a

√

τ̇2 + sinh2 τ ϕ̇2 dt

= 2π a sinh

(

d

a

) ∼d→ ∞ π a ed/a , (8.i:11)

and its area,

A = V(Ωd) =
∫ 2π

0
dϕ

∫ d/a

0
dτ a2 sinh τ

= 4π a2 sinh2
(

d

2a

) ∼d→ ∞ π a2 ed/a . (8.i:12)

The Laplace-Beltrami operator on S is,

∆ =
1√
g

∂

∂qµ

(√
g gµν

∂

∂qν

)

=
1

a2

(

1

sinh τ

∂

∂τ
sinh τ

∂

∂τ
+

1

sinh2 τ

∂2

∂ϕ2

)

, (8.i:13)

where g is the determinant of the metric tensor g = det||gµν ||.
The curvature is expressed in terms of the Riemannian tensor which for a surface has 22(22−

1)/12 = 1 independent components. For a pseudosphere if we choose the coordinates (τ, ϕ), the
metric tensor is,

||gµν || =
(

a2 0

0 a2 sinh2 τ

)

. (8.i:14)

The characteristic component of the Riemann tensor is,

Rτϕτϕ = − sinh2 τ . (8.i:15)
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The Gaussian curvature is given by

Rτϕτϕ = gϕϕRτ ϕτϕ = − 1

a2
. (8.i:16)

Contraction gives the components of the Ricci tensor,

Rτ τ = Rϕϕ = − 1

a2
, Rτ ϕ = 0 , (8.i:17)

and further contraction gives the scalar curvature,

R = − 2

a2
. (8.i:18)

i.2 The one component Coulomb plasma

The one component Coulomb plasma is an ensemble of N identical pointwise particles of mass
m and charge q, constrained to move in a connected and compact domain Ω ⊂ S by an infinite
potential barrier on the boundary of the domain ∂Ω. The total charge of the system is neutralized
by a background surface charge distribution uniformly smeared on Ω with density ρb = −nq (ρb
is 0 outside of Ω), where n = N/V(Ω) is the particle number density.

The pair Coulomb potential between two unit charges a geodesic distance d apart, satisfies
Poisson equation on S,

∆v(d) = −2πδ(2)(d) , (8.i:19)

where δ(2)(d01) = δ(~q0 − ~q1)/
√
g is the Dirac delta function on the curved manifold. Poisson

equation admits a solution vanishing at infinity,

v(dij) = − ln

[

tanh

(

dij
2a

)]

. (8.i:20)

The electrostatic potential of the background w(~q) satisfies,

∆w(~q) = −2πρb . (8.i:21)

If we choose Ω = Ωaτ0 , the electrostatic potential of the background inside Ω can be chosen to
be just a function of τ (see appendix J),

w(τ) = 2πa2qn

{

ln

[

1− tanh2(τ0/2)

1− tanh2(τ/2)

]

+ sinh2(τ0/2) ln[tanh
2(τ0/2)]

}

. (8.i:22)

The self energy of the background is (see equation (J.:9)),

v0 = −1

2
(2πa2qn)2{1 − cosh τ0 + 4 ln[cosh(τ0/2)] +

2 sinh4(τ0/2) ln[tanh
2(τ0/2)]} . (8.i:23)

The total potential energy of the system is then,

U = v0 + vpb + vpp , (8.i:24)
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where vpp is the potential energy due to the interactions amongst the particles,

vpp =
1

2

N
∑

i,j=1

i 6=j

q2 v(dij) , (8.i:25)

and vpb is the potential energy due to the interaction between the particles and the background,

vpb =
N
∑

i=1

q w(τi) . (8.i:26)

This expression can be rewritten as follows,

vpb = v1 + v̄pb , (8.i:27)

where,

v1 = N 2πa2 q2n {ln[1− tanh2(τ0/2)] + sinh2(τ0/2) ln[tanh
2(τ0/2)]} , (8.i:28)

is a constant and,

v̄pb =

N
∑

i=1

qw̄(τi) , (8.i:29)

with,

w̄(τ) = −2πa2 qn ln[1− tanh2(τ/2)] ≥ 0 ∀ τ (8.i:30)

Since the interaction between the particles is repulsive we conclude that, up to an additive
constant (v0 + v1), the potential U is a positive function of the coordinates of the particles.

ii Ergodicity

Consider a closed one component Coulomb plasma of N charges and total energy h, confined
in the domain Ωaτ0 ⊂ S. Let the coordinates of particle i be ~qi = q(i)

α~eα = (q(i)
1, q(i)

2) ∈ Ωaτ0 ,
where ~eα = ∂/∂qα (α = 1, 2) is a coordinate basis for S. The trajectory of the dynamical system,

Tt0 = {qN (t) ≡ (~q1, . . . , ~qN ) | t ∈ [0, t0]} , (8.ii:1)

is a geodesic on the 2N dimensional manifold M defined by the metric,

Gαβ = (h− U)gµν(~qi)⊗ · · · ⊗ gµν(~qN ) , (8.ii:2)

on SN . Since v̄pb and vpp are positive on Ωaτ0 we have,

Gαβ < G′
αβ = (h− v0 − v1)gµν(~qi)⊗ · · · ⊗ gµν(~qN ) , (8.ii:3)

where G′ has a negative curvature along the coordinates of any given particle. In the next
subsection we will calculate the curvature of G along the coordinates of one particle. According
to the theorem stated in the introduction we will require the curvature to be negative everywhere
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on SN . This will determine a condition on the kinetic and potential energy of the system,
sufficient for its ergodicity to hold on Mh.

Let p̃i = p(i)αω̃
α be the momentum of charge i, where ω̃α = d̃qα are the 1-forms of the dual

coordinate basis, and define pN (t) ≡ (p̃1, . . . , p̃N ). The ergodicity of the system tells us that
given any dynamical quantity A(qN , pN ), its time average,

〈A〉t = lim
T→∞

1

T

∫ T

0
A(qN , pN ) dt , (8.ii:4)

coincides with its microcanonical phase space average,

〈A〉h =

∫

Mps
A(qN , pN ) δ(h −H) d4Nµps
∫

Mps
δ(h −H) d4Nµps

, (8.ii:5)

where the phase space of the system is,

Mps = {(qN , pN ) | ~qi ∈ S i = 1, . . . , N ;

p(i)α ∈ [−∞,∞] i = 1, . . . , N, α = 1, 2} , (8.ii:6)

the phase space measure is,

d4Nµps =

2
∏

α=1

dq(1)
α · · · dq(N)

αdp(1)α · · · dp(N)α
, (8.ii:7)

and δ is the Dirac delta function.

ii.1 Calculation of the curvature of M
We calculate the curvature of M along particle 1 using Cartan structure equations. Let T =
h − U(τ, ϕ) be the kinetic energy of the N particle system of total energy h, as a function of
the coordinates of particle 1 (all the other particles having fixed coordinates). We choose an
orthonormal basis,

{

ω̃τ̂ = a
√
T d̃τ

ω̃ϕ̂ = a sinh(τ)
√
T d̃ϕ

(8.ii:8)

By Cartan second theorem we know that the connection 1-form satisfies ω̃α̂β̂ + ω̃β̂α̂ = 0.
Then we must have,

{

ω̃τ̂τ̂ = ω̃ϕ̂ϕ̂ = 0

ω̃τ̂ϕ̂ = −ω̃ τ̂
ϕ̂ = −ω̃ϕ̂τ̂

(8.ii:9)

We use Cartan first theorem to calculate ω̃τ̂ϕ̂,

d̃ω̃τ̂ = −ω̃τ̂ϕ̂ ∧ ω̃ϕ̂ (8.ii:10)

= d̃(a
√
T d̃τ)

= aT
1
2 ,ϕ d̃ϕ ∧ d̃τ = 0 ,

where in the last equality we used the fact that the pair interaction is a function of ϕi−ϕj and
that the interaction with the background is a function of τ only (being the system confined in a
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domain which is symmetric under translations of ϕ). We must then conclude that ω̃τ̂ϕ̂ is either

zero or proportional to ω̃ϕ̂. We proceed then calculating,

d̃ω̃ϕ̂ = −ω̃ϕ̂τ̂ ∧ ω̃τ̂ (8.ii:11)

= d̃(a sinh(τ)
√
T d̃ϕ)

= a(sinh(τ)T
1
2 ),τ d̃τ ∧ d̃ϕ ,

which tells us that indeed,

ω̃ϕ̂τ̂ =
(sinh(τ)T

1
2 ),τ

a sinh(τ)T
ω̃ϕ̂ . (8.ii:12)

Next we calculate the characteristic component of the curvature 2-form Rα̂
β̂
= d̃ω̃α̂

β̂
+ ω̃α̂γ̂ ∧

ω̃γ̂
β̂
,

Rτ̂
ϕ̂ = d̃ω̃τ̂ϕ̂

= d̃[−(sinh(τ)T
1
2 ),τT

− 1
2 d̃ϕ]

= − [(sinh(τ)T
1
2 ),τT

− 1
2 ],τ

a2 sinh(τ)T
ω̃τ̂ ∧ ω̃ϕ̂ . (8.ii:13)

and use Cartan third theorem to read off the characteristic component of the Riemann tensor,

Rτ̂ϕ̂τ̂ ϕ̂ = − [(sinh(τ)T
1
2 ),τT

− 1
2 ],τ

a2 sinh(τ)T
. (8.ii:14)

We find then for the scalar curvature,

R = Rα̂β̂
α̂β̂

= 2Rτ̂ ϕ̂τ̂ ϕ̂

= − 2

a2

{

[(sinh(τ)T
1
2 ),τT

− 1
2 ],τ

sinh(τ)T

}

, (8.ii:15)

which can be rewritten in terms of the Laplacian as follows,

R = − 2

a2T

{

1 +
1

2T

[

−a2∆U +
U,ϕϕ

sinh2 τ
− (U,τ )

2

T

]}

. (8.ii:16)

For finite values of h, the condition for R to be negative on all the accessible region of SN is
then,

2πa2 q2n− U,ϕϕ

sinh2 τ
+

(U,τ )
2

T
< 2T . (8.ii:17)

ii.2 Ergodicity of the semi-ideal Coulomb plasma

Consider a one component Coulomb plasma where we switch off the mutual interactions between
the particles, leaving unchanged the interaction between the particles and the neutralizing back-
ground (U = v0 + vpb). We will call it the “semi-ideal” system. Define,

Ω(h, τ0) = {qN |~qi ∈ Ωaτ0 ∀i, h− U(qN ) ≥ 0} , (8.ii:18)
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and call h̄ = h− v0 − v1 and

f(N) = −N ln[1− tanh2(τ0/2)] = N ln[1 + sinh2(τ0/2)]

= N ln

(

1 +
N

4πa2n

)

. (8.ii:19)

We will have (α = 2πa2nq2)

r = inf
qN∈Ω(h,τ0)

2T 2 =

{

2[h̄− αf(N)]2 h̄ > αf(N)
0 h̄ ≤ αf(N)

, (8.ii:20)

Notice that for large N , at constant n, we have

−v0/α =
α

q2

[

−2
N

4πa2n
+ ln

(

1 +
N

4πa2n

)

+
1

2

]

+O(1/N) , (8.ii:21)

−v1/α = f(N) +N − α

q2
+O(1/N) . (8.ii:22)

Using the extensive property of the energy we may assume that h = Nh0, where h0 is the total
energy per particle. Then for large N we will have

h̄ = Nh0 + αf(N) +

(

α

q

)2 [

ln

(

1 +
N

4πa2n

)

− 1

2

]

+O(1/N) > αf(N) , (8.ii:23)

if h0 ≥ 0.
On the other hand for h̄ > αf(N) we have

l = sup
qN∈Ω(h,τ0)

[αT + (U,τ )
2] ≤ sup

qN∈Ω(h,τ0)

[αT ] + sup
qN∈Ω(h,τ0)

[(U,τ )
2]

= l+ = αh̄+ α2 tanh2(τ0/2) , (8.ii:24)

Condition (8.ii:17) is always satisfied if l < r. Then the semi-ideal system is ergodic if,

h̄ > h̄+ = αf(N) +
α

4

[

1 +

√

1 + 8f(N) + 8 tanh2(τ0/2)

]

, (8.ii:25)

where h̄+ is the largest root of the equation l+ = r. Recalling that tanh2(τ0/2) → 1 at lare N ,
one can verify that, given equation (8.ii:23), equation (8.ii:25) must be satisfied at large N if
h0 > 0.

We conclude that the semi ideal system is certainly ergodic if the total enery is extensive
and the total energy per particle is positive.

ii.3 The thermodynamic limit

From the point of view of ergodic theory, given the microcanonical phase space probability
distribution for the N particle dynamical system,

PN (q
N , pN ) =

δ(hN −HN)
∫

Mps
δ(hN −HN ) d4Nµps

, (8.ii:26)

it is natural to assume the existence of an asymptotic probability distribution P (γ) with γ =
(N, qN , pN ) as the number of particles tends to infinity [120]. One usually has,

PN −→
N → ∞

n = N
V(Ω)

constant

P , (8.ii:27)
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where in the limit process one has to take into account the extensive property of hN . This
freedom in taking the limit translate itself in the existence of an whole family of limit distribution
{Pβ} parameterized by the temperature 1/β of the infinite system.

By the theorem of equivalence of ensembles [121] we know that Pβ indeed exists and is
the grand-canonical Gibbs distribution, which is well defined for the one component Coulomb
plasma [105]. The uniqueness of the limit distribution is discussed in [122].

Given the existence and uniqueness of the limit distribution one can reach the averages of
the infinite system using the following procedure,

〈A〉Ω =

∫

MΩ

AP dγ −→
Ω→S

〈A〉 =
∫

MS

AP dγ , (8.ii:28)

where A is any given dynamical variable and,

MΩ = {(N, qN , pN ) | N ∈ N; ~qi ∈ Ω i = 1, . . . , N ;

p(i)α ∈ [−∞,∞] i = 1, . . . , N, α = 1, 2} , (8.ii:29)

iii Pressures of the one component Coulomb plasma

For a one component Coulomb plasma several different definitions of the pressure are possible
[102]. In this section we review four of them. We treat the neutral system in the first four
subsections and the non neutral system in the last subsection.

iii.1 The virial theorem

The Hamiltonian of our dynamical system of N particles is,

H(qN , pN ) = T (qN , pN ) + Ū(qN ) , (8.iii:1)

where we are assuming the particles confined in Ωaτ0 (we will omit the subscript aτ0 unless
explicitly needed), with Ū = U+ confining potential. The kinetic energy is,

T =
1

2m

N
∑

i=1

gαβ(~qi)p(i)αp(i)β . (8.iii:2)

The Roman indices label the particles, and the lower or upper Greek indices denote covariant or
contravariant components respectively. A sum over repeated Greek indices is tacitly assumed.

The equations of motion for particle i are,























˙q(i)
α =

∂H

∂p(i)α
=

1

m
gαβ(~qi)p(i)β

˙p(i)α = − ∂H

∂q(i)α
= − 1

2m
gµν ,α(~qi)p(i)µp(i)ν − Ū,α(~qi)

, (8.iii:3)

where the comma stands for partial differentiation and the dot for total derivative with respect
to time.
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If we take the time derivative of
∑

i q(i)
τp(i)τ we find 2,

d

dt

N
∑

i=1

q(i)
τp(i)τ =

1

m

N
∑

i=1

gτν(~qi)p(i)τp(i)ν −
1

2m

N
∑

i=1

q(i)
τgµν ,τ (~qi)p(i)µp(i)ν

−
N
∑

i=1

q(i)
τ Ū,τ (~qi) , (8.iii:4)

where the last term is called the virial of the system.

Since the system is confined in Ω the coordinates q(i)
τ (t) and their canonically conjugated

momenta p(i)τ (t) remain finite at all times. We then must have,

〈 d
dt

N
∑

i=1

q(i)
τp(i)τ 〉t = 0 . (8.iii:5)

We define the virial pressure P
(v)
Ω of the system as minus the time average of the force per

unit length exerted by the confining potential on the particles. By the ergodic hypothesis we
have,

P
(v)
Ω

∮

∂Ω
qτd1Στ =

1

m
〈
N
∑

i=1

gτν(~qi)p(i)τp(i)ν〉t −
1

2m
〈
N
∑

i=1

q(i)
τgµν ,τ (~qi)p(i)µp(i)ν〉t

−〈
N
∑

i=1

q(i)
τU,τ (~qi)〉t , (8.iii:6)

where d1Σα =
√
g
∏2
β=1;β 6=α dq

β, is the elementary “surface” element, on the pseudosphere,
orthogonal to the direction α. The line integral is,

∮

∂Ωaτ0

qτd1Στ =

∫ 2π

0
τ0 a

2 sinh τ0 dϕ = τ0aL(∂Ωaτ0) . (8.iii:7)

Moreover the ergodic hypothesis allows us to replace the time averages with microcanonical
phase space averages. To reach the thermodynamic limit we further replace the microcanonical
averages with grand-canonical phase space averages over MΩ and let Ω → S. We call P (v) the
virial pressure of the system in the thermodynamic limit,

P (v) = lim
Ω→S

n constant

P
(v)
Ω . (8.iii:8)

2One may be tempted to start with the time derivative of
∑

i ~qi · ~pi. Note however that this quantity does not
remain finite at all times. This is because, when you follow the motion of a particle colliding with the boundary,
it may go around the origin indefinitely, and ϕ (which must be defined as a continuous variable, without any 2π
jumps) may increase indefinitely. Thus the time average of the time derivative of this quantity does not vanish.
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We calculate next the three terms contributing to the pressure. The first one is,

1

m
〈
N
∑

i=1

gτν(~qi)p(i)τp(i)ν〉Ω =

2

∞
∑

N=0

zN

h2NN !

∫

e−β(T+U) 1

2m

N
∑

i

gτν(~qi)p(i)τp(i)ν d
4Nµps

∞
∑

N=0

zN

h2NN !

∫

e−β(T+U) d4Nµps

=

1

β

∞
∑

N=0

zN

λ2NN !
N

∫

Ω
e−βU dS1 · · · dSN

∞
∑

N=0

zN

λ2NN !

∫

Ω
e−βU dS1 · · · dSN

=
〈N〉
β

=
n

β
V(Ω) , (8.iii:9)

where z is the fugacity of the system, λ =
√

2πβ~2/m is the de Broglie thermal wavelength,
and dS =

√
g
∏2
α=1 dq

α = a2 sinh τ dϕdτ is the elementary area element on the pseudosphere.
In the following we will introduce a generalized fugacity ζ = z/λ2. Since V(Ωaτ0) diverges less
rapidly than τ0L(∂Ωaτ0) as τ0 → ∞, this term does not contribute to the pressure.

The second term is,

− 1

2m
〈
N
∑

i=1

q(i)
τgµν ,τ (~qi)p(i)µp(i)ν〉Ω =

− 1

2m
〈
N
∑

i=1

τi g
ϕϕ

,τ (~qi)[p(i)ϕ]
2〉Ω =

1

2m
〈
N
∑

i=1

τi
gϕϕ,τ (~qi)

[gϕϕ(~qi)]2
[p(i)ϕ]

2〉Ω =

2〈
N
∑

i=1

τi
tanh τi

(p(i)ϕ)
2

2ma2 sinh2 τi
〉Ω =

1

β
〈
N
∑

i=1

τi
tanh τi

〉Ω =

1

β

∫

Ω
n
(1)
Ω (~q1)

τ1
tanh τ1

dS1 , (8.iii:10)

where n
(1)
Ω is the one particle correlation function,

n
(1)
Ω (~q1) =

∞
∑

N=1

ζN

N !
N

∫

Ω
e−βUdS2 · · · dSN

∞
∑

N=0

ζN

N !

∫

Ω
e−βUdS1 · · · dSN

. (8.iii:11)

Since for the infinite system U does not depend on the choice of the pseudosphere origin we

must have n
(1)
S (~q1) = n. In the event that n

(1)
Ωaτ0

(τ) ∼ n near the boundary (see appendix I),
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comparing the asymptotic behaviors of 2πa2
∫ τ0
0 τ cosh τ dτ and τ0L(∂Ωaτ0) as τ0 → ∞ we find

that the second term gives a contribution n/β to the pressure.
The third term is,

−〈
N
∑

i=1

q(i)
τU,τ (~qi)〉Ω = q

∫

Ω
n
(1)
Ω (~q1) τ1 w̄,τ (τ1) dS1 (8.iii:12)

−q
2

2

∫

Ω
n
(2)
Ω (~q1, ~q2) (q(1)

τv,τ1(d12) + q(2)
τv,τ2(d12)) dS1 dS2 ,

where n
(2)
Ω is the two particle correlation function,

n
(2)
Ω (~q1, ~q2) =

∞
∑

N=2

ζN

N !
N(N − 1)

∫

Ω
e−βUdS3 · · · dSN

∞
∑

N=0

ζN

N !

∫

Ω
e−βUdS1 · · · dSN

, (8.iii:13)

which for the infinite system can be rewritten as n
(2)
S (~q1, ~q2) = n2 g(d12), where g is the usual

pair correlation function. Notice that since the charges are indistinguishable we must have

n
(2)
Ω (~q1, ~q2) = n

(2)
Ω (~q2, ~q1). Then equation (8.iii:12) can be rewritten as follows,

−〈
N
∑

i=1

q(i)
τU,τ (~qi)〉Ω = q

∫

Ω
n
(1)
Ω (~q1) τ1 w̄,τ (τ1) dS1

−q2
∫

Ω
n
(2)
Ω (~q1, ~q2) q(1)

τv,τ1(d12) dS1 dS2 , (8.iii:14)

When n
(1)
Ωaτ0

(τ) ∼ n near the boundary (see appendix I), we find the contribution of the back-

ground to the pressure comparing the asymptotic behaviors of,
∫

S
τw̄,τ (τ) dS = 2πa2 nq

(

−2πa2
∫ τ0

0
τ tanh(τ/2) sinh τ dτ

)

, (8.iii:15)

and τ0L(∂Ωaτ0) as τ0 → ∞. So doing we find that the background contributes to the pressure
a term −2πa2 (nq)2.

We then reach the following expression for the pressure in terms of the one and two particle
correlation functions,

P (v) = lim
τ0→∞

1

aτ0L(∂Ωaτ0)

[

1

β

∫

Ωaτ0

n
(1)
Ωaτ0

(~q1)
τ1

tanh τ1
dS1+ (8.iii:16)

q

∫

Ωaτ0

n
(1)
Ωaτ0

(~q1) τ1 w̄,τ (τ1) dS1 − q2
∫

Ωaτ0

n
(2)
Ωaτ0

(~q1, ~q2) τ1v,τ1(d12) dS1 dS2

]

.

iii.2 Equivalence of virial and kinetic pressures

The average force exerted by the particles on a perimeter element ds = a sinh τ0 dϕ of the

boundary ∂Ωaτ0 , is [n
(1)
Ω (τ0)/β]ds where n

(1)
Ω (τ) is the one particle density at a distance aτ from

the origin. Therefore the kinetic pressure is,

P
(k)
Ω = n

(1)
Ω (τ0)/β . (8.iii:17)
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We assume that this quantity has a limit when τ0 → ∞. It will now be shown that the virial

pressure P
(v)
Ω , is the same as P

(k)
Ω .

Replacing the virial pressure with the kinetic pressure in the left hand side of equation
(8.iii:6) we have,

P
(k)
Ω

∮

∂Ω
qτ d1Στ =

1

β

∮

∂Ω
n
(1)
Ω (~q)qτ d1Στ . (8.iii:18)

Using Gauss theorem we find,

P
(k)
Ω

∮

∂Ω
qτ d1Στ =

1

β

∫

Ω

(
√

g(~q1)q(1)
τ ),τ1

√

g(~q1)
n
(1)
Ω (~q1) dS1 +

1

β

∫

Ω
q(1)

τn
(1)
Ω ,τ1

(~q1) dS1 . (8.iii:19)

The first term on the right hand side of this equation can be further developed into,

〈N〉
β

+
1

β

∫

Ω

(
√
g),τ1√
g

q(1)
τn

(1)
Ω (~q1) dS1 . (8.iii:20)

We see then that we recover the term (8.iii:9) plus the term (8.iii:10) of the virial pressure.
In the second term on the right hand side of equation (8.iii:19) we can replace the gradient

of the one particle correlation function with its expression in terms of one and two particle
correlation functions. We know that the equilibrium states of the finite system contained in the
domain Ω are described by correlation functions which are solutions of the BGY hierarchy,

1

βq2
n
(m)
Ω ,α1

(~q1, . . . , ~qm) =



−n
∫

Ω
Fα1(d10) dS0 +

m
∑

j=2

Fα1(d1j)



n
(m)
Ω (~q1, . . . , ~qm)

+

∫

Ω
Fα1(d10)n

(m+1)
Ω (~q1, . . . , ~qm, ~q0) dS0 , (8.iii:21)

where Fα1(d10) = −v,α1(d10). For m = 1 we have,

1

βq2
n
(1)
Ω ,α1

(~q1) =

∫

Ω
Fα1(d10)[n

(2)
Ω (~q1, ~q0)− nn

(1)
Ω (~q1)] dS0 , (8.iii:22)

which when inserted into the second term on the right hand side of equation (8.iii:19) gives the
term (8.iii:14) of the virial pressure. We then find that,

P
(k)
Ω = P

(v)
Ω . (8.iii:23)

iii.3 The thermal pressure in the Canonical ensemble

The thermal pressure is defined as the partial derivative with respect to the area of the Helmholtz
free energy F (β,A, N) keeping the number of particles N , the background charge, and the
temperature T constants,

P
(t)
Ω = −

(

∂F

∂A

)

β,N

. (8.iii:24)
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The free energy is related to the logarithm of the partition function Q(β,A, N) as follows,

F = − 1

β
lnQ . (8.iii:25)

and the partition function is defined as,

Q(N,A, T ) =
h−2N

N !

∫

e−βH(qN ,pN ) d4Nµps

=
λ−2N

N !

∫

Ω
e−βU(qN ) dS1 · · · dSN , (8.iii:26)

where λ =
√

2πβ~2/m is the de Broglie thermal wavelength.
We calculate the thermal pressure using the dilatation method. We make the following

change of variables in the definition of the partition function,

{

ϕi → ϕi ϕi ∈ [0, 2π)
τi → τ0ti ti ∈ [0, 1]

(8.iii:27)

This enables us to calculate the partial derivative with respect to A = 2πa2(cosh τ0−1) through
a partial derivative with respect to τ0,

P
(t)
Ω =

dτ0
dA

∂

∂τ0

[

1

β
lnQ(τ0)

]

=
1

2πa2 sinh τ0

1

β

1

Q(τ0)

∂Q(τ0)

∂τ0
, (8.iii:28)

where,

Q(τ0) =
λ−2N

N !

∫

Ω
e−βUτ0 a2NτN0

N
∏

i=1

sinh(τ0ti) dtidϕi , (8.iii:29)

with,

Uτ0 = q2







1

2

∑

i 6=j
v([dij ]τ0)

−NA
∑

i

∫

v([dip]τ0)a
2 sinh(τ0tp)τ0 dtpdϕp (8.iii:30)

1

2

(

N

A

)2 ∫

v([dpq]τ0)a
4 sinh(τ0tp) sinh(τ0tq)τ

2
0 dtpdϕpdtqdϕq

}

,

and,

cosh([dij ]τ0/a) = cosh(τ0ti) cosh(τ0tj)− sinh(τ0ti) sinh(τ0tj) cos(ϕi − ϕj) . (8.iii:31)

At the end of the calculation we undo the change of variables going back to (τi, ϕi).
We find then,

P
(t)
Ω =

1

2πa2 sinh τ0

1

β

{

N

τ0
+

1

τ0
〈
∑

i

τ0ti
tanh(τ0ti)

〉Ω − β

τ0
〈τ0

∂Uτ0
∂τ0

〉Ω
}

. (8.iii:32)
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Recalling that aτ0L(∂Ω) = τ02πa
2 sinh τ0 we see that for the ideal gas (U = 0) the thermal

pressure coincides with the virial pressure [see terms (8.iii:9) and (8.iii:10)]. It remains to
calculate the excess thermal pressure,

P
(t)
Ω,exc = − 1

aτ0L(∂Ω)
〈τ0

∂Uτ0
∂τ0

〉Ω

= P
(t)
Ω,pp + P

(t)
Ω,pb + P

(t)
Ω,bb , (8.iii:33)

which is made up of three contributions: the one from the particle-particle interactions, the
one from the particle-background interactions, and the one from the background-background
interaction.

Let us calculate P
(t)
Ω,pp. Since,

τ0
∂v([dij ]τ0)

∂τ0
=

(

ti
∂

∂ti
+ tj

∂

∂tj

)

v([dij ]τ0) ,

we find,

P
(t)
Ω,pp = − q2

aτ0L(∂Ω)
〈
∑

i 6=j
τi v,τi(dij)〉Ω , (8.iii:34)

which coincides with the second term on the right hand side of equation (8.iii:14).

Let us calculate next P
(t)
Ω,pb,

P
(t)
Ω,pb = − q2

aτ0L(∂Ω)

{

−n〈
∑

i

∫

Ω
[τi v,τi(dip) + τp v,τp(dip)] dSp〉Ω

−n〈
∑

i

∫

Ω
v(dip) dSp〉Ω

−n〈
∑

i

∫

Ω
v(dip)

τp
tanh τp

dSp〉Ω

+ n
aτ0L(∂Ω)

A 〈
∑

i

∫

Ω
v(dip) dSp〉Ω

}

=
q2

aτ0L(∂Ω)

{

n〈
∑

i

∫

Ω
τi v,τi(dip) dSp〉Ω

+n〈
∑

i

∮

∂Ω
τp v(dip) d

1Σpτ 〉Ω

− n
aτ0L(∂Ω)

A 〈
∑

i

∫

Ω
v(dip) dSp〉Ω

}

. (8.iii:35)

We see that the first term on the right hand side coincides with the first term on the right hand
side of equation (8.iii:14).
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Let us calculate in the end P
(t)
Ω,bb,

P
(t)
Ω,bb = − q2

aτ0L(∂Ω)

{

n2

2

∫

Ω

∫

Ω
[τp v,τp(dpq) + τq v,τq(dpq)] dSpdSq

+n2
∫

Ω

∫

Ω
v(dpq) dSpdSq

+
n2

2

∫

Ω

∫

Ω
v(dpq)

[

τp
tanh τp

+
τq

tanh τq

]

dSpdSq

− n2
aτ0L(∂Ω)

A

∫

Ω

∫

Ω
v(dpq) dSpdSq

}

= − q2

aτ0L(∂Ω)

{

n2
∫

Ω

∮

∂Ω
τp v(dpq) d

1ΣpτdSq

−n2aτ0L(∂Ω)A

∫

Ω

∫

Ω
v(dpq) dSpdSq

}

. (8.iii:36)

We find then the following relationship between the thermal and the virial pressure,

P
(t)
Ω = P

(v)
Ω − q2

n

A

∫

Ω

∫

Ω
v(dpq)[n

(1)
Ω (τp)− n] dSpdSq

+ q2
n

aτ0L(∂Ω)

∫

Ω

∮

∂Ω
τp v(dpq)[n

(1)
Ω (τq)− n] d1ΣpτdSq . (8.iii:37)

The second integral on the right hand side of this equation is zero: the electric potential at
~qp created by the total charge distribution (particles plus background) is given by the quantity

q
∫

Ω v(dpq)[n
(1)
Ω (τq) − n] dSq. Since the total charge is zero, by Newton’s theorem the above

potential vanishes on the disk’s boundary τp = τ0. In the first integral on the right hand side
of equation (8.iii:37) −qn

∫

Ω v(dpq) dSq is the electric potential created by the background at ~qp.
We then have,

P
(t)
Ω = P

(v)
Ω + q

1

A

∫

Ω
w(τp)[n

(1)
Ω (τp)− n] dSp . (8.iii:38)

We want to find an expression for the difference between the thermal and the virial pressure

in the thermodynamic limit. Since n
(1)
Ω (τp)− n is localized near the boundary (see appendix I)

we change the integration variable from τ to σ = τ0 − τ and take the limit τ0 → ∞. We have
that the electric potential of the background behaves as,

w(σ) ∼
τ0→∞

2πa2qn(−σ − 1) , (8.iii:39)

Then using the normalization condition for the one particle correlation function we find,

P (t) − P (v) = −2πa2nq2
∫ ∞

0
[n

(1)
S (σ)− n]σe−σ dσ . (8.iii:40)

This latter formula is the same as in the case of a flat system in the thermodynamic limit
(half-space), except for the factor exp(−σ) (see [102] section 5.1.2. The flat system expression
is recovered taking the limit a→ ∞, σ → 0, aσ = x).
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iii.4 Difference between thermal and kinetic pressure

In a flat half space (thermodynamic limit of a disc) the difference between the thermal and the
kinetic pressure P (t) − P (k) is related to the potential difference between the surface and the
bulk [117]. We want to give the analog of this relation in the case of a pseudosphere. In this
subsection we will omit the subscripts on the correlation functions.

Let us first review the flat case. In reference [102] the last equation of section 5.1.2. becomes
in our notation,

P (t) − P (k) = −2πq2n

∫ ∞

0
x[n(1)(x)− n] dx ,

where x is the distance from the boundary. The electric potential φ(x) obeys the Poisson
equation,

d2φ(x)

dx2
= −2πq [n(1)(x)− n] .

After an integration by parts, and taking into account that xdφ/dx vanishes at x = 0 (because
of the overall neutrality) and at x = ∞ (because the electric field goes fast to zero in the bulk),
one finds,

P (t) − P (k) = −qn [φbulk − φsurface] . (8.iii:41)

This equation (8.iii:41) can be found in [117], equations (2.18) and (2.20).

Let us now give another, more pictorial, proof of equation (8.iii:41). We consider a large disk
filled with a one component Coulomb plasma, of area A. For compressing it a little, changing
the area by dA < 0, we must provide the reversible work δW = P (t)|dA|. We may achieve
that compression in two steps. First, one compresses the particles only, leaving the background
behind; the corresponding work is δW (1) = P (k)|dA|, since P (k) is the force per unit length
exerted on the wall by the particles alone. Then, one compresses the background, i.e. brings the
charge −qnb|dA| from a region where the potential is φsurface = 0 into the plasma, spreading it
uniformly; the corresponding work is δW (2) = −[qn|dA|/A]

∫

φ(r)dS, where φ(r) is the potential
at distance r from the center. Therefore,

P (t) = P (k) − qn

A

∫

φ(r) dS . (8.iii:42)

Since φ(r) differs from φbulk only in the neighborhood of the boundary circle, in the large disc
limit,

1

A

∫

φ(r) dS ∼ φbulk , (8.iii:43)

and (8.iii:42) becomes (8.iii:41).

Let us now follow the same steps on a pseudosphere (see figure 8.1). We again get (8.iii:42),
with φ(τ) instead of φ(r). But now, the neighborhood of the boundary circle has an area of the
same order of magnitude as the whole area A, and (8.iii:43) is no longer valid. In the large disc
limit, we rather have,

1

A

∫

φ(τ) dS ∼ e−τ0
∫ τ0

0
φ(τ)eτ dτ . (8.iii:44)
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charge −qnb |dA|
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origin

Figure 8.1: Shows the Poincaré disk, the disk of area A initially containing the 2D OCP,
and the disk of area A − dA containing the compressed 2D OCP. Since we are working at
constant β,N,Nb, the leftover background charge qnbdA must be spreaded uniformly within
the compressed disk.

Using (8.iii:44) in (8.iii:42), we recover, after some manipulation, equation (8.iii:40),

P (t) − P (k) ∼ −2πa2nq2
∫ τ0

0
[n(1)(τ)− n](τ0 − τ)eτ−τ0 dτ . (8.iii:45)

Indeed, in (8.iii:45) [n(1)(τ)−n] can be expressed in terms of φ(τ) through the Poisson equation,
∆φ(τ) = −2πq[n(1)(τ)− n]. Since the charge density is localized at large τ , we can use for the
Laplacian ∆ ∼ a−2[d2/dτ2 + d/dτ ]. After integrations by parts, (8.iii:45) becomes,

P (t) − P (k) ∼ −qn e−τ0
∫ τ0

0
φ(τ)eτ dτ , (8.iii:46)

which is the same as (8.iii:42) in the large τ0 limit.

In conclusion, (8.iii:41) valid for a large flat disc generalizes into (8.iii:46) on a pseudosphere

iii.5 Non neutral system and the mechanical pressure

In this subsection we want to revisit the various definitions of pressure and the relations between
them for a non neutral one component Coulomb plasma, i.e. a system with ρb = −nbq with
nb 6= n. It is convenient to introduce the number of elementary charges in the background:
Nb = nbA

In this case we find for the virial and kinetic pressure of the finite system,

P
(k)
Ω = P

(v)
Ω =

1

aτ0L(∂Ω)

{ 〈N〉
β

+
1

β

∫

Ω
n
(1)
Ω (τ1)

τ1
tanh τ1

dS1 (8.iii:47)

−q2
∫

Ω

∫

Ω
τ1v,τ1(d10)[n

(2)
Ω (~q1, ~q2)− nbn

(1)
Ω (τ1)] dS0dS1

}

.
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The thermal pressure becomes equation (8.iii:37) with n replaced by nb,

P
(t)
Ω = P

(v)
Ω − q2

nb
A

∫

Ω

∫

Ω
v(dpq)[n

(1)
Ω (τp)− nb] dSpdSq

+ q2
nb

aτ0L(∂Ω)

∫

Ω

∮

∂Ω
τp v(dpq)[n

(1)
Ω (τq)− nb] d

1ΣpτdSq . (8.iii:48)

For the non neutral system we can introduce a fourth type of pressure: the mechanical
pressure, or partial pressure due to the particles. For a fluid parameterized by (β,A, N, nb) the
mechanical pressure is defined as follows,

P
(m)
Ω = −

(

∂F

∂A

)

β,N,nb

. (8.iii:49)

Using the dilatation method again, we find,

P
(m)
Ω = P

(v)
Ω + q2

nb
aτ0L(∂Ω)

∫

Ω

∮

∂Ω
τp v(dpq)[n

(1)
Ω (τq)− nb] d

1ΣτpdSq . (8.iii:50)

Using Newton’s theorem this expression can be simplified as follows,

P
(m)
Ω − P

(v)
Ω = q2(N −Nb)

nb
aτ0L(∂Ω)

∮

∂Ω
τpv(dp0)d

1Στp

= q2nb(N −Nb)v(aτ0) . (8.iii:51)

The difference between the thermal and the mechanical pressure can be rewritten as,

P
(t)
Ω − P

(m)
Ω =

q

A

∫

Ω
w(τ)[n

(1)
Ω (τ)− nb] dS . (8.iii:52)

In the thermodynamic limit we find,

P (m) − P (v) = 2πa2q2nb(n− nb) . (8.iii:53)

In equation (8.iii:52) [n
(1)
Ω (τ)−nb] differs from zero just in a neighborhood of the disk boundary

(the system tends to be electrically neutral in the bulk). Then changing variables from τ to the
distance from the boundary σ = τ0 − τ we find,

P (t) − P (m) =
2q

eτ0

∫ τ0

0
w(σ)[n

(1)
S (σ)− nb] sinh(τ0 − σ) dσ . (8.iii:54)

Using the asymptotic expansion (8.iii:39) for the background potential we have,

P (t) − P (m) = q

∫ ∞

0
2πa2qnb(−σ − 1)[n

(1)
S (σ)− nb]e

−σ dσ

= −2πa2q2nb(n− nb)

−2πa2nb q
2

∫ ∞

0
[n

(1)
S (σ) − nb]σe

−σ dσ , (8.iii:55)

where we used the asymptotic form for the normalization condition of the one particle correlation
function. We also have,

P (t) − P (v) = −2πa2nb q
2

∫ ∞

0
[n

(1)
S (σ)− nb]σe

−σ dσ . (8.iii:56)
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φ(q2) = (1)q[n (τ 1 ) − ]nb v(d12 ) dS1

Figure 8.2: Shows the Poincaré disk, the disk of area A initially containing the 2D OCP,
and the disk of area A − dA containing the compressed 2D OCP. Since we are working at
constant β,N, nb, the leftover background charge qnbdA must be sent to infinity.

The difference P (m)−P (k) can be obtained by a slight change in the argument of subsection
iii.4 (see figure 8.2). Again we consider a large disk filled with a one component Coulomb plasma
of area A, and we compress it infinitesimally, changing its area by dA < 0, now at constant
β,N, nb, providing the reversible work δW = −P (m)dA, in two steps. First one compresses the
particles only, leaving the background behind, and the corresponding work is δW (1) = −P (k)dA.
Then one must withdraw the leftover background charge qnbdA, bringing it from the surface,
where the potential is φsurface to infinity, where the potential vanishes. The corresponding work is
δW (2) = −qnbdAφsurface. Therefore one finds, P (m) −P (k) = qnbφsurface. In the thermodynamic
limit on the pseudosphere, φsurface → 2πa2q(n− nb).

iii.6 Thermal and mechanical pressures in the Grand Canonical ensemble

In the following we shall also need an expression of the thermal and mechanical pressures ap-
propriate for the grand canonical ensemble. It should be remembered that, for a one component
plasma, the grand canonical partition function must be defined [123] as an ensemble of systems
with any number N of particles in a fixed area and with a fixed background charge density −qnb
(using am ensemble of neutral systems, i.e. varying nb together with N does not give a well
behaved grand partition function). Thus the grand partition function Ξ and the corresponding
grand potential Ω = − ln Ξ/β are functions of β,A, ζ, nb, where ζ is the fugacity. We assume
that even on a pseudosphere, the grand potential is extensive, i.e. of the form Ω = Aω(β, ζ, nb).
The usual Legendre transformation from F to Ω and from N to ζ changes (8.iii:24) into,

P (t) = −
(

∂Ω

∂A

)

β,ζ,Nb

. (8.iii:57)

Since ω depends on A through nb = Nb/A, (8.iii:57) becomes,

P (t) = −ω + nb
∂ω

∂nb
. (8.iii:58)



CHAPTER 8. PRESSURES FOR A ONE-COMPONENT PLASMA ON A PSEUDOSPHERE
IV. THE YUKAWA FLUID AND THE MAXWELL TENSOR PRESSURE 112

Note the difference with an ordinary fluid, without a background, for which P (t) = −ω.
The mechanical pressure (8.iii:49) is changed by the Legendre transformation into,

P (m) = −
(

∂Ω

∂A

)

β,ζ,nb

= −ω (8.iii:59)

iv The Yukawa fluid and the Maxwell tensor pressure

In the previous sections we have described a method for calculating the virial and kinetic pres-
sures exerted by the Coulomb plasma on the “surface” of its container comparing them with
the thermal pressure. In this section, following closely a derivation due to Jancovici [119], we
will calculate the Maxwell tensor pressure P (θ) of the plasma on the Riemannian surface, using
a field theoretical argument. This bulk pressure has been shown to be equivalent to the thermal
pressure as defined by Choquard, for the flat plasma. On a pseudosphere, since the surface of
a large domain is of the same order of magnitude as the volume, the thermal pressure would
depend on the boundary conditions and probably would be different from the Maxwell tensor
pressure.

A field theoretical description of a one component Coulomb plasma on a Riemannian mani-
fold R can be obtained as follows. Consider a system of particles of mass m and charge q living
on the whole manifold with a number density n, immersed in a uniform neutralizing background
charge distribution of charge density ρb = −nq, and coupled to a scalar field φ of “mass” α.
This we will call a Yukawa fluid. In the limit of a vanishing α the Yukawa fluid reduces to the
one component Coulomb plasma.

Let us introduce the mass density of particle i,

ρi = mδ(~q − ~qi)/
√
g , (8.iv:1)

where ~qi is the position of particle i, and the total charge density as,

ρ = ρp + ρb ,

ρp = q
∑

i

δ(~q − ~qi)/
√
g . (8.iv:2)

The Hamiltonian of the fluid can be written as,

H = Hp +Hφ +Hpφ , (8.iv:3)

where Hp is the kinetic energy of the particles,

Hp =

∫

Hp
√
g d~q ,

Hp =
1

2

∑

i

ρi g
µν(~qi)(p(i)µ/m)(p(i)ν/m) , (8.iv:4)

and Hφ+Hpφ is their total “electrostatic” potential energy. If the dimension of the manifold is
d we have,

Hφ =

∫

Hφ
√
g d~q ,

Hφ = − 1

2ǫd
[gµνφ,µφ,ν + α2φ2] , (8.iv:5)
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where ǫ1 = 2, ǫ2 = 2π, ǫ3 = 4π, and,

Hpφ =

∫

Hpφ
√
g d~q ,

Hpφ = ρφ . (8.iv:6)

The Lagrangian density L√g = (Lp + Lφ)
√
g has a particle contribution,

Lp =
1

2

∑

i

ρi gµν(~qi) ˙q(i)µ ˙q(i)ν , (8.iv:7)

and a field contribution,

Lφ = −(Hφ +Hpφ) . (8.iv:8)

The field equation of motion is,

∂

∂qµ

[

∂(Lφ
√
g)

∂φ,µ

]

=
∂[Lφ

√
g]

∂φ
, (8.iv:9)

which reduces to Helmholtz equation,

(−∆+ α2)φ = ǫdρ , (8.iv:10)

whose solution may be written in terms of its Green function G, as follows,

φ(~q0) =

∫

G(d01)ρ(~q1)
√
g d~q1 . (8.iv:11)

In appendix H we give a collection of Green functions for the Euclidean spaces of dimension
d ≤ 3 and for some simple Riemannian manifolds of dimension d = 2 and d = 3.

Performing an integration by parts and neglecting the “surface” contribution of the field at
infinity (when such “surface” does not reduce to a “point” as in finite manifolds) we can rewrite
the energy density of the Yukawa fluid as,

(Hφ +Hpφ)
√
g =

1

2ǫd
[gµνφ,µφ,ν + α2φ2]

√
g

1

2
ρφ

√
g . (8.iv:12)

The total stress tensor is,

Tµν = − 2√
g

δ[L√g]
δgµν

= (Tp)µν + (Tφ)µν . (8.iv:13)

It has a particle contribution,

(Tp)µν = −
∑

i

ρi
p(i)µ
m

p(i)ν
m

, (8.iv:14)

and a field contribution,

(Tφ)µν = −2
δLφ
δgµν

+ gµνLφ

=
1

ǫd
[φ,µφ,ν −

1

2
gµν(φ

γ
, φ,γ + α2φ2)] . (8.iv:15)
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The mass current density of particle i is,

Jiµ = ρi
p(i)µ
m

. (8.iv:16)

From the conservation of the mass of a particle (Jiµ;
iµ = 0, where the semicolon stands for

covariant derivative), the equation of motion of the particles, and the equation of motion of the
field, follows the conservation of the stress tensor (Tµν;

ν = 0).

The Maxwell tensor pressure of the Yukawa fluid is given by,

P (θ) = −〈T 11〉R (8.iv:17)

= −1

d
〈T µµ〉R , (8.iv:18)

where as in the previous sections 〈. . .〉R stands for the grand-canonical average and fluid isotropy
was used in the last equality. The particle contribution to the pressure is,

P (θ)
p = −〈(Tp)11〉R

= −〈(Tp)1̂1̂〉R̂
=

2

β
〈
∑

i

ρ̂i
m

[

β

2m
(p(i)1̂)

2

]

〉R̂ ,

where in the second equality we changed coordinate basis on RN : from the coordinate basis
{~eiµ} to the non-coordinate orthonormal reference frame {~eiµ̂}, defined by,

~eiµ̂ = Liµ iµ̂~eiµ (8.iv:19)

where the transition matrix satisfies,

giµiνLiµ̂ iµL
iν̂
iν = giµ̂iν̂ ,

with giµ̂iν̂ = δiµ̂iν̂ . We denoted with 〈. . .〉R̂ the grand-canonical average using the new phase
space coordinates,

{

q(i)
µ̂ = Liµ̂ iµq(i)

µ

p(i)µ̂ = Liµ iµ̂p(i)µ
,

and with ρ̂i the mass density in the local orthonormal frame. Carrying out the integration over
the momenta we find,

P (θ)
p =

1

β
〈
∑

i

ρ̂i
m
〉R̂ .

Switching back to the original coordinate basis yields,

P (θ)
p =

1

β
〈
∑

i

δ(~q − ~qi)/
√
g〉R

=
n

β
. (8.iv:20)
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We see then that the field contribution to the pressure turns out to be the excess pressure
over the one of the ideal fluid. Making use of the rotational symmetry of the fluid, the excess
pressure may be written as,

P
(θ)
φ = −1

d
〈(Tφ)µµ〉R

= −1

d
〈(Tφ)µ̂µ̂〉R̂

= −1

d

1

ǫd
〈φ,µ̂φ,µ̂ −

d

2
(φ,µ̂φ,µ̂ + α2φ2)〉R̂

=
1

ǫd
〈φ,µφ,µ(1/2 − 1/d) + α2φ2/2)〉R . (8.iv:21)

In particular for a two dimensional manifold we have,

P
(θ)
φ =

α2

4π
〈φ2〉R . (8.iv:22)

Using equation (8.iv:11) we find,

P
(θ)
φ =

α2

4π
〈[q
∑

i

G(d0i)− nqIG][q
∑

j

G(d0j)− nqIG]〉R , (8.iv:23)

where IG =
∫

G(d01) dS1. The homogeneity and isotropy of the fluid allows us to rewrite the
excess pressure as sum of two terms,

P
(θ)
φ = P

(θ)
self + P

(θ)
non−self , (8.iv:24)

where the self term is,

P
(θ)
self = lim

d̄→0
[P

(θ)
0 (d̄) + P

(θ)
1 (d̄)] , (8.iv:25)

P
(θ)
0 (d̄) = regularized term (see next subsection) , (8.iv:26)

P
(θ)
1 (d̄) =

α2

4π
nq2

∫

d01>d̄
G2(d01) dS1 , (8.iv:27)

and the non-self term is,

P
(θ)
non−self =

α2

4π
n2q2

∫

G(d01)G(d02)h(d12) dS1dS2 . (8.iv:28)

where h = g − 1 is the pair correlation function.

iv.1 Calculation of the self part of the excess pressure

In the calculation of the self part of the excess pressure care is needed in neglecting the force
that each particle exerts on itself [118]. Such contribution is responsible for the divergence of the
self part of the excess pressure at small geodesic distances from the origin when one calculates
it, for example, on the q1 = 0 “surface” (without taking advantage of the rotational symmetry
of the fluid, i.e. from equation (8.iv:17) instead of equation (8.iv:18)). In order to cure such

divergence one can employ the prescription described in equation (8.iv:25): split P
(θ)
self into the
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contributions P
(θ)
0 of geodesic distance from the origin d01 < d̄ and P

(θ)
1 of geodesic distance

from the origin d01 > d̄, and let d̄→ 0 in the end. Now P
(θ)
1 is convergent and can be computed

using the rotational symmetry as shown in equation (8.iv:27). For a pseudosphere one finds
[124],

P
(θ)
1 = lim

d̄→0
P

(θ)
1 (d̄) =

α2

4π
nq2 2πa2

∫ ∞

1
Q2
ν(y) dy

=
(aα)2

2
nq2

ψ′(ν + 1)

2ν + 1
, (8.iv:29)

where ψ is the psi function (the logarithmic derivative of the gamma function). P
(θ)
0 must

be regularized by the prescription that no particle sits on the q1 = 0 “surface”. This can be
realized by removing from the integration domain a thin slab |q1| < ε and taking the limit ε→ 0
afterwards,

P
(θ)
0 = −nq

2

ǫ2
lim
ε→0

∫

d01<d̄

|q1|>ε
dS1

{

G,1
2(d01)−

1

2
[G,µ(d01)G,µ(d01) + α2G2(d01)]

}

= −nq
2

2ǫ2
lim
ε→0

∫

d01<d̄

|q1|>ε
dS1[G,1

2(d01)−G,2
2(d01)] , (8.iv:30)

where in the last equality we kept just the divergent part of the integrand. Since d̄ can be taken

arbitrarily small, the regularized P
(θ)
0 can be computed using the small d form of G(d), which

is just the Coulomb potential in R2,

d −→ r =
√

x2 + y2 ,

G(d) −→ G(r) = − ln r + constant .

We then find for P
(θ)
0 ,

P
(θ)
0 (d̄) = −nq

2

2ǫ2
lim
ε→0

∫

ε<|x|<d̄
dx

∫

√
d̄2−x2

−
√
d̄2−x2

dy
x2 − y2

(x2 + y2)2
= −nq

2

4
.

We finally find for the self part of the excess pressure of the Yukawa fluid on the pseudosphere,

P
(θ)
self = −nq

2

4
+

(aα)2

2
nq2

ψ′(ν + 1)

2ν + 1
(8.iv:31)

iv.2 Calculation of the non-self part of the excess pressure

First note that since the integrand in (8.iv:28) depends only on the shape of the geodesic triangle
(0, 1, 2), the integration can be performed on another pair of positions (0, 2) rather than (1, 2).

P
(θ)
non−self =

α2

4π
n2q2

∫ [∫

G(d01)G(d02) dS0

]

h(d12) dS2 . (8.iv:32)

Using Dirac notation,

G(dij) =

〈

i

∣

∣

∣

∣

ǫ2
−∆+ α2

∣

∣

∣

∣

j

〉

,



CHAPTER 8. PRESSURES FOR A ONE-COMPONENT PLASMA ON A PSEUDOSPHERE
IV. THE YUKAWA FLUID AND THE MAXWELL TENSOR PRESSURE 117

where i, j are positions, gives for the integral on 0 in (8.iv:32),

∫

G(d01)G(d02) dS0 =

∫

dS0

〈

1

∣

∣

∣

∣

ǫ2
−∆+ α2

∣

∣

∣

∣

0

〉〈

0

∣

∣

∣

∣

ǫ2
−∆+ α2

∣

∣

∣

∣

2

〉

=

〈

1

∣

∣

∣

∣

(ǫ2)
2

(−∆+ α2)2

∣

∣

∣

∣

2

〉

= −ǫ2
∂G(d12)

∂α2
.

Thus equation (8.iv:32) becomes,

P
(θ)
non−self = −n

2q2

4

∫

α
∂G(d12)

∂α
h(d12) dS2 .

Restricting ourselves to the pseudosphere case, since G depends on α only through the
combination (aα) we find,

P
(θ)
non−self = −n

2q2

4

∫

a
∂G(τ)

∂a
h(τ) dS . (8.iv:33)

iv.3 The Coulomb limit on the pseudosphere

The Yukawa interaction is a screened Coulomb interaction. In the limit of an infinite screening
length 1/α, the Yukawa interaction reduces to the Coulomb potential. As α → 0, ν → 0,
G(τ) → Q0(cosh τ) = − ln(tanh τ/2), and a∂G/∂a → 0. Thus,

P
(θ)
non−self = 0 , (8.iv:34)

Moreover since ψ′(1) = π2/6 is finite,

P
(θ)
self = −nq

2

4
. (8.iv:35)

We find then that the excess pressure entirely comes from the self part,

P
(θ)
φ = P

(θ)
self = −nq

2

4
. (8.iv:36)

iv.4 Range of validity of the equation of state

It has been shown by Jancovici [119] that the same equation of state (8.iv:36) holds for the
plasma on the plane, the sphere, and the pseudosphere.

More generally we can state that such equation of state holds on any surface with the
following property,

lim
α→0

{
∫

G2(d01) dS1 − 2πn

∫

∂G(d01)

∂α2
h(d01) dS1

}

= 0 , (8.iv:37)

whereG is the Green function of Helmholtz equation (H.:1), and h is the pair correlation function
satisfying the following charge sum rule,

n

∫

h(d01) dS1 = −1 . (8.iv:38)
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v Exact results at βq2 = 2

When the Coulombic coupling constant is βq2 = 2, all the thermodynamic properties and
correlation functions of the two-dimensional one-component plasma can be computed exactly in
several geometries [4, 125, 126] including the pseudosphere [105]. In reference [105] the density
and correlation functions in the bulk, on a pseudosphere, were computed. Here we are interested
in these quantities near the boundary. In reference [105] the calculations were done for a system
with a − ln sinh(d/2a) interaction and it was shown that this interaction gives the same results
as the real Coulomb interaction − ln tanh(d/2a), as far as the bulk properties are concerned. The
argument in favor of this equivalence no longer holds for the density and other quantities near
the boundary; therefore we shall concentrate on the real Coulomb system with a − ln tanh(d/2a)
interaction. This system was briefly considered in the Appendix of reference [105]. For the sake
of completeness, we revisit here the reduction of the statistical mechanics problem to the study
of a certain operator.

v.1 The grand potential

Working with the set of coordinates (r, ϕ) on the pseudosphere (the Poincaré disk representa-
tion), the particle i-particle j interaction term in the Hamiltonian can be written as [105]

v(dij) = − ln tanh(dij/2a) = − ln

∣

∣

∣

∣

(zi − zj)/(2a)

1− (ziz̄j/4a2)

∣

∣

∣

∣

(8.v:1)

where zj = rje
iϕj and z̄j is the complex conjugate of zj . This interaction (8.v:1) happens to

be the Coulomb interaction in a flat disc of radius 2a with ideal conductor walls. Therefore,
it is possible to use the techniques which have been developed [127, 128] for dealing with ideal
conductor walls, in the grand canonical ensemble.

The grand canonical partition function of the OCP at fugacity ζ with a fixed background
density nb, when βq

2 = 2, is

Ξ = C0



1 +

∞
∑

N=1

1

N !

∫ N
∏

i=1

ridridϕi
[1− (r2i /4a

2)]

∏

i<j

∣

∣

∣

∣

(zi − zj)/(2a)

1− (ziz̄j/4a2)

∣

∣

∣

∣

2 N
∏

i=1

ζ(ri)



 (8.v:2)

where for N = 1 the product
∏

i<j must be replaced by 1. We have defined a position-

dependent fugacity ζ(r) = ζ[1 − r2/(4a2)]4πnba
2−1eC which includes the particle-background

interaction (8.i:22) and only one factor [1 − r2/(4a2)]−1 from the integration measure dS =
[1− r2/(4a2)]−2 dr. This should prove to be convenient later. The eC factor is

eC = exp
[

4πnba
2
(

ln cosh2
τ0
2

− sinh2
τ0
2
ln tanh2

τ0
2

)]

(8.v:3)

which is a constant term coming from the particle-background interaction term (8.i:22) and

lnC0 =
(4πnba

2)2

2

[

ln cosh2
τ0
2

+ sinh2
τ0
2

(

sinh2
τ0
2
ln tanh2

τ0
2

− 1
)]

(8.v:4)

which comes from the background-background interaction (8.i:23). Notice that for large domains,
when τ0 → ∞, we have

eC ∼
[

eτ0+1

4

]4πnba
2

(8.v:5)
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and

lnC0 ∼ −(4πnba
2)2eτ0

4
(8.v:6)

Let us define a set of reduced complex coordinates ui = (zi/2a) inside the Poincaré disk and its
corresponding images u∗i = (2a/z̄i) outside the disk. By using Cauchy identity

det

(

1

ui − u∗j

)

(i,j)∈{1,··· ,N}2
= (−1)N(N−1)/2

∏

i<j(ui − uj)(u
∗
i − u∗j )

∏

i,j(ui − u∗j)
(8.v:7)

the particle-particle interaction term together with the [1 − (r2i /4a
2)]−1 other term from the

integration measure can be cast into the form

∏

i<j

∣

∣

∣

∣

(zi − zj)/(2a)

1− (ziz̄j/4a2)

∣

∣

∣

∣

2 N
∏

i=1

[1− (r2i /4a
2)]−1 = det

(

1

1− uiūj

)

(i,j)∈{1,··· ,N}2
(8.v:8)

The grand canonical partition function then is

Ξ =

[

1 +

∞
∑

N=1

1

N !

∫ N
∏

i=1

d2ri

N
∏

i=1

ζ(ri) det

(

1

1− uiūj

)

]

C0 (8.v:9)

We shall now show that this expression can be reduced to an infinite continuous determinant,
by using a functional integral representation similar to the one which has been developed for
the two-component Coulomb gas [21]. Let us consider the Gaussian partition function

Z0 =

∫

DψDψ̄ exp

[∫

ψ̄(r)M−1(z, z̄′)ψ(r′) d2r d2r′
]

(8.v:10)

The fields ψ and ψ̄ are anticommuting Grassmann variables. The Gaussian measure in (8.v:10)
is chosen such that its covariance is equal to3

〈

ψ̄(ri)ψ(rj)
〉

=M(zi, z̄j) =
1

1− uiūj
(8.v:11)

where 〈. . .〉 denotes an average taken with the Gaussian weight of (8.v:10). By construction we
have

Z0 = det(M−1) (8.v:12)

Let us now consider the following partition function

Z =

∫

DψDψ̄ exp

[
∫

ψ̄(r)M−1(z, z̄′)ψ(r′)d2rd2r′ +
∫

ζ(r)ψ̄(r)ψ(r) d2r

]

(8.v:13)

which is equal to
Z = det(M−1 + ζ) (8.v:14)

and then
Z

Z0
= det[M(M−1 + ζ)] = det[1 +K] (8.v:15)

where

K(r, r′) =M(z, z̄′) ζ(r′) =
ζ(r′)

1− uū′
(8.v:16)

3Actually the operator M should be restricted to act only on analytical functions for its inverse M−1 to exist.
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The results which follow can also be obtained by exchanging the order of the factors M and
M−1 + ζ in (8.v:15), i.e. by replacing ζ(r′) by ζ(r) in (8.v:16), however using the definition
(8.v:16) of K is more convenient. Expanding the ratio Z/Z0 in powers of ζ we have

Z

Z0
= 1 +

∞
∑

N=1

1

N !

∫ N
∏

i=1

d2ri

N
∏

i=1

ζ(ri)
〈

ψ̄(r1)ψ(r1) · · · ψ̄(rN )ψ(rN )
〉

(8.v:17)

Now, using Wick theorem for anticommuting variables [21], we find that

〈

ψ̄(r1)ψ(r1) · · · ψ̄(rN )ψ(rN )
〉

= detM(zi, z̄j) = det

(

1

1− uiūj

)

(8.v:18)

Comparing equations (8.v:17) and (8.v:9) with the help of equation (8.v:18) we conclude that

Ξ = C0
Z

Z0
= C0 det(1 +K) (8.v:19)

The problem of computing the grand canonical partition function has been reduced to finding
the eigenvalues of the operator K. The eigenvalue problem for K reads

∫

ζeC

(

1− r′2

4a2

)4πnba
2−1

1− zz̄′

4a2

Φ(r′) r′ dr′dϕ′ = λΦ(r) (8.v:20)

For λ 6= 0 we notice from equation (8.v:20) that Φ(r) = Φ(z) is an analytical function of z.
Because of the circular symmetry it is natural to try Φ(z) = Φℓ(z) = zℓ = rℓeiℓϕ with ℓ a
positive integer. Expanding

1

1− zz̄′

4a2

=

∞
∑

n=0

(

zz̄′

4a2

)n

(8.v:21)

and replacing Φℓ(z) = zℓ in equation (8.v:20) one can show that Φℓ is actually an eigenfunction
of K with eigenvalue

λℓ = 4πa2ζeCBt0(ℓ+ 1, 4πnba
2) (8.v:22)

with t0 = r20/(4a
2) = tanh2(τ0/2) and

Bt0(ℓ+ 1, 4πnba
2) =

∫ t0

0
(1− t)4πnba

2−1tℓ dt (8.v:23)

the incomplete beta function. So we finally arrive to the result for the grand potential

βΩ = − lnΞ = − lnC0 −
∞
∑

ℓ=0

ln
(

1 + 4πa2ζeCBt0(ℓ+ 1, 4πnba
2)
)

(8.v:24)

with eC and lnC0 given by equations (8.v:3) and (8.v:4). This result is valid for any disk
domain of radius aτ0. Later, in Section v.3, we will derive a more explicit expression of the
grand potential for large domains τ0 → ∞.
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v.2 The density

As usual one can compute the density by doing a functional derivative of the grand potential
with respect to the position-dependent fugacity:

n(1)(r) =

(

1− r2

4a2

)2

ζ(r)
δ ln Ξ

δζ(r)
(8.v:25)

The factor [1− (r2/4a2)]2 is due to the curvature [105], so that n(1)(r) dS is the average number
of particles in the surface element dS = [1 − (r2/4a2)]−2 dr. Using a Dirac-like notation, one
can formally write

ln Ξ = Tr ln(1 +K) + lnC0 =

∫

〈r |ln(1 + ζ(r)M)| r〉 dr+ lnC0 (8.v:26)

Then, doing the functional derivative (8.v:25), one obtains

n(1)(r) =

(

1− r2

4a2

)2

ζ(r)
〈

r
∣

∣(1 +K)−1M
∣

∣ r
〉

= 4πa

(

1− r2

4a2

)2

ζ(r)G̃(r, r) (8.v:27)

where we have defined G̃(r, r′) by4 G̃ = (1 +K)−1M/(4πa). More explicitly, G̃ is the solution
of (1 +K)G̃ =M/(4πa), that is

G̃(r, r′) + ζeC
∫

G̃(r′′, r′)

(

1− r′′2

4a2

)4πnba
2−1

1− zz̄′′

4a2

dr′′ =
1

4πa

[

1− zz̄′

4a2

] (8.v:28)

and the density is given by

n(1)(r) = 4πaζeC
(

1− r2

4a2

)4πnba
2+1

G̃(r, r) (8.v:29)

From the integral equation (8.v:28) one can see that G̃(r, r′) is an analytical function of z. Trying
a solution of the form

G̃(r, r′) =
∞
∑

ℓ=0

aℓ(r
′)zℓ (8.v:30)

into equation (8.v:28) yields

G̃(r, r′) =
1

4πa

∞
∑

ℓ=0

(

zz̄′

4a2

)ℓ 1

1 + 4πa2ζeCBt0(ℓ+ 1, 4πnba2)
(8.v:31)

Then the density is given by

n(1)(r) = ζeC
(

1− r2

4a2

)4πnba
2+1 ∞

∑

ℓ=0

(

r2

4a2

)ℓ
1

1 + 4πa2ζeCBt0(ℓ+ 1, 4πnba2)
(8.v:32)

4the factor 4πa is there just to keep the same notations as in reference [105].
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After some calculation (see Appendix K), it can be shown that, in the limit a → ∞, the result
for the flat disk in the canonical ensemble [104]

n(1)(r)

nb
= exp(−πnbr2)

Nb−1
∑

ℓ=0

(πnbr
2)ℓ

γ(ℓ+ 1, Nb)
(8.v:33)

is recovered. up to a correction due to the non-equivalence of ensembles in finite systems. In
(8.v:33), γ is the incomplete gamma function

γ(ℓ+ 1, x) =

∫ x

0
tℓe−tdt (8.v:34)

In that flat-disk case, in the thermodynamic limit (half-space), n(1)(r0) = ncontact → nb ln 2.

v.3 Large domains

We are now interested in large domains τ0 → ∞. In this thermodynamic limit we will show
that the sums in equations (8.v:24) and (8.v:32) can be replaced by integrals. For pedagogical
reasons we will first consider the case 4πnba

2 = 1 in which the calculations are simpler, and
afterwards deal with the general case.

v.3.1 The case 4πnba
2 = 1

In this case the incomplete beta function that appears in equations (8.v:24) and (8.v:32) simply
is

Bt0(ℓ+ 1, 1) =
tℓ+1
0

ℓ+ 1
=

[tanh2(τ0/2)]
ℓ+1

ℓ+ 1
(8.v:35)

When τ0 → ∞ we have

Bt0(ℓ+ 1, 1) ∼ exp(−4(ℓ+ 1)e−τ0)
ℓ+ 1

(8.v:36)

Then the sum appearing in the grand potential (8.v:24) takes the form

∞
∑

ℓ=0

ln

(

1 +
ζe

nb

exp(−4(ℓ+ 1)e−τ0)
4(ℓ+ 1)e−τ0

)

(8.v:37)

where we have used the asymptotic expression (8.v:5) for eC . This sum can be seen as a Riemann
sum for the variable x = 4(ℓ + 1)e−τ0 . Indeed, for large values of τ0, the variable x varies in
small steps dx = 4e−τ0 . The sum (8.v:37) then converges, when τ0 → ∞, to the integral

∫ ∞

0
ln

(

1 +
ζe

nb

e−x

x

)

dx

4e−τ0
(8.v:38)

This expression together with equation (8.v:6) for the constant lnC0 gives the grand potential
in the thermodynamic limit τ0 → ∞

βΩ ∼ −e
τ0

4

[∫ ∞

0
ln

(

1 +
ζe

nb

e−x

x

)

dx− 1

]

(8.v:39)

We notice that the grand potential is extensive as expected. The area of the system being
A = 4πa2 sinh2(τ0/2) ≃ πa2eτ0 , we find that the grand potential per unit area ω = Ω/A is given
by

βω = −nb
[
∫ ∞

0
ln

(

1 +
ζe

nb

e−x

x

)

dx− 1

]

(8.v:40)
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Similar calculations lead from equation (8.v:32) to the density n(1)(σ) near the boundary as a
function of the distance from that boundary aσ = a(τ0 − τ),

n(1)(σ) = ζe e2σ
∫ ∞

0

e−xe
σ

1 +
ζe

nb

e−x

x

dx (8.v:41)

After the change of variable xeσ → x, this can be written as

n(1)(σ)

nb
=

∫ ∞

0

xe−x dx

xe−σ

(ζe/nb)
+ e−xe

−σ

(8.v:42)

The average density n = N/A can be obtained integrating the density profile (8.v:42) or by
using the thermodynamic relation N = −βζ(∂Ω/∂ζ). We find

n

nb
=

∫ ∞

0

e−x dx
x

(ζe/nb)
+ e−x

(8.v:43)

v.3.2 The general case

With the case 4πnba
2 = 1 we have illustrated the general procedure for computing the thermo-

dynamic limit. Now we proceed to compute it in the more general case where 4πnba
2 has any

positive value. To simplify the notations let us define α = 4πnba
2. The main difficulty is to find

a suitable asymptotic expression of the incomplete beta function

Bt0(ℓ+ 1, α) =

∫ t0

0
(1− t)α−1tℓ dt (8.v:44)

when t0 → 1 which is valid for large ℓ. As we have noticed in the previous section the main
contribution from the sum in ℓ that appears in the grand potential comes from large values
of ℓ which are of order eτ0 . For these values of ℓ the integrand in the definition of the beta
function (1− t)α−1tℓ is very peaked around t = t0 and decays very fast when t→ 0. So the main
contribution to the incomplete beta function comes from values of t near t0. It is then natural
to do the change of variable in the integral t = t0− v where with the new variable v the integral
is mainly dominated by small values of v. Then we have

Bt0(ℓ+ 1, α) =

∫ t0

0
(1− t0 + v)α−1eℓ ln(t0−v) dv (8.v:45)

Replacing t0 by its asymptotic value t0 ∼ 1− 4e−τ0 and taking into account that v is small (of
order e−τ0), we find, at first order in e−τ0 ,

Bt0(ℓ+ 1, α) ∼ 1

ℓα
Γ(α, x) (8.v:46)

where we have introduced once more the variable x = 4ℓe−τ0 (at first order in e−τ0 it is the same
variable x = 4(ℓ+ 1)e−τ0 introduced in the case α = 1) and

Γ(α, x) =

∫ ∞

x
yα−1e−y dy (8.v:47)
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is an incomplete gamma function. With this result and equation (8.v:5) the term eCBt0(ℓ+1, α)
in the expressions (8.v:24) and (8.v:32) appears as a function of the continuous variable x =
4ℓe−τ0

eCBt0(ℓ+ 1, α) ∼ eα
Γ(α, x)

xα
(8.v:48)

With this result we can replace the sums for ℓ in equations (8.v:24) and (8.v:32) by integrals
over the variable x and we find the following expressions for the grand potential per unit area

βω =
1

4πa2

{

(4πnba
2)2 −

∫ ∞

0
ln

[

1 + 4πa2ζe4πnba
2 Γ(4πnba

2, x)

x4πnba2

]

dx

}

(8.v:49)

and the density

n(1)(σ) = ζe4πnba
2
e(4πnba

2+1)σ

∫ ∞

0

e−xe
σ
dx

1 + 4πa2ζe4πnba
2 Γ(4πnba

2, x)

x4πnba2

(8.v:50)

In particular the contact value of the density, that is when σ = 0, is

ncontact = n(1)(0) = ζe4πnba
2
∫ ∞

0

e−x dx

1 + 4πa2ζe4πnba
2 Γ(4πnba

2, x)

x4πnba2

(8.v:51)

After some calculation (see Appendix K), it can be shown that, in the limit a → ∞, the result
for the flat disk in the thermodynamic limit ncontact = nb ln 2 is again recovered.

An alternative expression for the density which we will also use is obtained by doing the
change of variable xeσ → x and introducing again α = 4πnba

2

n(1)(σ)

nb
=

∫ ∞

0

xαe−x dx
xαe−ασ

(ζeα/nb)
+ αΓ(α, xe−σ)

(8.v:52)

From this expression it can be seen that in the bulk, when σ → ∞ and e−σ → 0, the density is
equal to the background density, n(1)(σ) → nb. The system is neutral in the bulk. The excess
charge, which is controlled by the fugacity ζ, concentrates as usual on the boundary.

The average total number of particles N and the average density n = N/A can be computed
either by using the thermodynamic relation

N = −βζ ∂Ω
∂ζ

(8.v:53)

or by integrating the density profile (8.v:50)

N =

∫

τ<τ0

n(1)(σ) dS = πa2eτ0
∫ ∞

0
n(1)(σ) e−σ dσ (8.v:54)

The two methods yield the same result, as expected,

n =
N

A = ζe4πnba
2

∫ ∞

0

Γ(4πnba
2, x) dx

x4πnba
2
+ 4πa2ζe4πnba

2
Γ(4πnba

2, x)
(8.v:55)
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The ratio of the average density and the background density can be put in the form

n

nb
=

∫ ∞

0

Γ(α, x) dx
xα

(ζeα/nb)
+ αΓ(α, x)

(8.v:56)

As seen on equations (8.v:52) and (8.v:56) the density profile n(1)(σ) and the average density n
are functions of the parameter g = ζe4πnba

2
/nb. Different values of this parameter g give different

density profiles and mean densities. Depending on the value of g the system can be globally
positive, negative or neutral. From equation (8.v:56) it can be seen that the average density is
a monotonous increasing function of the fugacity, as it should be. Therefore there is one unique
value of the fugacity for which the system is globally neutral. For the case 4πnba

2 = 1, we have
determined numerically the value of g needed for the system to be neutral, n = nb. This value
is g = ζe/nb = 1.80237.

It may be noted that, in the case of a flat disk in the grand canonical ensemble, the 2D
OCP remains essentially neutral (the modulus of its total charge cannot exceed one elementary
charge q), whatever the fugacity ζ might be [129, 130]; this is because the Coulomb interaction
− ln(r/L) becomes infinite at infinity and bringing an excess charge from a reservoir at infinity
to the system already carrying a net charge would cost an infinite energy. On the contrary,
in the present case of a 2D OCP on a pseudosphere, the Coulomb interaction (8.i:20) has an
exponential decay at large distances, and varying the fugacity does change the total charge of
the disk.

Figure 8.3 shows several plots of the density n(1)(σ) as a function of the distance σ from the
boundary (in units of a), for different values of g, in the case α = 4πnba

2 = 1. It is interesting
to notice that for g ≤ 1 the density is always an increasing function of σ. Far away from the
boundary, the density approaches the background density nb from below. On the other hand
when g > 1, but not too large, the density profile shows an oscillation: n(1)(σ) is no longer a
monotonous function of σ. Far away from the boundary, σ → ∞, the density now approaches
the background density from above. Finally, when g is large enough, the density profile is again
monotonous, now a decreasing function of σ. The change of behavior as σ → ∞ can actually be
shown analytically. Let us define u = e−σ. From equation (8.v:52) we have

∂

∂u

(

n(1)(σ)

nb

)

=

∫ ∞

0

αx2αuα−1e−x−xu
(

(xu)α

g
+ αΓ(α, xu)

)2

[

1− exu

g

]

dx (8.v:57)

The first term in the integral is always positive. The second term, 1 − (exu/g), in the limit
σ → ∞ (u → 0) is 1 − (1/g). If g < 1 it is negative, then ∂n(1)/∂u is negative and n(1)(σ) is
then an increasing function of σ when σ → ∞ as it was noticed in the last paragraph.

Also, in this case α = 1, when ζ → ∞ the density profile (8.v:42) can be computed explicitly

n(1)(σ)

nb
=

1

(1− e−σ)2
(8.v:58)

It is clearly a monotonous decreasing function of σ.

v.4 Relations between the different pressures

From the explicit expressions (8.v:49) and (8.v:52) for the grand potential and the density
profile, we can check the relations between the different pressures obtained in Section iii. The
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Figure 8.3: The density profile n(1)(σ) (in units of nb) as a function of the distance from
the boundary σ (in units of a) for different values of the parameter g = ζe/nb in the case
4πnba

2 = 1. From bottom to top, in full line g = 0.5, 1.5, 2.5, 5.0, 10.0 and in dashed line
g = 1 (change of behavior between monotonous increasing profile and oscillating profile),
g = 1.80237 (globally neutral system) and g → ∞.

mechanical pressure simply is P (m) = −ω and it is given by equation (8.v:49). This expression
can be transformed by doing an integration by parts in the integral giving

βP (m) = − 1

4πa2















∫ ∞

0

4πa2xζe4πnba
2 d

dx

[

Γ(4πnba
2, x)

x4πnba2

]

1 + 4πa2ζe4πnba
2 Γ(4πnba

2, x)

x4πnba2

dx+ (4πnba
2)2















(8.v:59)

By the replacement

d

dx

[

Γ(4πnba
2, x)

x4πnba2

]

= −e
−x

x
− 4πnba

2Γ(4πnba
2, x)

x4πnba2+1
(8.v:60)

in equation (8.v:59), one recognizes the expressions (8.v:51) and (8.v:55) for the contact density
and the average density, thus giving

βP (m) = n(1)(0) + 4πnba
2(n− nb) (8.v:61)

which is precisely, when βq2 = 2, the relation (8.iii:53) between the mechanical pressure P (m)

and the kinetic pressure P (k) = (1/β)n(1)(0) obtained in Section iii.
The thermal pressure is

P (t) = −ω(ζ, nb) + nb

(

∂ω(ζ, nb)

∂nb

)

ζ

(8.v:62)

The last term in this equation is given by

βnb
∂ω

∂nb
=

1

4πa2















2α2 −
∫ ∞

0

4πa2ζ

1 +
4πa2ζeαΓ(α, x)

xα

α
∂

∂α

[

eαΓ(α, x)

xα

]

dx















(8.v:63)



CHAPTER 8. PRESSURES FOR A ONE-COMPONENT PLASMA ON A PSEUDOSPHERE
V. EXACT RESULTS AT βQ2 = 2 127

Making the replacement

α
∂

∂α

[

eαΓ(α, x)

xα

]

= αeα
(

Γ(α, x)

xα
+

∂

∂α

[

Γ(α, x)

xα

])

(8.v:64)

in equation (8.v:63), one recognizes in the first term the average density n, thus obtaining

βnb
∂ω

∂nb
= α(2nb − n)− αI (8.v:65)

where

I =

∫ ∞

0

ζeα

1 +
4πa2ζeαΓ(α, x)

xα

∂

∂α

[

Γ(α, x)

xα

]

dx (8.v:66)

So the thermal pressure is given by

βP (t) = n(1)(0) + αnb − αI (8.v:67)

On the other hand the integral appearing in the general relation (8.iii:56) between the thermal
pressure and the kinetic pressure

J =

∫ ∞

0
(n(1)(σ)− nb) e

−σσ dσ (8.v:68)

can be split into two parts

J = −nb + I ′ (8.v:69)

with

I ′ =
∫ ∞

0
n(1)(σ)σe−σ dσ (8.v:70)

Using the actual integral representation for the density profile given by equation (8.v:50) yields

I ′ =
∫ ∞

0

ζeα

1 +
4πa2ζeαΓ(α, x)

xα

{
∫ ∞

0
eασe−xe

σ

σ dσ

}

dx (8.v:71)

The integral over σ can be cast in the form

∂

∂α

[∫ ∞

0
eασe−xe

σ

dσ

]

(8.v:72)

By doing the change of variable y = xeσ one immediately recognizes the integral representation
of the incomplete gamma function. The above expression is then equal to

∂

∂α

[

Γ(α, x)

xα

]

(8.v:73)

Thus we have proven that I ′ = I and finally we have the relation

β(P (t) − P (k)) = −4πnba
2

∫ ∞

0
(n(1)(σ)− nb) e

−σσ dσ (8.v:74)

which is relation (8.iii:56) in the solvable case βq2 = 2.
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vi Conclusions

We have shown that a closed one component Coulomb plasma ofN charges confined in a compact
connected domain Ω of the pseudosphere is certainly ergodic if we switch off the Coulomb
interaction amongst the particles leaving intact the Coulomb interaction amongst the particle
and the background. It is left as an open problem to prove that the system remains ergodic if
we switch on the mutual interaction between the particles, i.e. to show that for qN ∈ Ω(h, τ0)
the disequality (8.ii:17) with U given by (8.i:24), holds true at least in the large N (constant n)
limit. If this could be proven than taking the thermodynamic limit N → ∞ (keeping n constant)
one would recover the Statistical Physics of the one component Coulomb plasma. Taking the
limit a→ 0 one would recover the Statistical Physics of the flat plasma. This derivation would
be alternative to the one of Sari and Merlini [131] which goes through “H-stability” and the
“cheese theorem” to prove the existence of the thermodynamic limit.

In a flat space, the neighborhood of the boundary of a large domain has a volume which is
a negligible fraction of the whole volume. This is why, for the statistical mechanics of ordinary
fluids, usually there is a thermodynamic limit: when the volume becomes infinite, quantities such
as the free energy per unit volume or the pressure have a unique limit, independent of the domain
shape and of the boundary conditions. However, even in a flat space, the one-component plasma
is special. For the OCP, it is possible to define several non-equivalent pressures, some of which,
for instance the kinetic pressure, obviously are surface-dependent even in the infinite-system
limit.

Even for ordinary fluids, statistical mechanics on a pseudosphere is expected to have special
features, which are essentially related to the property that, for a large domain, the area of the
neighborhood of the boundary is of the same order of magnitude as the whole area. Although
some bulk properties, such as correlation functions far away from the boundary, will exist,
extensive quantities such as the free energy or the grand potential are strongly dependent on the
boundary neighborhood and surface effects. For instance, in the large-domain limit, no unique
limit is expected for the free energy per unit area F/A or the pressure −(∂F/∂A)β,N .

In the present chapter, we have studied the 2D OCP on a pseudosphere, for which surface
effects are expected to be important for both reasons: because we are dealing with a one-
component plasma and because the space is a pseudosphere. Therefore, although the correlation
functions far away from the boundary have unique thermodynamic limits [105], many other
properties are expected to depend on the domain shape and on the boundary conditions. This
is why we have considered a special well-defined geometry: the domain is a disk bounded by a
plain hard wall, and we have studied the corresponding large-disk limit. Our results have been
derived only for that geometry.

We have been especially interested by different pressures which can be defined for this system.
It has been shown that the virial pressure P (v) (defined through the virial theorem) and the
kinetic pressure P (k) (the force per unit length that the particles alone exert on the wall) are
equal to each other. We have also considered the thermal pressure P (t), the definition of which
includes contributions from the background. It should be noted that this thermal pressure is
also dependent on surface effects, since it is defined by (8.iii:24) and (8.iii:57) in terms of the
free energy or the grand potential, and the corresponding partition functions include relevant
contributions from the surface region. The thermal pressure is not equal to the previous ones.
We have also considered the so-called mechanical pressure P (m) which differs from the kinetic
one only for charged systems. General relations among these different pressures have been
established for the finite Coulomb plasma. Using the notion that in the thermodynamic limit
the one particle correlation function differs from the background density just in a neighborhood of
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the boundary ∂Ω (the system tend to be electrically neutral in the bulk) we have given, whenever
possible, the thermodynamic limit of the various relations found. All the above definitions of
the pressure depend on the boundary conditions. A definition of a bulk pressure independent
of the boundary conditions has been looked for. After an erroneous attempt [105], it has been
argued [118, 119] that a bulk pressure P (θ) could be defined from the Maxwell stress tensor at
some point well inside the fluid. The result was

P (θ) = nb

(

1− βq2

4

)

, (8.vi:1)

That same equation of state holds for the 2D OCP on a plane, a sphere, or a pseudosphere.
When βq2 = 2, the model is exactly solvable, in the grand canonical ensemble. Explicit

expressions have been obtained for the grand potential, the density profile, and the pressures.
The general relations between the different pressures have been checked.

A bulk pressure, independent of the surface effects, can be defined from the Maxwell stress
tensor. It is not astonishing that this bulk pressure is different from the previous ones, all of
which depend on surface effects.



Chapter 9

Functional integration in one
dimensional classical statistical
mechanics

The physics of one dimensional systems is simpler than that one of three dimensional ones.
Specifically the free energy of an interacting gas has had an exact solution only in one dimension.
The apparent simplicity of restricting motion to one spatial dimension is well known and has had
much appeal. But what is the relation between the exactly soluble models of the one dimensional
world and the richer and puzzling problems of the tree dimensional one? A one dimensional gas
was once thought to be incapable even of condensation. Later with the introduction of infinite
range forces it has been made to condense, but even so this liquid can never freeze. What one
finds is that these models are useful tests of approximate mathematical methods, the solutions
of these models are surprisingly complex and interesting, physical applications are often and
unexpectedly discovered, and more importantly they educate us to the need of rigorous and
exact analysis with which one can have a better definition of reality. The fact that particles can
get around each other is responsible for much of the structure of the ordinary world, and is also
responsible for the difficulties which the mathematical physicist encounter in studying it. In one
dimension we renounce to some of the structure in favor of the possibility of obtaining an exact
solution.

The importance of one dimensional physics also lies in the fact that a number of many-body
problems in higher dimensions can be accurately mapped into one dimensional problems.

One dimensional models with short range two particles forces do not have a phase transition
at a non zero temperature [10].

In this chapter I will describe a way of simplifying the calculation of the grand canonical
partition function of an ensemble of classical particles living in a one dimensional world and
interacting with a given pair potential v, originally described by Edwards and Lenard in their
paper [3] which I will call EL from now on. Using the notion of a general Gaussian random
process and Kac’s theorem, they show how it is possible to express the grand partition function
as a one dimensional integral of the fundamental solution of a given partial differential equation.
The kind of partial differential equation will be fixed by the kind of diffusion equation satisfied by
the Gaussian random process. In sections i, ii, and iii I will present EL’s functional integration
technique. In subsection iv.2 I will show how, in EL, the properties of the Wiener process
are used to solve “Edwards’ model”. I will then show, in subsection iv.1, how one can use
the properties of the Ornstein-Uhlenbeck process to solve the “Kac-Baker’s model”, and, in
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section vii, how the generalized Ornstein-Uhlenbeck process can be used to solve models with a
more general pair interaction potential. Even though in EL is mentioned the generality of their
technique they just apply it to the “Edwards’ model”. In Section v we show how EL propose to
extract thermodynamical informations from their treatment and in section vi we show, following
EL, how it is possible to reduce the search of the grand partition function, to a characteristic
value problem, when the diffusion equation is independent of time.

More recently [132] the functional integral technique of Edwards and Lenard has been used
to solve the statistical mechanics of a one dimensional Coulomb gas with boundary interactions
as a one dimensional model for a colloidal and soap film.

i The Problem

The problem is to simplify the calculation of the grand canonical partition function of a system
of particles in the segment [0, L] whose positions are labeled by xi with i = 1, 2, . . . , N , namely,

Ω =
∞
∑

N=0

zN

N !

∫ L

0
dxN · · ·

∫ L

0
dx1 exp

{

−VN (x1, . . . , xN )
θ

}

. (9.i:1)

EL consider the total potential energy of the system to be,

VN (x1, . . . , xN ) =

N
∑

i=1

N
∑

j=1

w(xi, xj) , (9.i:2)

where w(xi, xj) is a function of two variables depending on the pair potential v(|xi − xj|) and
the kind of reservoir exchanging particles with the system.

The main idea of EL, is to rewrite the grand partition function as a functional average,

Ω =

〈

exp

∫ L

0
dx′F (φ(x′))

〉

(9.i:3)

=

〈 ∞
∑

N=0

1

N !

∫ L

0
dxN · · ·

∫ L

0
dx1

N
∏

i=1

F (φ(xi))

〉

.

And then choose F (φ) = z exp(iσφ), to get,

Ω =

∞
∑

N=0

zN

N !

∫ L

0
dxN · · ·

∫ L

0
dx1

〈

exp

{

iσ

N
∑

i=1

φ(xi)

}〉

, (9.i:4)

where in interchanging the average with the sum and the integrals they use the linearity of the
average. we haven’ t defined the average yet so we will do it next.

ii Averaging over a general Gaussian Random Process

A general Gaussian random process φ(x) is defined by the postulate that for any finite number
of points x1, . . . , xN the joint probability density for φ(xk) in dφk (we will often make use of the
abbreviation φi ≡ φ(xi)) is of the form,

P (φ1, . . . , φN ) =

√
detB

(2π)N/2
exp

{

−1

2

N
∑

k=1

N
∑

l=1

Bklφkφl

}

, (9.ii:1)
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where Bij = Bij(x1, . . . , xN ) are the elements of the positive definite matrix B.
Let αk be N arbitrary real numbers. Then,

〈

exp

{

i

N
∑

i=1

αiφi

}〉

= exp

{

−1

2

N
∑

k=1

N
∑

l=1

Cklαkαl

}

, (9.ii:2)

where C = B−1 .

Differentiating with respect to αk and αl (not excluding k = l) and then setting all α to zero,
one obtains,

〈φ(xk)φ(xl)〉 = Ckl = C(xk, xl) , (9.ii:3)

where C is a function of two variables only, called the covariance function. From equations
(9.ii:2) and (9.ii:3) follows that also Bij = B(xi, xj) is a function of just two variables. The
covariance completely characterizes the statistical nature of φ(x)

Replacing all the α’ s in equation (9.ii:2) with σ and comparing (9.ii:2) and (9.i:4) with (9.i:1)
and (9.i:2) one recognizes that,

C(x1, x2) =
2

θσ2
w(x1, x2) . (9.ii:4)

This imposes a restriction to the systems that one can treat. Namely we need w to be positive
definite.

Why is all this useful is explained in the next section.

iii Kac’s Theorem

Consider a Markoffian process φ(x), i.e. one for which, given any increasing sequence of times
x0, x1, . . . , xn (with x0 < x1 < · · · < xn), the probability that φ(xk) is in dφk (with k =
0, 1, . . . , n) is the product,

P (φ1, . . . , φn) =

(

∫ ∞

−∞
dφ0

n
∏

k=1

P (φk, xk|φk−1, xk−1)R(φ0, x0)dφ0

)

, (9.iii:1)

where P (φ1, x1|φ0, x0) is the conditional probability that φ(x1) is in an element dφ1 around φ1
given that φ(x0) = φ0 and R(φ, x) is the initial probability distribution for the process. 1 Both
the conditional probabilities and the initial distribution are assumed to be normalized to unity
over the interval φ ∈ [−∞,+∞],

∫ ∞

−∞
dφ1P (φ1, x1|φ0, x0) =

∫ ∞

−∞
dφR(φ, x) = 1 . (9.iii:2)

Any quantity which is an expression involving φ(x) is a random variable whose average value
may be determined using the probability (9.iii:1).

One is interested in averages of the form,

W (x, x0) =

〈

exp

∫ x

x0

dx′F (φ(x′), x′)

〉

(9.iii:3)

= 1 +

∞
∑

n=1

∫ x

x0

dxn

∫ xn

x0

dxn−1 · · ·
∫ x2

x0

dx1〈F (φn, xn) · · ·F (φ1, x1)〉 .

1Equation (9.iii:1) defines what is often called a Wiener measure in the space of continuous functions φ(x).
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Kac’ s theorem takes advantage of the Markoffian property (9.iii:1) to relate to each other the
successive terms of this series by an integral-recursion formula. It can be seen by inspection
that,

W (x, x0) =

∫ ∞

−∞
dφQ(φ, x|φ0, x0) , (9.iii:4)

Q =
∞
∑

n=0

Qn ,















Q0(φ, x|φ0, x0) =
∫ ∞

−∞
dφ0P (φ, x|φ0, x0)R(φ0, x0)

Qn(φ, x|φ0, x0) =
∫ x

x0

dx′
∫ ∞

−∞
dφ′P (φ, x|φ′, x′)F (φ′, x′)Qn−1(φ

′, x′|φ0, x0)

Then one can write the following integral equation for Q,

Q(φ, x|φ0, x0) = Q0 +

∞
∑

n=1

Qn =

∫

dφ0PR+

∞
∑

n=1

∫

dx′
∫

dφ′PFQn−1

=

∫ ∞

−∞
dφ0P (φ, x|φ0, x0)R(φ0, x0)

+

∫ x

x0

dx′
∫ ∞

−∞
dφ′P (φ, x|φ′, x′)F (φ′, x′)Q(φ′, x′|φ0, x0) . (9.iii:5)

This is the main result of Kac’ s theorem.

Now assuming that the stochastic process φ(x) satisfies a forward Fokker-Planck equation,

∂

∂x
P (φ, x|φ0, x0) = L(φ, x)P (φ, x|φ0, x0) (9.iii:6)

P (φ, x0|φ0, x0) = δ(φ − φ0) initial condition

it immediately follows from the integral formula (9.iii:5), that Q satisfies,

∂

∂x
Q(φ, x|φ0, x0) = [L(φ, x) + F (φ, x)]Q(φ, x|φ0 , x0) (9.iii:7)

Q(φ, x0|φ0, x0) = R(φ, x0) initial condition

If we now further assume φ(x) to be a Gaussian process (so that equation (9.iii:1) is of the
form (9.ii:1)) then we can put together the result of the previous section (9.ii:4) and Kac’ s
theorem, to say that,

Ω =W (L, 0) =

∫ ∞

−∞
dφQ(φ,L|0, 0) , (9.iii:8)

where Q = Q(φ, x|φ0, x0) is the solution of the partial differential equation (9.iii:7) with F (φ, x)
= F (φ) = z exp(iσφ). This is the simplification found by EL. Note the following points:

• This certainly is a simplification from a computational point of view (see chapter 6 of
“Lectures in Non-equilibrium Statistical Mechanics” by Klaus Shulten, lecture notes for
the 498NSM course held at the University of Illinois at Urbana Champaign during fall
2003).
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• When the operator L is independent of ’time’ (we keep calling x time because it comes
natural from the notion of random process. In the present contest though x is the position
of a particle along his one dimensional world.) then both P (φ, x|φ0, x0) and Q(φ, x|φ0, x0)
depend only on the difference x− x0 since F does not depend explicitly on x.

• For a non-stationary random process φ(x) it simplifies things if one takes a delta function
as initial distribution, i.e. R(φ, x0) = δ(φ − φ0), where φ0 = φ(x0). In this case Q is the
fundamental solution of the partial differential equation (9.iii:7).

• For a non-stationary random process the covariance function C(x1, x2) = 〈φ(x1)φ(x2)〉 is
not a function of x2−x1 alone. The identification of the covariance with the inter particle
potential v demands that the process be stationary because the inter particle potential
is a function of the difference of the two position variables. But in some cases (due for
example to the presence of the reservoir) w may differ from v (see subsection iv.2).

As a final remark, in EL is stressed the importance of the Markoffian nature of the process.
They observe that the concept of a Markoffian process involves the idea of a succession in ’time’
and this is meaningless when there is more then one independent variable. So it seems to be
hard to extend the technique just described even to a two dimensional system.

In the following section we will apply the functional integration technique described to some
concrete examples.

iv Examples

Let us see now how all this works for two well known Markoffian, Gaussian stochastic processes:

iv.1 The Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck process is a stationary process defined as follows,

R(φ0) =
1√
2π

exp

(

−φ
2
0

2

)

, (9.iv:1)

P (φ, x|φ0, x0) =
1

√

2πS(∆x)
exp−(φ− φ0e

−γ∆x)2

2S(∆x)
, (9.iv:2)

with ∆x = |x− x0| ,

S(∆x) = 1− e−2γ∆x ,

where γ is the inverse of the characteristic time constant of the process, i.e. a positive real
number. Due to the stationarity the following identity holds,

R(φ) =

∫ ∞

−∞
dφ0P (φ, x|φ0, x0)R(φ0) . (9.iv:3)

The covariance for this process is,

C(x1, x2) = exp−γ|x1 − x2| . (9.iv:4)

The Fokker-Planck equation satisfied by the process is the Smoluchowski diffusion equation
for an harmonic oscillator,

L(φ) = γ

(

∂2

∂φ2
+

∂

∂φ
φ

)

. (9.iv:5)
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So this process can be used to describe a system of particles whose potential energy is,

w(x1, x2) =
θσ2

2
exp−γ|x1 − x2| . (9.iv:6)

Adding a hard-core part to this long range potential and making it attractive by choosing σ
pure imaginary, gives the so called “Kac-Baker model”. Yang and Lee showed that the presence
of the hard core part is sufficient to ensure the existence of the thermodynamic potential for the
infinite system (L → ∞). This was calculated exactly by Kac who also proved that the model
has no phase transitions (because of the infinite range of the potential, Van Hove’ s proof is not
applicable here). Later Baker showed that if one sets,

σ = i

√

α0γ

θ
, (9.iv:7)

(so that the integral of the potential is independent of γ) and then takes the limit γ → 0 after
the limit L → ∞, then a phase transition of the classical Van der Waals type is obtained. A
model with exponential repulsive pair potential (exactly like the one in (9.iv:6)) was studied by
D. S. Newman, who concluded that there was no phase transition for such a model, not even in
the long range limit of Baker [133].

iv.2 The Wiener process

We follow EL and introduce the Wiener process. It is a non-stationary process defined by (if
x > x0),

R(φ0) =
1√

4πDx0
exp− φ20

4Dx0
(9.iv:8)

P (φ, x|φ0, x0) =
1√

4πD∆x
exp− ∆φ2

4D∆x
, (9.iv:9)

with ∆x = x− x0 ,

∆φ = φ− φ0 ,

where D is the diffusion constant of the Brownian process, i.e. a positive real number.
The covariance for this process is,

C(x1, x2) = 2Dmin(x1, x2) . (9.iv:10)

The Fokker-Planck equation satisfied by the process is the Einstein diffusion equation,

L(φ) = D
∂2

∂φ2
. (9.iv:11)

So this process can be used to describe a system of particles whose potential energy is,

w(x1, x2) = Dθσ2min(x1, x2) . (9.iv:12)

It was S. F. Edwards, see EL, who first realized that this is a Coulomb system: electrons of
charge e living in the segment [0, L] are in contact with an infinite reservoir (in the region
x < 0, say). The reservoir exchanges particles with the system of electrons giving rise to the
statistical fluctuations in particle number. Take the system plus reservoir electrically neutral as
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a whole and imagine the system containing N electrons. Then there is a total charge −Ne in
the reservoir. Gauss’ s theorem then tells that in the region x ≥ 0 there is a constant electric
field of magnitude 2πNe, due to the presence of the reservoir. Now choosing,

D =
2π

θ
, (9.iv:13)

σ = e , (9.iv:14)

one can rewrite the total potential energy of the system as,

VN = 2πe2
N
∑

k=1

N
∑

l=1

min(xk, xl)

= 2πe2
N
∑

k=1

N
∑

l=1

[

−|xk − xl|
2

+
xk + xl

2

]

= −2πe2
∑

k<l

|xk − xl|+ 2πe2
N
∑

k=1

N
∑

l=1

xl

= −2πe2
∑

k<l

|xk − xl|+ 2πNe2
N
∑

l=1

xl . (9.iv:15)

Which is readily recognized as the expected result for the “Edwards’ model”. We are assuming
that the line is the real world in which each charge lives. So that also its field lines cannot escape
from the line. Then the electric potential of each charge is the solution of d2ψ(x)/dx2 = −4πδ(x),
i.e. ψ(x) = −2π|x|.

Note that due to the presence of the neutralizing reservoir, w is not just a function of |xi−xj|
and consequently the random process is not just a stationary one as in the Kac-Baker example.

In this case Edwards has not been able to answer in a definite way to the problem of continuity
of the thermodynamic functions.

v Thermodynamics

Following EL, we want now comment briefly on the relevance of all this from the point of
view of the thermodynamics of the system of particles. Given the grand canonical partition
function Ω = Ω(z, L, θ) the equation of state follows from eliminating z between the two following
equations,

P

θ
=

1

L
lnΩ(z, L, θ) , (9.v:1)

n = z
∂

∂z

1

L
ln Ω(z, L, θ) . (9.v:2)

where P is the pressure and n the number density of particles. Sometimes one talks about
chemical potential µ (of the one-component system), instead of z. The two are related by,

z =

(

mθ

2π~2

)1/2

eµ/θ , (9.v:3)
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where m is the mass of the particles. All the other thermodynamic functions can be obtained
from the internal energy,

U(N,L, S) = − d

d(1/θ)
lnΩ(z, L, θ) (9.v:4)

= L(−P + θ
∂P

∂θ
+ µn) , (9.v:5)

where S is the entropy of the system. Or alternatively from the Helmholtz free energy,

A(N,L, θ) = µN − θ ln Ω(z, L, θ) . (9.v:6)

It is often useful to simplify the problem by studying just the asymptotic behavior of Ω in the
infinite system limit L → ∞. This usually allows the recognition of eventual phase transitions
(as in the Yang & Lee theory and L. Van Hove theorems) as singularities in the equation of
state. The equation of state for the infinite system becomes then,















P

θ
= Φ(z, v, θ) = lim

L→∞

[

1

L
ln Ω(z, L, θ)

]

,

n =
1

v
= lim

L→∞

[

z
∂

∂z

1

L
ln Ω(z, L, θ)

]

,
(9.v:7)

where the limit may not be freely interchanged with the differentiation.

vi Characteristic value problem

Both the examples reported have the common feature that L is independent of time x. Under
this circumstance the problem of calculating the grand canonical partition function Ω may be
simplified even further, as shown in EL.

Since the coefficient function F (φ) in equation (9.iii:7) is periodic with period 2π it is possible
to reduce the problem (9.iii:7) to the characteristic value problem of an ordinary differential
operator on a finite interval of the independent variable φ. Let,

Q̃(φ, x) =

∞
∑

n=−∞
Q(φ+ 2πn, x|0, 0) . (9.vi:1)

This function is the periodic fundamental solution of the partial differential equation (9.iii:7),
i.e. for x = 0 it reduces to,

Q̃(φ, 0) =

∞
∑

n=−∞
R(φ+ 2πn) . (9.vi:2)

For the “Kac-Baker model” one finds for example Q̃(φ, 0) = θ3(φ/2, 1/
√
e)/(2π) and for the

“Edwards’ model” Q̃(φ, 0) =
∑∞

n=−∞ δ(φ+ 2πn). It then follows that,

Ω =

∫ π

−π
dφQ̃(φ,L) . (9.vi:3)

Since F and L do not depend on x, in solving (9.iii:7) for Q̃, one may use the method of
separation of variables. This leads to the characteristic value problem,

[L(φ) + F (φ)] y(φ) = λy(φ) , (9.vi:4)

y(φ+ 2π) = y(φ) .
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Then one looks for a complete orthonormal set of eigenfunctions ym with relative eigenvalues
λm (m = 0, 1, 2, . . .),

∫ π

−π
dφym(φ)ym′(φ) = δm,m′ . (9.vi:5)

The expansion of Q̃ in terms of these functions is,

Q̃(φ, x) =
∞
∑

m=0

eλmxBmym(φ) , (9.vi:6)

Bm =

∫ π

−π
dφQ̃(φ, 0)ym(φ) . (9.vi:7)

For example Bm = ym(0) for the “Edwards’ model”. The grand partition function becomes,

Ω(L) =

∞
∑

m=0

Ame
λmL , (9.vi:8)

Am = ym(0)

∫ π

−π
dφym(φ) . (9.vi:9)

The λm and the ym depends parametrically on z which enters into the definition of F (φ).

Now assume that among the sequence of eigenvalue λm there is one λ0 that is real and is
bigger than the real part of all the others then the following simplification holds,

Ω(L→ ∞) ∼ A0 exp(λ0L) . (9.vi:10)

The equation of state for the infinite system then becomes,

P = θλ0(z) , (9.vi:11)

n = lim
L→∞

[

z
∂

∂z

(

lnA0(z)

L
+ λ0(z)

)]

= z
∂

∂z
λ0(z) . (9.vi:12)

For example for an ideal gas λ0(z) = az (a constant).

Let us summarize the characteristic value problem for the two examples reported (′ = d/dφ):
(1) repulsive “Kac-Baker model”:

γ[y′′ + (φy)′] + ze−iσφy = λy , (9.vi:13)

(2) “Edwards’ model”:

2π

θ
y′′ + ze−ieφy = λy , (9.vi:14)

where in both cases y(φ) is a function of period 2π (for the attractive Kac-Baker model the
periodicity is lost but the characteristic value problem is still valid).
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vii General potential

In the two examples reported we started from known stochastic processes to find which physical
model they may be able to describe. Actually one wants to do the reverse: given a physical
model, i.e. given w (a positive definite function (9.ii:4)), determine the stochastic process that
allows the desired simplification for the grand canonical partition function. It turns out that
this is quite easily accomplished when w is a function of the inter particles distance alone.

For this purpose it is useful to reconsider the Ornstein-Uhlenbeck process in a more general
way. Consider the following stationary stochastic process,

R(φ) =
1√
2π

exp

(

−φ
2

2

)

, (9.vii:1)

P (φ, x|φ0, x0) =
1

√

2πS(∆x)
exp−(φ− φ0A(∆x))

2

2S(∆x)
, (9.vii:2)

with ∆x = |x− x0| ,

S(∆x) = 1−A2(∆x) ,

where the last definition assures the validity of the stationarity property (9.iv:3).
The covariance for this process is,

C(x1, x2) =
2

σθ
w(x1, x2) = A(|x1 − x2|) . (9.vii:3)

It can be readily verified that the transition density of this process satisfies the following
forward Fokker-Planck equation,

L(φ, x) = − Ȧ
A

(

∂2

∂φ2
+

∂

∂φ
φ

)

, (9.vii:4)

where the dot means differentiation with respect to time. Introducing the function B2(x) =
−2d lnA(x)/dx one can then say that the process satisfies the following stochastic differential
equation,

φ̇(x) = −B
2(x)

2
φ(x) +B(x)η(x) , (9.vii:5)

where η(x) is Gaussian white noise.
All this allows for example to simplify the thermodynamics of a system of particles interacting

with a potential,

w(x1, x2) = 1/|x1 − x2| , (9.vii:6)

for which B(x) =
√

2/x.
In the more general case one has to deal with w’ s which are not functions of the inter particle

interaction alone. For example one may be interested in modifying “Edwards’ model” for the
case of a Coulomb system living in [−L,L] and neutralized by a uniform background (containing
quadratic terms). This problem has been solved by R. J. Baxter [133] who developed a method
for finding the partition function when the pair potential satisfies a linear differential equation
with constant coefficients. His method still leads to an eigenvalue problem but do not employ
functional averaging.



Chapter 10

Conclusions

In the thesis have been examined various simple classical fluids. Among the one component
systems we have studied:

• The one dimensional hard spheres (hard rods). A peculiarity of this system is that, due to
its low dimensionality, it cannot undergo the fluid-solid transition. Direct calculations of
the Lyapunov exponent of the simple iterative scheme of Picard of HNC and PY integral
equations for this system showed the same behavior observed in three dimensional systems
(see chapter 6). So at least in this case, the recently proposed [84–86] connection between
the threshold for the stability of the iterative solution of integral equations for the pair
correlation functions of a classical fluid and its freezing phase transition, failed.

• The three dimensional inverse power potential and Lennard-Jones fluids. We used (see
chapter 5) these systems to test the performance of some new closures (HNC/H2, HNC/H3)
built in such a way to admit a unique solution and to be thermodynamically consistent
(the pressure calculated from the virial theorem coincides with the one obtained from the
partial derivatives of the free energy). In particular we showed how for the Lennard-Jones
fluid treated with HNC/H2, one could follow the isotherms from the low density to the high
density regions without the appearance of termination points. The isotherms had a van
der Waals like behavior. A drawback of these new closures is that they were worst than the
more common closures (as HNC or RY) in reproducing the structure or thermodynamics of
these fluids. If one drops the constraint of the uniqueness of the solution, within HNC/H3,
better results, in this sense, were obtained.

• The one component Coulomb plasma on a pseudosphere. It has long been known that
at some special temperature (βq2 = 2) the partition function and distribution functions
of a flat two dimensional one component plasma can be exactly computed in the ther-
modynamic limit, in the canonical ensemble, using the properties of the Vandermonde
determinant [4, 134]. The two dimensional one component plasma on a pseudosphere was
first considered by Jancovici and Téllez [105] who were able to extend the exact solution to
this system. They still studied only the thermodynamic limit and found consistent results
working either in the canonical or in the grand canonical ensembles. In the thesis (see
chapter 8) we extended this work to a one component plasma confined into a finite disk
of the pseudosphere. Again the grand potential and the one body density were calculated
exactly at the special temperature but now we were forced to use the grand canonical
ensemble. The thermodynamic limit was also investigated to check, at the special temper-
ature, some sum rules between different definitions of the pressure of the system that had

140
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been previously determined on general grounds.

In the thesis we also stressed the important role played by the pseudosphere in the theory
of dynamical systems. In particular Sinai [110] proved the ergodicity of a gas of free
particles on a pseudosphere closed at infinity by a reflective boundary. We posed the
question: is the two dimensional one component plasma on a pseudosphere ergodic? Due
to the difficulty in handling the pair interactions we could not reach a definitive answer.

• The Kac-Baker and Edwards one dimensional fluids. We described in details the functional
integration technique used by Edwards and Lenard [3] to reduce the calculation of the
grand canonical partition function of one dimensional systems with pair wise interactions,
to the solution of a particular partial differential equation (see chapter 9). We reported the
treatment of the Edwards model discussed in the Edwards and Lenard paper and showed
how one could treat the Kac-Baker model with similar means. We also discussed a possible
extension of the method to a system with a “general” pair interaction potential.

Among the multicomponent systems we have studied:

• the restricted primitive model for charged hard spheres. This is the simplest model for
a ionic fluid. We reproduced in detail (see chapter 4 section i and appendix E) the cal-
culation of the charge density direct correlation function, originally given by Blum [46].
With the hope of learning something on how to apply the Wiener-Hopf technique to a
multicomponent system.

• The mixture of three dimensional non additive hard spheres. A solution of the PY ap-
proximation for this system has not yet been found. In the thesis (see chapter 4 section
ii) we showed how any attempt to find such a solution using the Wiener-Hopf technique
(by an extension of the known solution to the PY approximation for a mixture of additive
hard spheres given by Baxter [44]) is bound to be unsuccessful. We motivated this failure
by looking at a particular case: the Widom-Rowlinson model.

We also presented Monte Carlo simulation data for the direct correlation functions of a
symmetric mixture and a mixture with equal concentrations but different like diameters.

• The Widom-Rowlinson model. The PY approximation for this system has been solved
analytically both in one dimension and in three dimensions by Ahn and Lebowitz [54]. We
have calculated (see chapter 7), through Monte Carlo numerical simulations, the partial to-
tal and direct correlation functions of the three dimensional symmetric Widom-Rowlinson
mixture, and we have found that the difference between the partial direct correlation func-
tion from the simulation and the one from the PY approximation (note that there are
misprints in the Ahn and Lebowitz paper) are well fitted by Gaussians.

In this thesis work we have explored different aspects of the theory of classical liquid. We
have shown how it is not possible to try to find an analytic solution of the PY approximation for
the three dimensional mixture of non additive hard spheres, using the Wiener-Hopf technique
(see chapter 4). We have seen how to build an integral equation theory starting from two basic
requirements: the uniqueness of the solution and the thermodynamic consistency, and how to
test it (see chapter 5). We have carefully and critically analyzed a recently proposed one phase
freezing criterion (see chapter 6). We have carried out numerical simulations on the Widom-
Rowlinson model and on the non additive mixture of hard spheres (see chapter 7). We have
seen how the one component Coulomb plasma on a finite disk of the pseudosphere admits exact
analytic solutions for the grand potential and the correlation functions at a particular value of
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the temperature. We have also seen how to obtain sum rules for different definitions of pressure
for this system checking them on the solvable model (see chapter 8). And we have seen how the
functional integration technique used by Edwards and Lenard to simplify the calculation of the
grand canonical partition function of a one dimensional fluid with pairwise interactions, could
be generalized to treat models other than the “Edwards model” (see chapter 9).
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Appendix A

The Born-Green approximation

Expanding the functional ρ(1)(1|φ)∇1 ln[1/ζ
∗(1)] to first order in δ ln[ρ(1)(1|φ)/ζ∗(1)] we find

ρg(0, 1)∇1 ln

[

1

ζe−βv(0,1)

]

=

∫

f(1, 2)

{

ln

[

ρg(0, 2)

ζe−βv(0,2)

]

− ln

(

ρ

ζ

)}

d2 , (A.:1)

where f is the following functional derivative

f(1, 2) =

{

δ{ρ(1)(1|φ)∇1 ln[1/ζ
∗(1)]}

δ ln[ρ(1)(2|φ)/ζ∗(2)]

}

φ=0

= −ρ
ζ

{

δ{[ρ(1)(1|φ)/ζ∗(1)]∇1ζ
∗(1)}

δ[ρ(1)(2|φ)/ζ∗(2)]

}

φ=0

= −
(

ρ

ζ

)2

∇1

{

δζ∗(1)

δ[ρ(1)(2|φ)/ζ∗(2)]

}

φ=0

= −
(

ρ

ζ

)2

∇1l(1, 2)

=

(

ρ

ζ

)2

∇2l(1, 2) , (A.:2)

where l has been defined. We can find an integral equation for l proceeding as follows

δ(1, 2) =
δζ∗(1)
δζ∗(2)

=

∫

δζ∗(1)

δ[ρ(1)(3|φ)/ζ∗(3)]
ρ(1)(3|φ)/ζ∗(3)

δζ∗(2)
d3 , (A.:3)

moreover

ρ(1)(3|φ)/ζ∗(3)
δζ∗(2)

=
1

ζ∗(3)
δρ(1)(3|φ)
δζ∗(2)

− ρ(1)(3|φ)
ζ∗2(3)

δ(3, 2)

=
1

ζ∗(2)ζ∗(3)
[ρ(1)(2|φ)ρ(1)(3|φ)h(3, 2|φ) + ρ(1)(3|φ)δ(3, 2)]

−ρ
(1)(3|φ)
ζ∗2(3)

δ(3, 2) . (A.:4)

Taking the limit φ = 0 in the two preceding equations and substituting the second into the first
one we find

δ(1, 2) =

∫

l(1, 3)

(

ρ

ζ

)2

h(3, 2) d3 . (A.:5)
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Now substituting equation (A.:2) into (A.:1) we find

βρg(0, 1)∇1v(0, 1) =

∫ (

ρ

ζ

)2

∇2l(1, 2){ln[g(0, 2)] + βv(0, 2)} d2 . (A.:6)

Integrating by parts the left hand side

βρg(0, 1)∇1v(0, 1) = −
∫ (

ρ

ζ

)2

l(1, 2)∇2{ln[g(0, 2)] + βv(0, 2)} d2 , (A.:7)

which can be rewritten as

βρg(0, 1)∇0v(0, 1) = −
∫ (

ρ

ζ

)2

l(1, 2)∇0{ln[g(0, 2)] + βv(0, 2)} d2 . (A.:8)

Multiplying both members times h(1, 3) and integrating over d1 we find

βρ

∫

[∇0v(0, 1)]g(0, 1)h(1, 3) d1 =

−
∫

[

∫ (

ρ

ζ

)2

l(1, 2)h(1, 3) d1

]

∇0{ln[g(0, 2) + βv(0, 2)]} d2 . (A.:9)

Using equation (A.:5), writing everything in terms of the pair distribution function, and rela-
beling the indices we finally get the Born-Green equation [135]

∇1{ln[g(1, 2)] + βv(1, 2)} = −βρ
∫

[∇1v(1, 3)]g(1, 3)[g(3, 2) − 1] d3 . (A.:10)



Appendix B

The Wiener-Hopf factorization

In this appendix we present the Wiener-Hopf factorization for the Ornstein-Zernike equation.
This is a technique widely used (see for example the works of R. J. Baxter or L. Blum) to find
analytic solutions of integral equations (usually PY and MSA) applied to simple systems. Here,
for the reference, we give a much more detailed account of this technique than found in the
literature.

Let us consider a generic function f = f(r) with r = |r|, in the three dimensional space. Its
Fourier transform can be written as follows

(B.:1)

f̂(k) =
4π

k

∫ ∞

0
sin(kr)[rf(r)] dr

= 4π

∫ ∞

0
cos(kr)F (r) dr , (B.:2)

where

F (r) =

∫ ∞

r
sf(s) ds . (B.:3)

We can always imagine f defined on the whole real axis choosing f(−r) = f(r). In such case

F (−r) =
∫ ∞

−r
sf(d) ds =

∫ ∞

r
sf(s) ds = F (r) . (B.:4)

We then have that

f̂(k) = 2π

∫ ∞

−∞
eikrF (r) dr = f̂(−k) . (B.:5)

Suppose we want to study the hard spheres fluid using the PY closure. We will then have
the following constraints on the total and direct pair correlations functions

h(r) = −1 r < d , (B.:6)

c(r) = 0 r > d , (B.:7)

where d is the spheres diameter. Let us consider the function

Â(k) =
1

S(k)
=

1

1 + ρĥ(k)
= 1− ρĉ(k) , (B.:8)
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where S(k) is the static structure factor, ρ the density of the fluid, and in the second equality
we used OZ equation for an homogeneous fluid

ĥ(k) = ĉ(k) + ρĥ(k)ĉ(k) . (B.:9)

We introduce the two even functions of r

S(r) =

∫ ∞

r
tc(t) dt =

∫ d

r
tc(t) dt = 0 r ≥ d , (B.:10)

J(r) =

∫ ∞

r
sh(s) ds , (B.:11)

we will then have for Â and ĥ

Â(k) = 1− 2πρ

∫ ∞

−∞
eikrS(r) dr = 1− 4πρ

∫ d

0
cos(kr)S(r) dr , (B.:12)

ĥ(k) = 2π

∫ ∞

−∞
eikrJ(r) dr . (B.:13)

Let us consider now the behavior of Â(k) in the complex plane k = x+ iy

Â(k) = 1− 2πρB̂(k) , (B.:14)

B̂(k) =

∫ ∞

−∞
eixr

[

e−yrS(r)
]

dr . (B.:15)

It is readily verified that B̂(k) is analytic on C. Indeed since S(r) has finite support, the partial
derivatives of B respect to x and y exist (can be brought inside the integral sign) and it can be
easily verified that ∂B̂(k)/∂x = −i∂B̂(k)/∂y for all k ∈ C. Moreover it follows from equation
(B.:15) that

lim
|x|→∞

B̂(x+ iy) = 0 y1 < y < y2 , (B.:16)

and then

lim
|x|→∞

ln Â(x+ iy) = 0 y1 < y < y2 . (B.:17)

Since the structure factor S(k) <∞ for all k ∈ R+ then Â(x+ iy) has no zeroes on the real
axis (y = 0). It is then possible to choose an ǫ such that Â has no zeroes in the strip |y| ≤ ǫ
(being Â analytic it is continuous). The function ln Â will also be analytic in the strip |y| ≤ ǫ.
We can then apply Cauchy’ s theorem around the strip (see figure B.1) to find

ln Â(k) = ln Q̂(k) + ln P̂ (k) k = x+ iy |y| < ǫ , (B.:18)

with

ln Q̂(k) =
1

2πi

∫ −iǫ+∞

−iǫ−∞
dk′

ln Â(k′)
k′ − k

, (B.:19)

ln P̂ (k) = − 1

2πi

∫ iǫ+∞

iǫ−∞
dk′

ln Â(k′)
k′ − k

, (B.:20)

the integrals on the contour at |x| = ∞ being zero. Since Â(k) = Â(−k) then ln Q̂(−k) = ln P̂ (k)
and we find for Â the following Wiener-Hopf factorization

Â(k) = Q̂(k)Q̂(−k) |y| < ǫ . (B.:21)

We will now find some properties of the Q̂ function which follows from equation (B.:19):
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−ε

y

x

+ε

Figure B.1: Path of integration.

(1) the function ln Q̂(k) is analytic for y 6= −ǫ and ln Q̂(−k) is analytic for y 6= +ǫ. We
conclude that Q̂(±k) is analytic for y 6= ∓ǫ and has no zeroes (it is the exponential of an
analytic function);

(2) For y = 0 we have

ln Q̂⋆(x) = − 1

2πi

∫ ∞

−∞
dx′

lnA⋆(x′ − iǫ)

(x′ − x) + iǫ

=
1

2πi

∫ ∞

−∞
dx′

lnA⋆(−x′ − iǫ)

[x′ − (−x)]− iǫ

=
1

2πi

∫ ∞

−∞
dx′

lnA(x′ − iǫ)

[x′ − (−x)]− iǫ

= ln Q̂(−x) , (B.:22)

where a star stands for complex conjugation and in the second to last equality we used
A⋆(x+ iy) = A(−x+ iy);

(3) when y 6= −ǫ we have ln Q̂(x + iy) ∼ 1/x as |x| → ∞ which means that Q̂(x + iy) ∼
1 +O(1/x);

(4) the expression (B.:19) for ln Q̂(k) has a singularity at y = −ǫ. It represents two different
analytic functions of k for y < −ǫ and y > −ǫ. We want to find the analytic continuation
for y > −ǫ of the analytic function (B.:19) for y < −ǫ. In the strip |y| < ǫ we have

Q̂(k) = Â(k)/Q̂(−k) , (B.:23)

where Â(k) is analytic everywhere and Q̂(−k) is analytic for y < ǫ. The analytic function
(B.:23) must then coincide with the analytic function (B.:19) for y > −ǫ in the strip |y| < ǫ.
It is then the analytic continuation looked for. Moreover since Q̂(−k) → 1 as y → −∞ we
must have

Q̂(k)/e−yα
y→−∞−→

{

∞ α < d
0 α ≥ d

(B.:24)

as we have

Â(x+ iy) = 1− 2πρ

∫ d

−d
eixre−yrS(r) dr . (B.:25)
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Now from the properties (1) and (3) follows that for k ∈ R the function 1− Q̂(k) ∈ L2(−∞,∞).
It is then Fourier integrable along the real axis and a function Q(r) can be defined as

2πρQ(r) =
1

2π

∫ ∞

−∞
e−ikr[1− Q̂(k)] dk . (B.:26)

From property (2) we have that Q(r) is a real function. When r < 0 we can rewrite

2πρQ(r) =
1

2π

∮

γ1+γ2

e−ikr[1− Q̂(k)] dk , (B.:27)

where γ1 and γ2 are the two paths of integration shown in figure B.2. Infact we have
∮

γ2
. . .→ 0

R1

γ2

Q(k) analytic for y>0^

x

+ε

−ε

y

γ

Figure B.2: Path of integration.

as R → ∞ when r < 0 since [1− Q̂(k)] → 0 as y → ∞. Since Q̂ is analytic for y > 0, it follows
from Cauchy’ s theorem that

Q(r) = 0 r < 0 . (B.:28)

When r ≥ d we can rewrite (B.:26) as follows

2πρQ(r) =
1

2π

∮

γ1+γ2

e−ikr[1− Q̂(k)] dk , (B.:29)

where γ1 and γ2 are the two paths of integration shown in figure B.3, and for y > −ǫ we take
Q̂(k) to be the analytic continuation found in property (4). Then the limit (B.:24) ensures us
that

∮

γ2
. . . → 0 as R→ ∞ when r ≥ 0. It again follows from Cauchy’ s theorem that,

Q(r) = 0 r ≥ d . (B.:30)

We can then write

Q̂(k) = 1− 2πρ

∫ d

0
eikrQ(r) dr . (B.:31)
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R

1

γ2

The analytic continuation 
of Q(k) is analytic for y<0^

x

+ε

−ε

y

γ

Figure B.3: Path of integration.

And from the Wiener-Hopf factorization (B.:21) follows for k ∈ R
1− 2πρ

∫ ∞

−∞
eikr

′
S(r′) dr′ =

(

1− 2πρ

∫ d

0
eikr

′
Q(r′) dr′

)

×
(

1− 2πρ

∫ d

0
e−ikr

′
Q(r′) dr′

)

, (B.:32)

which can be rewritten as
∫ ∞

−∞
eikr

′
S(r′) dr′ =

∫ d

0
eikr

′
Q(r′) dr′ +

∫ d

0
e−ikr

′
Q(r′) dr′ −

2πρ

∫ d

0

∫ d

0
eik(t−s)Q(t)Q(s) dt ds . (B.:33)

Multiplying both members times e−ikr and integrating over dk/(2π) from −∞ to +∞ we find

S(r) = Q(r) +Q(−r)− 2πρ

∫ d

0

∫ d

0
δ(t− s− r)Q(t)Q(s) dt ds . (B.:34)

Changing variables to y = t− s and x = t we find

S(r) = Q(r) +Q(−r)− 2πρ

[∫ 0

−d
dy δ(y − r)

∫ d+y

0
dxQ(x)Q(x − y)+

∫ d

0
dy δ(y − r)

∫ d

y
dxQ(x)Q(x− y)

]

. (B.:35)

When 0 < r < d we then have

S(r) = Q(r)− 2πρ

∫ d

r
Q(x)Q(x− r) dx 0 < r < d . (B.:36)

On the other hand from equations (B.:21) and (B.:8) we also have

Q̂(k)[1 + ρĥ(k)]− 1 =
1

Q̂(−k)
− 1 (B.:37)
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Multiplying both terms by e−ikr and integrating over dk from −∞ to +∞ we find

∫ ∞

−∞
e−ikr{Q̂(k)[1 + ρĥ(k)] − 1} dk =

∫ ∞

−∞
e−ikr

[

1

Q̂(−k)
− 1

]

dk

= I(r) . (B.:38)

When r > 0 we can rewrite

I(r) =

∮

γ1+γ2

e−ikr
[

1

Q̂(−k)
− 1

]

dk , (B.:39)

where γ1 and γ2 are the two paths of integration shown in figure B.4. We infact have that

R

1

γ2

1/Q(k)−1 is analytic for y<0^

x

+ε

−ε

y

γ

Figure B.4: Path of integration.

∮

γ2
. . . → 0 as R → ∞ since 1/Q̂(−k) − 1 → 0 as y → −∞. From property (1) we know that

1/Q̂(−k)− 1 is analytic for y < 0, then by Cauchy’ s theorem we must have I(r) = 0 for r > 0.
We can then write

∫ ∞

−∞
e−ikr

{[

1− 2πρ

∫ d

0
eiksQ(s)ds

] [

1 + 2πρ

∫ ∞

−∞
eiktJ(t)dt

]

− 1

}

dk = 0. (B.:40)

From which follows

−Q(r) + J(r)− 2πρ

∫ d

0
ds

∫ ∞

−∞
dt δ(t + s− r)Q(s)J(t) = 0 , (B.:41)

or

J(r) = Q(r) + 2πρ

∫ d

0
dsQ(s)J(r − s) . (B.:42)

Since J(r) is even we can rewrite

J(r) = Q(r) + 2πρ

∫ d

0
dsQ(s)J(|r − s|) r > 0 . (B.:43)
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Let us now take the derivative with respect to r of the expressions found for S(r) and J(r).
Since dJ/dr = −rh(r) from equation (B.:43) we find

rh(r) = −Q′(r) + 2πρ

∫ d

0
(r − s)h(|r − s|)Q(s) ds r > 0 , (B.:44)

where the prime denotes differentiation. Since dS/dr = −rc(r) from equation (B.:36) we find

rc(r) = −Q′(r) + 2πρ

[

−Q(r)Q(0)−
∫ d

r
Q(s)

dQ(s− r)

ds
ds

]

= −Q′(r) + 2πρ

{

−Q(r)Q(0)− [Q(s)Q(s− r)]dr +

∫ d

r
Q′(s)Q(s − r) ds

}

= −Q′(r) + 2πρ

[

−Q(d)Q(d − r) +

∫ d

r
Q′(s)Q(s − r) ds

]

. (B.:45)

Since Q(d) = 0 (see equation (B.:30)) we have that

rc(r) = −Q′(r) + 2πρ

∫ d

r
Q′(s)Q(s− r) ds 0 < r < d . (B.:46)

We want to stress that the two expressions just found for h(r) (B.:44) and for c(r) (B.:46)
have been derived from:

• the OZ equation,

• c(r) = 0 for r > d,

• the static structure factor is finite at all wave vectors.

It should also be noticed how this technique:

• must reduce the problem to a set of algebraic equations, in order to be succesful;

• has been generalized to multicomponent systems by R. J. Baxter [44] (PY solution of
a mixture of additive hard spheres) and by L. Blum [46] (MSA solution of the primitive
model of charged hard spheres). In these cases one have to make an ansatz for the matricial
factorization to be verified a posteriori;

• has some defects as the non unicity of the Q̂(k) or the non unicity of the solutions of the
algebraic equations.



Appendix C

The PY solution for Hard spheres

The simplest model of a fluid is a system of hard spheres, i.e. a system of particles whose pair
potential is given by

v(r) =

{

∞ r < d ,
0 r > d ,

(C.:1)

where d is the diameter of the spheres.
The configuration in which the volume occupied by the spheres is the maximum is called

close-packed (see figure C.1). Let us calculate the close-packed density ρ0. The volume of an

d

Figure C.1: Close-packed configuration of 10 spheres seen from above.

equilateral prism of side l is Vl = l3/(6
√
2). Let an be the number of spheres in a close-packed

configuration with n spheres per side. We will then have a1 = 1 and an = an−1 +n(n+1)/2, or

ak =
1

2

k
∑

n=1

n(n+ 1) =
1

2

[

k
∑

n=1

n2 +

k
∑

n=1

n

]

=
1

2

{

1

6
[2k3 + 3k2 + k] +

1

2
[k2 + k]

}

. (C.:2)

We then find

ρ0 = lim
k→∞

ak
Vd(k−1)

=
1/6

d3/(6
√
2)

=
√
2/d3 . (C.:3)
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The hard spheres fluid undergoes a freezing transition at ρf = 0.67ρ0 but the absence of
attractive forces means that there is only a single fluid phase [136].

In [12] section 4.6 one can find a detailed account on virial coefficients and the equation of
state of the hard spheres fluid. Here we want to show how it is possible to find an analytic
solution to the PY approximation. The PY closure rewritten in terms of the function y(r) =
exp[βv(r)]g(r) and of the Mayer function f(r) = exp[−βv(r)]− 1 is

c(r) = y(r)f(r) . (C.:4)

For hard spheres of diameter d this equation is equivalent to

c(r) =

{

−y(r) r < d ,
0 r > d ,

(C.:5)

and there is a further exact restriction on the solution, namely

g(r) = 0 r < d . (C.:6)

It is then possible to use the Wiener-Hopf factorization (see section B). From equation (B.:44)
we find for the auxiliary function Q

Q′(r) = ar + b , (C.:7)

with

a = 1− 12η

d3

∫ d

0
Q(s) ds , (C.:8)

b =
12η

d3

∫ d

0
sQ(s) ds , (C.:9)

where we introduced the packing fraction η = ρπd3/6. Substituting Q(r) = ar2/2 + br − γ into
(C.:8), (C.:9), and in Q(d) = 0 we find three equations in the three unknown a, b, and γ. The
solution of the linear system of equations is

a =
1 + 2η

(1− η)2
, (C.:10)

b =
−3dη

2(1 − η)2
, (C.:11)

γ =
1

2
ad2 + bd . (C.:12)

Knowing Q(r) we can calculate c(r) from equation (B.:46). It is found that

c(x) =

{

−λ1 − 6ηλ2 x− 1
2ηλ1 x

3 x < 1 ,
0 x > 1 ,

(C.:13)

where x = r/d and

λ1 = a2 =
(1 + 2η)2

(1− η)4
, (C.:14)

λ2 = −(1 + η/2)2

(1− η)4
. (C.:15)
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i Compressibility pressure

From the definition of isothermal compressibility we have

χT = − 1

V

(

∂V

∂P

)

T,N

=
1

ρ

(

∂ρ

∂P

)

T,N

, (C.i:1)

Integrating over the density we find

βP =

∫ ρ

0

β

ρ′χT
dρ′ . (C.i:2)

From the compressibility equation we know that

β

ρχT
=

1

S(k = 0)
=

1

1 + ρĥ(0)
= 1− ρĉ(0) . (C.i:3)

Substituting (C.i:3) into (C.i:2) and changing variable of integration we find

βP = ρ− 1

v20

∫ η

0
ĉ(0)η dη , (C.i:4)

where v0 = πd3/6 is the volume of a sphere. From equation (C.:13) we find

ĉ(0) = 4π

∫ d

0
c(r)r2 dr (C.i:5)

= −v0
8− 2η + 4η2 − η3

(1− η)4
. (C.i:6)

Substituting this result into equation (C.i:4) we find

βP

ρ
=

1 + η + η2

(1− η)3
. (C.i:7)

which is the equation of state looked for.

ii Virial pressure

From the virial theorem we have

βP

ρ
= 1− 2

3
πβρ

∫ ∞

0
v′(r)g(r)r3 dr . (C.ii:1)

Rewriting this expression in terms of the y function which is everywhere continuous [12] we find

βP

ρ
= 1 +

2

3
πρ

∫ ∞

0
r3y(r)

de−βv(r)

dr
dr . (C.ii:2)

Since

de−βv(r)

dr
= δ(r − d) , (C.ii:3)
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we have

βP

ρ
= 1 +

2

3
πρd3y(d)

= 1− 2

3
πρd3 lim

r→d−
c(r)

=
1 + 2η + 3η2

(1− η)2
, (C.ii:4)

where in the second equality we used equation (C.:5) and in the last equality expression (C.:13).
In figure C.2 we plot the compressibility and virial equations of state and compare them

with the Carnahan-Starling [137] formula. The latter can be recovered by adding together the
expressions (C.i:7) and (C.ii:4) with weights of 2/3 and 1/3 respectively

βPcs
ρ

=
1 + η + η2 − η3

(1− η)3
. (C.ii:5)

This formula gives results that are almost indistinguishable from those of molecular dynamics
and Monte Carlo calculations.
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Figure C.2: We plot the equation of state obtained from the PY approximation via the
compressibility route (C.i:7) and the virial route (C.ii:4) and we compare them with the
Carnahan-Starling formula (C.ii:5).

iii Hard rods

In this subsection we will calculate the direct correlation function of a system of hard spheres
in one dimension (hard rods) in the PY approximation, using the Wiener-Hopf factorization
described in appendix B.

In one dimension equations (B.:12) and (B.:13) become,

Â(k) = 1− ρ

∫ ∞

−∞
eikrc(r) dr , (C.iii:1)

ĥ(k) =

∫ ∞

−∞
eikrh(r) dr . (C.iii:2)
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where h(r) and c(r) are even functions of r.
We define the auxiliary function Q(r) in equation (B.:31), without the prefactor 2π

Q̂(k) = 1− ρ

∫ d

0
eikrQ(r) dr . (C.iii:3)

Then equations (B.:36) and (B.:43) become,

c(r) = Q(r)− ρ

∫ d

r
Q(x)Q(x− r) dx 0 < r < d , (C.iii:4)

h(r) = Q(r) + ρ

∫ d

0
dsQ(s)h(|r − s|) 0 < r < d . (C.iii:5)

Since h(r) is involved in equation (C.iii:5) only over the interval 0 < r < d we can replace it
with −1. We then find from that equation that Q(r) must be a constant in 0 < r < d

Q(r) = −1 + ρ

∫ d

0
Q(s) ds = a , (C.iii:6)

from which we can easily find the constant a

a =
1

ρd− 1
. (C.iii:7)

When we substitute this result in (C.iii:4) we find for the direct correlation function

c(r) = a− ρa2(d− r) =
ρr − 1

(ρd− 1)2
, (C.iii:8)

this is the result already obtained by Wertheim [29] following a different calculation. The
PY approximation for an hard sphere fluid in odd dimensions has been solved analytically by
Leutheusser [47].



Appendix D

Mixtures

The discussion until now has been limited to one component systems. We consider now an
n-component system in which Nν particles, labeled by iν = 1, 2, . . . , Nν , are of specie ν with
ν = 1, 2, . . . , n. The total number of particles is N =

∑n
ν=1Nν and the concentration number

for specie ν is xν = Nν/N .

The microscopic partial densities are defined as

ρν(r) =

Nν
∑

iν=1

δ(r− riν ) , (D.:1)

and their Fourier transform is

ρν(k) =

∫

ρν(r)e
−ikr dr =

Nν
∑

iν=1

e−ikriν . (D.:2)

i The static structure factor

The partial static structure factors are defined as

Sνµ(k) =
1

N
〈ρν(k)ρµ(−k)〉

= xνδνµ +
1

N
〈
Nν
∑

iν=1

Nµ
∑

iµ=1

′

e−ik(riν−riµ)〉 , (D.i:1)

where we used 〈. . .〉 to denote a canonical average and the prime over the double sum means
that iµ 6= iν when µ = ν. We can further write

Sνµ(k) = xνδνµ +
1

N

∫

e−ik(r−r′)〈
Nν
∑

iν=1

Nµ
∑

iµ=1

′

δ(r − riν )δ(r
′ − riµ)〉 dr dr′

= xνδνµ +
1

N

∫

e−ik(r−r′)ρ
(2)
N,νµ(r, r

′) dr dr′ , (D.i:2)

where we introduced the two particles correlation function ρ
(2)
N,νµ(r, r

′). It represents the proba-
bility of finding a particle of specie ν in r and one of specie µ in r′. The partial pair distribution
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function is then defined as

gνµ(r, r
′) =

ρ
(2)
N,νµ(r, r

′)

ρ
(1)
N,ν(r)ρ

(1)
N,µ(r

′)
, (D.i:3)

where the partial single particle correlation function is defined as

ρ
(1)
N,ν(r) = 〈

Nν
∑

iν=1

δ(r − riν )〉 . (D.i:4)

If the system is homogeneous we have

ρ
(1)
N,ν(r) =

Nν

V
= xνρ , (D.i:5)

where ρ = N/V is the usual density of the system. And

ρ
(2)
N,νµ(r, r

′) = ρ
(2)
N,νµ(r− r′) = ρ2xνxµgνµ(r− r′) . (D.i:6)

Then equation (D.i:2) becomes

Sνµ(k) = xνδνµ + ρxνxµ

∫

e−ikrgνµ(r) dr . (D.i:7)

If we define the partial total correlation function as

hνµ(r) = gνµ(r)− 1
r→∞−→ 0 , (D.i:8)

we find, neglecting the forward scattering,

Sνµ(k) = xνδνµ + ρxνxµĥνµ(k) , (D.i:9)

where the hat stands for Fourier transformed.
If the system is homogeneous and isotropic we must have

ρ(2)νµ (r) = ρ(2)µν (r) . (D.i:10)

We will then have n(n+ 1)/2 distinct partial pair distribution functions.

ii The OZ equation

The partial direct correlation function cνµ(r1, r2) is defined from the OZ equation as follows

hµν(r1, r2) = cµν(r1, r2) +

n
∑

γ=1

∫

ρ(1)γ (r3)cµγ(r1, r3)hγν(r3, r2) dr3 . (D.ii:1)

If the system is homogeneous taking the Fourier transform of D.ii:1 and multiplying both sides
by

√
xµxν we find

√
xµxν ĥµν(k) =

√
xµxν ĉµν(k) + ρ

n
∑

γ=1

[
√
xµxγ ĉµγ(k)

√
xγxν ĥγν(k)] , (D.ii:2)

or in matricial form

H = C[1 + ρH] , (D.ii:3)

where Hµν =
√
xµxν ĥµν(k) and Cµν =

√
xµxν ĉµν(k).

If the system is isotropic thenH is symmetric, [1+ρH] is symmetric, [1+ρH]−1 is symmetric,
and since H and [1 + ρH]−1 commute, C is also symmetric.
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iii The grand canonical formalism

Let {µν} be the chemical potentials of the n species. The grand canonical partition function of
the mixture is

Θ({µν}, V, T ) =

∞
∑

{Nν}=0

(

n
∏

ν=1

eβNνµν

Λ3NνNν !

)

∫

e−βW (rN ) drN

=

∞
∑

{Nν}=0

(

n
∏

ν=1

ζNν
ν

Nν !

)

ZN (V, T ) , (D.iii:1)

where rN = ({ri1}, {ri2}, . . . , {rin}), ζν = Λ−3eβµν are the fugacities, and ZN is the configuration
integral. The probability that the system contains N1 particles of specie 1, N2 particles of specie
2, . . ., Nn particles of specie n is

P ({Nν}) =
1

Θ

(

n
∏

ν=1

ζNν
ν

Nν !

)

ZN . (D.iii:2)

The one particle density for specie ν is then

ρ(1)ν (r) =
∞
∑

Nν=1

∞
∑

{Nµ}µ6=ν=0

P ({Nγ})ρ(1)N,ν(r) , (D.iii:3)

the two particles density for species ν and µ is

ρ(2)µν (r, r
′) =



























∞
∑

Nµ,Nν=1

∞
∑

{Nδ}δ 6=µ,ν=0

P ({Nγ})ρ(2)N,µν(r, r′) µ 6= ν ,

∞
∑

Nµ=2

∞
∑

{Nδ}δ 6=µ=0

P ({Nγ})ρ(2)N,µµ(r, r′) µ = ν .

(D.iii:4)

Their normalization is
∫

ρ(1)ν (r) dr = 〈Nν〉 , (D.iii:5)
∫ ∫

ρ(2)µν (r, r
′) dr dr′ = 〈NµNν − δµνNµ〉 . (D.iii:6)

iv The Kirkwood and Buff equation

Let us consider the following combination

∫ ∫

[ρ(2)µν (r1, r2)− ρ(1)µ (r1)ρ
(1)
ν (r2)] dr1 dr2 = 〈NµNν〉 − δµν〈Nµ〉 − 〈Nµ〉〈Nν〉 . (D.iv:1)

If the system is homogeneous we find

V ρ2xµxν

∫

[gµν(r)− 1] dr = 〈NµNν〉 − 〈Nµ〉〈Nν〉 − δµν〈Nµ〉 , (D.iv:2)
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where in the grand canonical ensemble the concentration numbers are ratios of average numbers
of particles, i.e. xν = 〈Nν〉/〈N〉. We call

Aµν = xµ[ρxν ĥµν(0) + δµν ]

= xµ

(〈NµNν〉 − 〈Nµ〉〈Nν〉
〈Nµ〉

)

. (D.iv:3)

From the OZ equation we have

ĥµν(0) = ĉµν(0) + ρ
∑

γ

xγ ĉµγ(0)ĥγν(0) . (D.iv:4)

Multiplying both sides by ρxµxν we find

Aµν − δµνxµ =
∑

γ

BµγAγν , (D.iv:5)

where Bµν = ρxµĉµν(0). If we know the inverse of A we can then determine B

Bµδ = δµδ − [A−1]µδxµ , (D.iv:6)

or, using
∑

ν xν = 1

∑

µν

xνBµν = ρ
∑

µν

xµxν ĉµν(0) = 1−
∑

µν

xµxν [A
−1]µν . (D.iv:7)

We want now to show Kirkwood and Buff formula [138]

∑

µν

xµxν [A
−1]µν = χ0

T /χT . (D.iv:8)

where χ0
T = β/ρ is the isothermal compressibility of the ideal gas and χT the one of the inter-

acting mixture.
From the definition of the partition function follows that

〈Nν〉 =
1

Θ

[

∂Θ

∂(βµν)

]

T,V

. (D.iv:9)

Taking one more derivative we find
[

∂〈Nν〉
∂(βµγ)

]

T,V

=
1

Θ

[

∂2Θ

∂(βµγ)∂(βµν)

]

T,V

− 1

Θ2

[

∂Θ

∂(βµγ)

]

T,V

[

∂Θ

∂(βµν)

]

T,V

= 〈NγNν〉 − 〈Nγ〉〈Nν〉 . (D.iv:10)

Omitting the average symbol for the number of particles we find for A the following thermody-
namic expression

Aνγ =
1

Nβ

(

∂Nν

∂µγ

)

T,V,{µα}′
, (D.iv:11)

where {µα}′ = {µα}α6=ν . We are choosing as independent variables T, V , and {µα}. At constant
T and V the chemical potentials {µα} are just functions of {Nα}. From the Jacobian identity

∂(µ1, . . . , µn)

∂(N1, . . . , Nn)

∂(N1, . . . , Nn)

∂(µ1, . . . , µn)
= 1 , (D.iv:12)
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follows that

[A−1]νγ = Nβ

(

∂µν
∂Nγ

)

T,V,{Nα}′
. (D.iv:13)

Moreover from the infinitesimal change in the grand thermodynamic potential Ω = −PV

−dΩ = S dT + P dV +
∑

ν

Nν dµν = P dV + V dP , (D.iv:14)

follows at constant T and V

∑

ν

Nν

∑

γ

(

∂µν
∂Nγ

)

T,V,{Nα}′
dNγ = V

∑

γ

(

∂P

∂Nγ

)

T,V,{Nα}′
dNγ , (D.iv:15)

from which we find

∑

ν

Nν

(

∂µν
∂Nγ

)

T,V,{Nα}′
= V

(

∂P

∂Nγ

)

T,V,{Nα}′
. (D.iv:16)

Upon multiplying both sides by βxγ , summing over γ, and using equation (D.iv:13) we reach
the following expression

∑

νγ

xγxν [A
−1]νγ = χ0

T

∑

γ

Nγ

(

∂P

∂Nγ

)

T,V,{Nα}′
. (D.iv:17)

We now use the following identity

(

∂V

∂N

)

T,P

(

∂P

∂V

)

T,N

=
∂(V, P )

∂(N,P )

∂(P,N)

∂(V,N)
= − ∂(V, P )

∂(V,N)
= −

(

∂P

∂N

)

T,V

, (D.iv:18)

to rewrite

∑

νγ

xγxν [A
−1]νγ = −χ0

T

(

∂P

∂V

)

T,{Nα}

∑

γ

Nγ

(

∂V

∂Nγ

)

T,P,{Nα}′
. (D.iv:19)

Since the volume is an homogeneous function of order one over {Nα} then

V =
∑

γ

Nγ

(

∂V

∂Nγ

)

T,P,{Nα}′
, (D.iv:20)

which upon insertion into (D.iv:19) gives formula (D.iv:8).



Appendix E

Very tedious algebra for the MSA
solution

In this appendix we will use Roman indices for the species. We will start with the determination
of Qij(r) which will allow us to find the relationship between the aj and the Jij .

Plugging (4.i:57) into (4.i:56) we find

Qij(r) = aij + bijr + cijr
2 + dijr

3 , (E.:1)

where

aij = Jij −
1

2
Aij −

∑

k

ρk

[

Jik

∫ σjk

λjk

dr Qkj(r) + π

∫ σjk

λjk

dr Qkj(r)r
2

+JikAkjσjk +
π

3
Akjσ

3
jk

]

, (E.:2)

bij =
∑

k

ρk

[

2π

∫ σjk

λjk

dr Qkj(r)r + JikAkj + πAkjσ
2
jk

]

, (E.:3)

cij = π −
∑

k

ρk

[

π

∫ σjk

λjk

dr Qkj(r) + πAkjσjk

]

, (E.:4)

dij =
π

3

∑

k

ρkAkj . (E.:5)

From the neutrality condition (4.i:2) we find that dij = 0. Qij(r) must then be a second degree
polynomial. We now define the following constants

α0
kj =

∫ σjk

λjk

dr Qkj(r) = akjδ
1
kj + bkj

1

2
δ2jk + ckj

1

3
δ3jk , (E.:6)

α1
kj =

∫ σjk

λjk

dr Qkj(r)r = akj
1

2
δ2kj + bkj

1

3
δ3jk + ckj

1

4
δ4jk , (E.:7)

α0
kj =

∫ σjk

λjk

dr Qkj(r)r
2 = akj

1

3
δ3kj + bkj

1

4
δ4jk + ckj

1

5
δ5jk , (E.:8)

where δnjk = σnjk − λnjk. Using this constants and taking into account equation (4.i:34) we can

162



APPENDIX E. VERY TEDIOUS ALGEBRA FOR THE MSA SOLUTION
163

rewrite the coefficients of Qij(r) as follows

aij = Jij −
1

2
ziaj −

∑

k

ρk(Jikα
0
kj + πα2

kj + Jikzkajσjk +
π

3
zkajσ

3
jk) , (E.:9)

bij =
∑

k

ρk(2πα
1
kj + πzkajσ

2
jk + Jikzkaj) , (E.:10)

cij = π −
∑

k

ρk(πα
0
kj + πzkajσjk) , (E.:11)

From the boundary condition (4.i:38) follows that

aij = −bijσij − cijσ
2
ij − ziaj . (E.:12)

We can then solve for cij and bij in terms of aj and Jij and later use expression (E.:12) to
determine the relationship between the aj and the Jij.

Let us begin calculating the δn in terms of the diameters

δ1jk = σk , (E.:13)

δ2jk = σjσk , (E.:14)

δ3jk =
3

4
σ2jσk +

1

4
σ3k , (E.:15)

δ4jk =
1

2
σ3jσk +

1

2
σjσ

3
k , (E.:16)

δ5jk =
5

16
σ4jσk +

5

8
σ2jσ

3
k +

1

16
σ5k . (E.:17)

Then we rewrite the α in terms of c and b only

α0
kj = bkj

(

1

2
δ2jk − σkjδ

1
jk

)

+ ckj

(

1

3
δ3jk − σ2kjδ

1
jk

)

− zkajδ
1
jk

= bkjB
0
jk + ckjC

0
jk − zkajδ

1
jk , (E.:18)

α1
kj = bkj

(

1

3
δ3jk − σkj

1

2
δ2jk

)

+ ckj

(

1

4
δ4jk − σ2kj

1

2
δ2jk

)

− zkaj
1

2
δ2jk

= bkjB
1
jk + ckjC

1
jk − zkaj

1

2
δ2jk , (E.:19)

α2
kj = bkj

(

1

4
δ4jk − σkj

1

3
δ3jk

)

+ ckj

(

1

5
δ5jk − σ2kj

1

3
δ3jk

)

− zkaj
1

3
δ3jk

= bkjB
2
jk + ckjC

2
jk − zkaj

1

3
δ3jk . (E.:20)

We calculate the Bn, Cn defined in the previous equations in terms of the diameters










B0
jk = −1

2
σ2k ,

C0
jk = −1

6
σ3k −

1

2
σ2kσj ,

(E.:21)











B1
jk =

1

12
σ3k −

1

4
σjσ

2
k ,

C1
jk = −1

4
σ2kσ

2
j ,

(E.:22)











B2
jk = − 1

24
σ4k +

1

12
σjσ

3
k −

1

8
σ2jσ

2
k ,

C2
jk = − 1

120
σ5k +

1

24
σ2jσ

3
k −

1

24
σjσ

4
k −

1

8
σ3jσ

2
k ,

(E.:23)
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we will see that we will not have to use B2 and C2. We now have for the coefficients bij and cij

bij =

[

2π
∑

k

ρk(bkjB
1
jk + ckjC

1
jk)

]

+

[

∑

k

ρk(−πzkajδ2jk + πzkajσ
2
jk + Jikzkaj)

]

≡ Db
j + γbij , (E.:24)

cij =

[

−π
∑

k

ρk(bkjB
0
jk + ckjC

0
jk)

]

+

[

π −
∑

k

ρk(−πzkajδ1jk + πzkajσjk)

]

≡ Dc
j + γcij , (E.:25)

where we defined Db,Dc and γb, γc. We now define

SzR =
∑

k

ρkzkσk , (E.:26)

SzR2 =
∑

k

ρkzkσ
2
k , (E.:27)

SizJ =
∑

k

ρkzkJik . (E.:28)

Using the neutrality condition (4.i:2) the γ’ s can be rewritten as follows

γbij = aj

(

SizJ +
π

4
SzR2 − π

2
SzRσj

)

, (E.:29)

γcij = π +
π

2
SzRaj . (E.:30)

i Calculation of Db and Dc

Let us now determine Db and Dc. From their definition follows

Db
j = 2π

∑

k

ρk[(D
b
j + γbkj)B

1
jk + (Dc

j + γckj)C
1
jk]

= Db
j

[

2π
∑

k

ρkB
1
jk

]

+Dc
j

[

2π
∑

k

ρkC
1
jk

]

+

[

2π
∑

k

ρk(γ
b
kjB

1
jk + γckjC

1
jk)

]

≡ Db
jX

b
j +Dc

jY
b
j + Zbj , (E.i:1)

Dc
j = −π

∑

k

ρk[(D
b
j + γbkj)B

0
jk + (Dc

j + γckj)C
0
jk]

= Db
j

[

−π
∑

k

ρkB
0
jk

]

+Dc
j

[

−π
∑

k

ρkC
0
jk

]

+

[

−π
∑

k

ρk(γ
b
kjB

0
jk + γckjC

0
jk)

]

≡ Db
jX

c
j +Dc

jY
c
j + Zcj , (E.i:2)

where we defined Xb, Y b, Zb and Xc, Y c, Zc. We find then
(

1−Xb −Y b

−Xc 1− Y c

)(

Db

Dc

)

=

(

Zb

Zc

)

(E.i:3)

The determinant of the coefficients matrix is

det = 1− (Xb + Y c) +XbY c −XcY b , (E.i:4)
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then we have

Db =
Zb(1− Y c) + ZcY b

det
, (E.i:5)

Dc =
Zc(1−Xb) + ZbXc

det
. (E.i:6)

In terms of the following two constants

SR2 =
∑

k

ρkσ
2
k , (E.i:7)

SR3 =
∑

k

ρkσ
3
k , (E.i:8)

(E.i:9)

the X’ s and Y ’ s can be rewritten as follows

Xb
j = π

(

1

6
SR3 − 1

2
SR2σj

)

, (E.i:10)

Xc
j = π

(

1

2
SR2

)

, (E.i:11)

Y b
j = π

(

−1

2
SR2σ2j

)

, (E.i:12)

Y c
j = π

(

1

6
SR3 +

1

2
SR2σj

)

. (E.i:13)

Then the determinant (E.i:4) is

det =
(

1− π

6
SR3

)2
≡ ∆2 , (E.i:14)

where we have defined

∆ = 1− π

6
SR3 . (E.i:15)

Let us now rewrite the Z’ s. We introduce the two constants

S2
zJR2 =

∑

ij

ρiρjzjJijσ
2
i , (E.i:16)

S2
zJR3 =

∑

ij

ρiρjzjJijσ
3
i , (E.i:17)

then the Z’ s can be rewritten as follows

Zbj = π

[

ajσj

(

−1

2
S2
zJR2 −

π

8
SzR2SR2 − π

12
SzRSR3

)

+ aj

(

1

6
S2
zJR3 +

π

24
SzR2SR3

)

+ σ2j

(

−π
2
SR2

)

]

, (E.i:18)

Zbj = −π
[

aj

(

−1

2
S2
zJR2 −

π

8
SzR2SR2 − π

12
SzRSR3

)

+ 1
(

−π
6
SR3

)

+ σj

(

−π
2
SR2

)]

. (E.i:19)
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We find for the D’ s the following expressions

∆2

π
Db
j = −φ1ajσj + φ2aj − φ3σ

2
j , (E.i:20)

∆2

π
Dc
j = −φ1ajσj + φ3σj +∆(1−∆) , (E.i:21)

where

φ1 = ∆

(

1

2
S2
zJR2 +

π

8
SzR2SR2 +

π

12
SzRSR3

)

+
π

2
SR2

(

φ2
∆

)

, (E.i:22)

φ2 = ∆

(

1

6
S2
zJR3 +

π

24
SzR2SR3

)

, (E.i:23)

φ3 =
π

2
SR2 . (E.i:24)

The coefficients bij (E.:24) and cij (E.:25), taking into account equations (E.:29) and (E.:30)
for the γ’ s, can be rewritten as follows

bij = bj + SizJaj , (E.i:25)

cij = cj , (E.i:26)

where

bj =
1

∆2
(−ψ1ajσj + ψ2aj − ψ3σ

2
j ) , (E.i:27)

cj =
1

∆2
(ψ1aj + ψ3σj) +

π

∆
, (E.i:28)

with

ψ1 = π

(

φ1 +∆2 1

2
SzR

)

, (E.i:29)

ψ2 = π

(

φ2 +∆2 1

4
SzR2

)

, (E.i:30)

ψ3 = πφ3 . (E.i:31)

ii Relationship between aj and Jij

Multiplying equation (E.:9) by ρizi, taking the sum over i and taking into account the neutrality
condition (4.i:2) we find

∑

i

ρiziaij =
∑

i

ρizi

[

Jij −
1

2
ziaj −

∑

k

ρk(Jikα
0
kj + Jikzkajσjk)

]

. (E.ii:1)

We substitute aij and α0
kj with their expressions in terms of the coefficients cij and bij (see

equations (E.:12) and (E.:18)-(E.:20)). We find

∑

i

ρi(−bijσij − cijσ
2
ij − ziaj) =

∑

i

ρiai

[

Jij −
1

2
ziaj −

∑

k

ρk(JikbkjB
0
jk + JikckjC

0
jk − Jikzkajλjk)

]

. (E.ii:2)
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Substituting B0 and C0 with their expressions in terms of the diameters (see equations (E.:21))
we have

∑

i

ρizi(bijσij + cijσ
2
ij) = −SjzJ −

(

1

2

∑

i

ρiz
2
i

)

aj

+
∑

ik

ρkρiziJik

[(

−1

2
σ2k

)

bkj +

(

−1

6
σ3k −

1

2
σ2kσj

)

ckj

]

+

[

∑

ik

ρkρizizkJik
1

2
(σj − σk)

]

aj . (E.ii:3)

We define new constants

Sz2 =
∑

i

ρiz
2
i , (E.ii:4)

S2
z2J =

∑

ik

ρkρizizkJik , (E.ii:5)

S2
z2JR =

∑

ik

ρkρizizkJikσk . (E.ii:6)

In terms of these new constants equation (E.ii:3) can be rewritten as follows

∑

i

ρizi(bijσij + cijσ
2
ij) = −SjzJ − 1

2
Sz2aj

+
∑

ik

ρkρiziJik

[(

−1

2
σ2k

)

bkj +

(

−1

6
σ3k −

1

2
σ2kσj

)

ckj

]

+
1

2
S2
z2Jajσj −

1

2
S2
z2JRaj . (E.ii:7)

Let us now rewrite the terms containing the coefficients bij and cij using equations (E.i:25) and
(E.i:26). In order of appearance in equation (E.ii:7) from left to right we have

• first term

∑

i

ρizibijσij =
1

2
SzRbj +

1

2
S2
z2JRaj +

1

2
S2
z2Jajσj , (E.ii:8)

• second term

∑

i

ρizicijσ
2
ij =

1

4
SzR2cj +

1

2
SzRcjσj , (E.ii:9)

• third term

∑

ik

ρkρiziJik

(

−1

2
σ2k

)

bkj = −1

2
S2
zJR2bj −

1

2

∑

k

ρk(σkS
k
zJ)

2aj , (E.ii:10)

• fourth term

∑

ik

ρkρiziJik

(

−1

6
σ3k −

1

2
σ2kσj

)

ckj = −1

6
S2
zJR3cj −

1

2
S2
zJR2cjσj . (E.ii:11)
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Upon substitution of these terms back in equation (E.ii:7) we find

1

2
SzRbj + S2

z2JRaj +
1

4
SzR2cj +

1

2
SzRcjσj = −SjzJ −

1

2
Sz2aj −

1

2
S2
zJR2bj

−1

2

∑

k

ρk(σkS
k
zJ)

2aj −
1

6
S2
zJR3cj −

1

2
S2
zJR2cjσj ,

Multiplying both members by 2 and reordering terms we find

aj

[

∑

k

ρk(zk + σkS
k
zJ)

2

]

+ (bj + cjσj)[SzR + S2
zJR2 ] + cj

[

1

2
SzR2 +

1

3
S2
zJR3

]

= −2SjzJ . (E.ii:12)

We now rewrite the sum of the second and third term on the left hand side of (E.ii:12) substi-
tuting for bj and cj the expressions found in (E.i:27) and (E.i:28). We find

(bj + cjσj)[SzR + S2
zJR2 ] + cj

[

1

2
SzR2 +

1

3
S2
zJR3

]

=

aj

{

1

∆2

[

ψ2(SzR + S2
zJR2) + ψ1

(

1

2
SzR2 +

1

3
S2
zJR3

)]}

+

σj

[

π

∆
(SzR + S2

zJR2) +
ψ3

∆2

(

1

2
SzR2 +

1

3
S2
zJR3

)]

+

π

∆

(

1

2
SzR2 +

1

3
S2
zJR3

)

. (E.ii:13)

In terms of the following quantity

Nj =
∑

k

ρkzk

[

Jkj +
π

4∆

(

σ2k +
2

3

∑

l

ρlσ
3
l Jkl

)]

= SjzJ +
π

2∆

(

1

2
SzR2 +

1

3
S2
zJR3

)

, (E.ii:14)

the coefficient of σj in equation (E.ii:13) can be rewritten (recalling the value of ψ3) as

π

∆
(SzR + S2

zJR2) +
π2

2∆2
SR2

(

1

2
SzR2 +

1

3
S2
zJR3

)

=

π

∆

∑

k

ρkσk(zk +Nkσk) . (E.ii:15)

At least we find for aj

aj = − 2

Da

{

Nj +

[

π

2∆

∑

k

ρkσk(zk +Nkσk)

]

σj

}

, (E.ii:16)

where

Da =
∑

k

ρk(zk + σkS
k
zJ)

2 +

1

∆2

[

ψ2(SzR + S2
zJR2) + ψ1

(

1

2
SzR2 +

1

3
S2
zJR3

)]

. (E.ii:17)
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We still have to simplify this expression for Da. In particular we want to express it in terms of
Nj .

Let us rewrite the second term in (E.ii:17) in terms of the φ’ s

1

∆2

[

ψ2(SzR + S2
zJR2) + ψ1

(

1

2
SzR2 +

1

3
S2
zJR3

)]

=

π

∆2

[

φ1

(

1

2
SzR2 +

1

3
S2
zJR3

)

+ φ2(SzR + S2
zJR2)

∆2

(

1

2
SzR2SzR +

1

4
SzR2S2

zJR2 +
1

6
SzRS

2
zJR3

)]

. (E.ii:18)

Recalling the φ’ s

φ1 = ∆

[

1

2
S2
zJR2 +

π

8
SzR2SR2 +

1

2
SzR(1−∆)

]

+
π

2
SR2

φ2
∆

,

φ2 = ∆

[

1

6
S2
zJR3 +

1

4
SzR2(1−∆)

]

,

we see that the terms in ∆2 in the square braces of equation (E.ii:18) vanish. We are then left
with

π

∆2

[π

4
SR2Σ2 +∆(S2

zJR2Σ+ SzRΣ)
]

=

∑

k

ρk

[

σ2k

(

π

∆
SkzJΣ+

π2

4∆2
Σ2

)

+ zkσk

( π

∆
Σ
)

]

, (E.ii:19)

where

Σ =
1

2
SzR2 +

1

3
S2
zJR3 . (E.ii:20)

Inserting equation (E.ii:19) into equation (E.ii:17) for Da and recalling the definition of Nj

(E.ii:14) we find the following expression for Da

Da =
∑

k

ρk(zk +Nkσk)
2 . (E.ii:21)

iii Calculation of Qij(λji)

Let us now calculate Qjk(r) in r = λkj

Qjk(λkj) = ajk + bjkλkj + cjkλ
2
kj

= bjk(−δ1kj) + cjk(−δ2kj)− zjak

= bjk(−σj) + cjk(−σjσk)− zjak

= −[σj(bk + ckσk) + SjzJakσj + zjak]

= −
[

σj

(

1

∆2
ψ2ak +

π

∆
σk

)

+ ak(zj + SjzJσj)

]

= − π

∆
σjσk − ak

[

zj +

(

ψ2

∆2
+ SjzJ

)

σj

]

,
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where in the second equality we used equation (E.:12) for aij, in the third equality we used the
definitions of the δn (E.:13)-(E.:17), in the fourth equality we used the expressions (E.i:25) and
(E.i:26) for the coefficients bij and cij , and in the fifth equality we used equations (E.i:27) and
(E.i:28) for bi and ci. Recalling that ψ2 = π∆Σ/2 we find

Qjk(λkj) = − π

∆
σjσk − ak(zj +Njσj) , (E.iii:1)

where we used the definition of Nj (E.ii:14).

From equation (4.i:39) we now that it must be Qij(λji) = Qji(λij) or

aj(zi +Niσi) = ai(zj +Njσj) . (E.iii:2)

From which follows that

zi +Niσi
ai

= constant ≡ Da

2Γ
, (E.iii:3)

where we have defined the separation constant Γ. Equation (E.iii:3) allows to determine the aj
independently from the Jij :

(1) From the expression (E.ii:16) for the aj we find

−Γ(zi +Niσi) = Ni +

[

π

2∆

∑

k

ρk(zk +Nkσk)

]

σj , (E.iii:4)

from which we determine the Ni as functions of Γ, Ni(Γ);

(2) from equation (4.i:35) we find

α2 =

(

2Γ

Da

)2
∑

k

ρka
2
k

(zk +Nkσk)
2

a2k
=

4Γ2

Da
, (E.iii:5)

where we used expression (E.ii:21) for Da. We then find Da = 4Γ2/α2;

(3) From the algebraic equation

Da =
∑

k

ρk(zk +Nk(Γ)σk)
2 =

4Γ2

α2
, (E.iii:6)

we find Γ choosing the solution with the right asymptotic behavior at small concentrations;

(4) the ai are then determined by

ai =
α2

2Γ
(zi +Ni(Γ)σi) . (E.iii:7)

Note that at small concentrations ρk the equations (E.iii:4) for the Ni(Γ) decouple

−Γ(zi +Niσi) ≃ Ni . (E.iii:8)

Moreover from equation (E.iii:6) follows that at small concentrations γ → 0.
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iv The equimolar binary mixture

Let us now consider the particular case of a binary mixture with same concentrations of the two
species (ρ1 = ρ2 = ρ/2), equal diameters (σ1 = σ2 = σ), and opposite charges (z1 = −z2 = 1).
From the symmetry of the system we now know that h11(r) = h22(r) so that we must have
J11 = J22. Equation (E.iii:4) then reduces to

−Γ(zi +Niσi) ≃ Ni . (E.iv:1)

From which we determine the Ni(Γ)

Ni(Γ) = − Γzi
1 + Γσi

=
ρ

2
(J1i − J2i) , (E.iv:2)

where N1 = −N2. The equation for Γ (E.iii:6) reduces to

±α
√

∑

i

ρiz2i = 2Γ(1 + Γσ) . (E.iv:3)

We call x ≡ σkD = σα
√

∑

i ρiz
2
i = σα

√
ρ > 0, where we have defined the Debye wavenumber

kD. We then find for Γσ

Γσ =
−1±

√
1± 2x

2
. (E.iv:4)

Since Γ has to be real for all concentrations and it has to go to 0 when x→ 0 we choose

Γσ =
−1 +

√
1 + 2x

2
> 0 . (E.iv:5)

Next we define B = N1σ

B =
−1− x+

√
1 + 2x

x
< 0 . (E.iv:6)

From equation (E.iii:7) we find for the aj

a1 =
α2

2Γ
(1 +B) = −a2 . (E.iv:7)

Let us now rewrite the coefficients of Qij(r). We notice that

SzR = 0 ,

SzR2 = 0 ,

S2
zJR2 = 0 ,

S2
zJR3 = 0 ,

SR2 = σ2ρ ,

SR3 = σ3ρ ,

then

∆ = 1− π

6
σ3ρ , (E.iv:8)

ψ1 = 0 , (E.iv:9)

ψ2 = 0 , (E.iv:10)

ψ3 =
π2

2
σ2ρ , (E.iv:11)
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so that

bj = b = −
( σ

∆

)2
ψ3 , (E.iv:12)

cj = c =
σ

∆2
ψ3 +

π

∆
, (E.iv:13)

and

bij = b+ SizJaj , (E.iv:14)

cij = c , (E.iv:15)

aij = −bσ − cσ2 − (σSizJ + zi)aj , (E.iv:16)

where

S1
zJ =

ρ

2
(J11 − J12) =

B

σ
= −S2

zJ . (E.iv:17)

v Calculation of the charge density direct correlation function

Our last task is to determine the partial direct correlation function

cαβ(r) = c0αβ(r)− βvcαβ(r)

= c0αβ(r)−
α2

4π
zαzβ

1

r
.

In particular we want to calculate the charge density direct correlation function

cd(r) =
∑

β

zβc1β(r)

= c0d(r)−
α2

2π

1

r
.

From the Wiener-Hopf factorization (4.i:43) we find

2πrc0d(r) = −
∑

β

zβQ
′
1β(r) +

ρ

2

∫ σ

r

∑

γβ

zβQβγ(s− r)Q′
1γ(s) ds . (E.v:1)

The first term in the right hand side is

∑

β

zβQ
′
1β(r) =

∑

β

zβb1β +
∑

β

zβ(2c1β)r

=
∑

β

zβb1β

= 2a1S
1
zJ

= −α2(1 +B)2 , (E.v:2)

where we used for a1 the following expression in terms of B

a1 = −σα
2

2

(1 +B)2

B
. (E.v:3)
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The second term in the right hand side of (E.v:1) is

ρ

2
I =

ρ

2

∫ σ

r

∑

γ











∑

β

zβQβγ(s − r)



Q′
1γ(s)







ds , (E.v:4)

where

Q′
1γ(s) = b1γ + 2c1γs

≡ Cγ +Dγs , (E.v:5)

∑

β

zβQβγ(t) =
∑

β

aβγzβ +





∑

β

bβγzβ



 t+





∑

β

cβγzβ



 t2

= −aγ
∑

β

(σSβzJ + zβ)zβ + (aγ
∑

β

SβzJzβ)t

= −2(σS1
zJ + 1)aγ + (2S1

zJaγ)t

≡ Aγ +Bγt , (E.v:6)

where we defined the constants Aγ , Bγ , Cγ , and Dγ ,. Omitting the γ indexes we find for I

I =

(

ACσ +
1

2
ADσ2 +

1

2
BCσ2 +

1

3
BDσ3

)

+

(

−AC −BCσ − 1

2
BDσ2

)

r + (E.v:7)

(

BC − 1

2
AD − 1

2
BC

)

r2 + (E.v:8)

(

1

2
BD − 1

3
BD

)

r3 . (E.v:9)

We calculate next the three contractions

BD =
∑

γ

(2S1
zJaγ)(2c1γ) = 0 ,

AD =
∑

γ

[−2(σS1
zJ + 1)aγ ](2c1γ) = 0 ,

BC =
∑

γ

(2S1
zJaγ)(b1γ) = 2S1

zJ

∑

γ

aγS
1
zJaγ = (2S1

zJa1)
2 ,

AC =
∑

γ

[−2(σS1
zJ + 1)aγ ](b1γ) = −2(σS1

zJ + 1)
∑

γ

aγS
1
zJaγ

= −σ(2S1
zJa1)

2 − 4S1
zJa

2
1 ,

which rewritten in terms of B becomes

BD = AD = 0 , (E.v:10)

BC = α4(1 +B)4 , (E.v:11)

AC = −σα4(1 +B)4 − σα4 (1 +B)4

B
. (E.v:12)
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Then I becomes

I =

(

ACσ +
1

2
BCσ2

)

+ (−AC −BCσ)r +

(

1

2
BC

)

r2

=

[

σ2α4(1 +B)4(−1

2
− 1

B
)

]

+

[

σ2α4(1 +B)4
1

B

]

( r

σ

)

+

[

σ2α4(1 +B)4
1

2

]

( r

σ

)2
.

For c0d we find

2πrc0d(r) =

[

α2(1 +B)2 +
ρ

2
σ2α4(1 +B)4(−1

2
− 1

B
)

]

+

[

ρ

2
σ2α4(1 +B)4

1

B

]

( r

σ

)

+

[

ρ

2
σ2α4(1 +B)4

1

2

]

( r

σ

)2
. (E.v:13)

We now recall that

x =
√
ρσα = 2Γσ(1 + Γσ) = −2

B

(1 +B)2
, (E.v:14)

from which follows

ρ

2
σ2α2 = 2

B2

(1 +B)4
, (E.v:15)

which when inserted into equation (E.v:13) gives

c0d(r) =
α

2πr

[

1 + 2B
( r

σ

)

+B2
( r

σ

)2
]

. (E.v:16)

At least we find for the charge density direct correlation function in the interval 0 < r < σ

cd(r) =
α

2πr

[

2B
( r

σ

)

+B2
( r

σ

)2
]

. (E.v:17)



Appendix F

Thermodynamic consistency

For a homogeneous liquid interacting through a pair potential φ(r), the Helmholtz free energy
per particle f can be considered a functional of φ. Indeed, in the canonical ensemble, one has

βf [φ] = βf0 −
1

N
ln

(

1

V N

∫

e−β
1
2

∑

i6=j φ(rij)dr1 · · · drN
)

, (F.:1)

where f0 is the free energy per particle of the ideal gas (φ = 0) and V is the volume of the
liquid. Taking the functional derivative with respect to βφ(r) one finds

δβf [φ]

δβφ(r)
=
ρ

2
g(r) , (F.:2)

where g(r) = h(r) + 1 is the pair distribution function.
Imagine that we found a functional A([h], [φ], ρ, β) that has an extremum for those correlation

functions that solve the OZ and the closure system of equations. Suppose further that such
functional has the following property

δβA
δβφ(r)

=
ρ

2
g(r) , (F.:3)

which can be rewritten more explicitly as follows

δβA
δβφ(r)

∣

∣

∣

∣

[h],ρ,β

+

∫

dr′
δβA
δh(r′)

∣

∣

∣

∣

[φ],ρ,β

δh(r′)
δβφ(r)

=
ρ

2
g(r) . (F.:4)

Evaluating this expression on the correlation function h̄ solution of the OZ plus closure system
of equations, which is an extremum for A, we find

δβA
δβφ(r)

∣

∣

∣

∣

[h̄],ρ,β

=
ρ

2
ḡ(r) . (F.:5)

Then we can write

βA([h̄], [φ], ρ, β) =

∫

dr
δβA
δβφ(r)

∣

∣

∣

∣

[h̄],ρ,β

βφ(r) +D([h̄], ρ, β) , (F.:6)

with D a functional independent of φ. Changing variables to adimensional ones, r = r⋆ρ−1/3

and using equation (F.:5) we find

βA([h̄⋆], [φ], ρ, β) =
1

2

∫

dr⋆ ḡ⋆(r⋆)βφ(r⋆ρ−1/3) +D([h̄⋆], ρ, β) , (F.:7)
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where we defined new distribution functions g⋆(r⋆) = g(r⋆ρ−1/3). If D has no explicit dependence
on ρ then one readily finds

ρ
∂βA([h̄⋆], [φ], ρ, β)

∂ρ
= −ρ

6

∫

dr⋆ ḡ⋆(r⋆)βφ′(r⋆ρ−1/3)r⋆ρ−4/3

= −ρ
6

∫

dr ḡ(r)βφ′(r) r

= βP exc/ρ , (F.:8)

where again we used the fact that A has an extremum for h = h̄. We used a prime to denote a
derivative with respect to the argument and P exc is the excess pressure of the liquid.

If D has no explicit dependence on β we also find

∂βA([h̄⋆], [φ], ρ, β)

∂β
=

ρ

2

∫

dr ḡ(r)φ(r)

= U exc/N , (F.:9)

where U exc is the excess internal energy.
If D has no explicit dependence on both β and ρ, D([h̄⋆], ρ, β) = D([h̄⋆]), we conclude from

equations (F.:8) and (F.:9) that

A([h̄⋆], [φ], ρ, β) = f exc(ρ, β) + constant , (F.:10)

where f exc is the excess free energy per particle of the fluid. Under these circumstances we
see from equation (F.:8) that we have thermodynamic consistency between the route to the
pressure going through the partial derivative of the free energy and the route to the pressure
going through the virial theorem.



Appendix G

Strict convexity of FOZ [h]

It can be proven that the functional

FOZ [h] =
∫

dk

(2π)3
{ρĥ(k)− ln[1 + ρĥ(k)]} , (G.:1)

defined on the convex set

Dc = {h(r)|S(k) > 0 ∀k} , (G.:2)

is a strictly convex functional. The strict convexity is a trivial consequence of the strict convexity
of the integrand in equation (G.:1).

It remains to prove that Dc is a convex set. Given two elements of this set h′ and h′′, we
need to show that h = λh′ + (1− λ)h′′ is an element of Dc for all λ ∈ [0, 1]. Since

S(k) = 1 + ρĥ(k)

= 1 + ρ[λĥ′(k) + (1− λ)ĥ′′(k)]

= 1 + λ[S′(k)− 1] + (1− λ)[S′′(k)− 1]

= λS′(k) + (1− λ)S′′(k) > 0 ∀λ ∈ [0, 1] , (G.:3)

then Dc is a convex set.
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Green function of Helmholtz
equation

In this appendix we give the Green function G, of Helmholtz equation,

(−∆1 + α2)G(d01) = ǫdδ
(d)(d01) , (H.:1)

d01 = geodesic distance between the origin and ~q1 ,

∆1 = Laplace-Beltrami operator acting on ~q1 ,

δ(d)(d01) = δ(~q0 − ~q1)/
√
g ,

ǫd =







2 d = 1
2π d = 2
4π d = 3

.

on various manifolds R of dimension d ≤ 3.

(i) R = R1

d01 = r = |x| ,

G(r) =
e−αr

α
.

(ii) R = R2

d01 = r =
√

x2 + y2 ,

G(r) = K0(αr) ,

where K0 is a modified Bessel function.

(iii) R = R3

d01 = r =
√

x2 + y2 + z2 ,

G(r) =
e−αr

r
.

(iv) R = S3 the three dimensional hypersphere of radius R [139]

d01 = Rψ ,

G(ψ) =











sinhω(π − ψ)

R sinψ sinhωπ
αR > 1

sinω(π − ψ)

R sinψ sinωπ
αR < 1

,
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where ω =
√

|(αR)2 − 1|.

(v) R = S2 the sphere of radius R

d01 = Rθ ,

G(θ) = −πPν(− cos θ)

2 sin νπ
,

where Pν is the Legendre function with µ = 0 and ν = 1
2 [−1 +

√

1− 4(αR)2]. The green
function is regular at θ = π and diverges as [140] − ln θ as θ → 0.

(vi) R = S the pseudosphere of “radius” a

d01 = aτ ,

G(τ) = Qν(cosh τ) ,

where Pν is the Legendre function of the second kind with µ = 0 and ν = 1
2 [−1 +

√

1 + 4(αa)2]. The green function vanishes as τ → ∞ and diverges as [140] − ln τ as
τ → 0.



Appendix I

Density near the wall

In this appendix we want to find which condition the one particle correlation function ρ
(1)
Ω (τ)

has to satisfy, in order to be possible to replace it with the bulk density n when calculating the
thermodynamic limit of (8.iii:10) and of the first term on the right hand side of (8.iii:14). In

both these terms the integrand is made up of ρ
(1)
Ω (τ) times a factor that increases very fast near

the upper bound of integration τ0. Then we cannot in general neglect the fact that ρ
(1)
Ω (τ) may

have oscillations about n in a neighborhood of τ0.

Without any loss of generality we can write,

ρ
(1)
Ω (τ) = n+ fτ0(τ0 − τ) , (I.:1)

with fτ0 non zero only in the neighborhood of τ0 (for τ0 > τ > τ0 − λ, where aλ is a screening

length). Since
∫

ρ
(1)
Ω (τ) dS = 〈N〉, we must have,

∫ λ

0
fτ0(σ) sinh(τ0 − σ) dσ = 0 , (I.:2)

where σ = τ0 − τ .

Now let us calculate, for example, (8.iii:10),

1

β

∫

Ω
ρ
(1)
Ω (τ)

τ

tanh τ
dS =

n

β

∫ τ0

0

τ

tanh τ
dS +

2πa2

β

∫ λ

0
fτ0(σ)(τ0 − σ) cosh(τ0 − σ) dσ . (I.:3)

We want to establish whether or not we can neglect the second term in the right hand side of

this equation when calculating the thermodynamic limit of P
(v)
Ω . Now in the limit τ0 → ∞ and

using (I.:2) we find that such term has the following asymptotic behavior,

eτ0
(

−πa
2

β

∫ λ

0
fτ0(σ)σe

−σ dσ

)

. (I.:4)

After comparing this with the asymptotic behavior of τ0 ≪ (∂Ω) we reach the conclusion that
if

∫ λ

0
fτ0(σ)σe

−σ dσ , (I.:5)
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diverges less rapidly than τ0, then we are allowed to neglect the second term on the right hand

side of equation (I.:3). In other words when calculating the thermodynamic limit of P
(v)
Ω we are

allowed to replace the one particle correlation function by n from the start in equation (8.iii:10),
neglecting its behavior near the wall. Either from the exact calculation at βq2 = 2 or from
numerical calculations of the one particle density we expect expression (I.:5) to go to a constant
as τ0 → ∞.



Appendix J

Electrostatic potential of the
background

In this appendix we give the expression for the electrostatic potential of the background,

w(~q1) =

∫

ρb v(d10) dS0 = −nq
∫

Ω
v(d10) dS0 . (J.:1)

The electric potential of the background satisfies equation (8.i:21). Using the coordinates
(r, ϕ) we have,

w′′(r) +
1

r
w′(r) = α

4a2

(1 − r2)2
, (J.:2)

where α = −2πρb and we denote with a prime a derivative with respect to r. This differential
equation admits the following solution for w′,

w′(r) = e
∫ r

r1
− 1

r
dr
[

w′(r1) +
∫ r

r1

4a2α

(1− r2)2
e
∫ r

r1

1
r
dr
]

=
r1w

′(r1)
r

+
4a2

r

∫ r

r1

α
r

(1 − r2)2
dr . (J.:3)

Choosing r1 = 0 we find,

w′(r) =
4a2

r

∫ r

0
α

r

(1 − r2)2
dr

= 2a2α











r

1− r2
r ≤ r0

r20
1− r20

1

r
r > r0

, (J.:4)

where r0 = tanh(τ0/2). The potential has to be chosen continuous at r0. For the potential inside
Ωaτ0 we find,

w(r) = −αa2 ln(1− r2) + constant , (J.:5)

or using the coordinates (τ, ϕ),

w(τ) = −αa2 ln[1− tanh2(τ/2)] + constant . (J.:6)
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We need to adjust the additive constant in such a way that this potential at τ = τ0 has the
correct value corresponding to the total background charge. We then have,

constant = w(0) = −qn
∫

Ωaτ0

v(τa) dS

= 2πa2qn

∫ τ0

0
ln[tanh(τ/2)] sinh τ dτ

= αa2[ln[1− tanh2(τ0/2)] + sinh2(τ0/2) ln[tanh
2(τ0/2)]] . (J.:7)

We reach then the following expression for the potential inside Ωaτ0 ,

w(τ) = αa2
{

ln

[

1− tanh2(τ0/2)

1− tanh2(τ/2)

]

+ sinh2(τ0/2) ln[tanh
2(τ0/2)]

}

. (J.:8)

The self energy of the background is,

v0 =
1

2

∫

S
ρb w dS (J.:9)

=
1

2
ρbαa

22πa2
{∫ τ0

0
ln

[

1− tanh2(τ0/2)

1− tanh2(τ/2)

]

sinh τ dτ+

sinh2(τ0/2) ln[tanh
2(τ0/2)]

∫ τ0

0
sinh τ dτ

}

= −2a4(πρb)
2{1 − cosh τ0 + 4 ln[cosh(τ0/2)] + 2 sinh4(τ0/2) ln[tanh

2(τ0/2)]}.

Notice that if we drop the last term on the right hand side of this equation, i.e. if we adjust the
additive constant so that the potential of the background vanishes on the boundary ∂Ωaτ0 , then
in the limit a→ ∞ we recover the self energy of the flat system N2q2/8.



Appendix K

The flat limit

In this Appendix we study the flat limit a → ∞ of the expressions found for the density in
section v. We shall study the limit a→ ∞ for a finite system and then take the thermodynamic
limit and compare to the result of taking first the thermodynamic limit and then the flat limit
a→ ∞. Since for a large system on the pseudosphere boundary effects are of the same order as
bulk effects it is not clear a priori whether computing these two limits in different order would
give the same results. We shall show that, indeed, the same results are obtained.

For a finite disk of radius d = aτ0, we have in the flat limit a → ∞, d ∼ r0. In equa-
tion (8.v:32), in the limit a→ ∞, the term eC given by (8.v:3) becomes

eC ∼
(

r20
4a2

)−Nb

eNb (K.:1)

where Nb = πnbr
2
0 is the number of particles in the background in the flat limit. Since for large

a, t0 = r20/(4a
2) is small, the incomplete beta function in equation (8.v:32) is

Bt0(ℓ+ 1, α) =

∫ t0

0
e(α−1) ln(1−t) tℓ dt ∼

∫ t0

0
e−(α−1)t tℓ dt ∼ γ(ℓ+ 1, Nb)

αℓ+1
(K.:2)

Expanding (1 − (r2/4a2))4πnba
2 ∼ exp(−πnbr2) in equation (8.v:32) we finally find the density

as a function of the distance r from the center

n(1)(r) = nbe
−πnbr

2
∞
∑

ℓ=0

(πnbr
2)ℓ

αℓ−NbNNb

b e−Nb(nb/ζ) + γ(ℓ+ 1, Nb)
(K.:3)

When α→ ∞ the terms for ℓ > Nb in the sum vanish because αℓ−Nb → ∞. Then

n(1)(r) = nbe
−πnbr

2
E(Nb)−1
∑

ℓ=0

(πnbr
2)ℓ

γ(ℓ+ 1, Nb)
+ ∆n(1)(r) (K.:4)

The first term is the density for a flat OCP in the canonical ensemble with a background with
E(Nb) elementary charges (E(Nb) is the integer part of Nb). The second term is a correction
due to the inequivalence of the ensembles for finite systems and it depends on whether Nb is an
integer or not. If Nb is not an integer

∆n(1)(r) = nb
(πnbr

2)E(Nb)e−πnbr
2

γ(E(Nb) + 1, Nb)
(K.:5)
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and if Nb is an integer

∆n(1)(r) = nb
(πnbr

2)Nbe−πnbr
2

NNb

b e−Nb(nb/ζ) + γ(Nb + 1, Nb)
(K.:6)

In any case in the thermodynamic limit r0 → ∞, Nb → ∞, this term ∆n(1)(r) vanishes giving
the known results for the OCP in a flat space in the canonical ensemble [4, 104]. Integrating
the profile density (K.:4) one finds the average number of particles. For a finite system it is
interesting to notice that the average total number of particles N is

N = E(Nb) + 1 (K.:7)

for Nb not an integer and

N = Nb +
1

1 +
NNb

b e−Nbnb
ζγ(Nb + 1, Nb)

(K.:8)

for Nb an integer. In both cases the departure from the neutral case N = Nb is at most of one
elementary charge as it was noticed before [129, 130].

Let us now consider the other order of the limits. We start with the expression (8.v:51)
for the contact density in the thermodynamic limit in the pseudosphere and show that in the
limit a → ∞ the value of the contact density reduces to the known expression for a neutral
OCP in a flat space at a hard wall [104]. We also show that in that limit the average density is
independent of the fugacity and equal to the background density n = nb.

Equation (8.v:51) can be rewritten as

ncontact
nb

=

∫ ∞

0

xαe−x dx
nb

ζ x
αe−α + αΓ(α, x)

(K.:9)

For large α, the numerator of the integrand in (K.:9) has a sharp peak at x = α and can be
expanded as

xαe−x ∼ e
α lnα−α−

(

x−α√
2α

)2

(K.:10)

In the denominator, using the large α expansion of the incomplete gamma function [140], and
neglecting 1 with respect to α, we obtain

αΓ(α, x) ∼ ααe−α
√

πα

2

[

1− erf

(

x− α+ 1√
2α

)]

(K.:11)

where

erf(t) =
2√
π

∫ t

0
e−u

2
du (K.:12)

is the error function. Using (K.:10) and (K.:11) in (K.:9) gives

ncontact
nb

∼
∫ ∞

0

e
−
(

x−α√
2α

)2

dx

nb

ζ

(

x
α

)α
+
√

πα
2

[

1− erf
(

x−α+1√
2α

)] (K.:13)

For x > α, the first term in the denominator goes to infinity for large α and the integrand goes
to zero. On the other hand, when x < α, this same first term goes to zero, thus, after the change
of variable t = (x− α)/

√
2α,

ncontact
nb

∼ 2√
π

∫ 0

−
√
α/2

e−t
2
dy

1− erf
(

t+ 1√
2α

) (K.:14)
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Finally, as α→ ∞,

ncontact
nb

→
∫ 0

−∞

d erf(t)
dt

1− erf(t)
dt = ln 2 (K.:15)

This is the known value [104] for the contact density at a hard plain wall for a neutral OCP.
Following the same lines, equation (8.v:56) for the average density becomes in the limit

α→ ∞
n

nb
∼
√

2

α

∫ 0

−
√
α/2

[1− erf(t)] dt

1− erf(t)
= 1 (K.:16)

The average density is equal to the background density and it is independent of the fugacity.
Whatever value the fugacity has, the system cannot be charged in the flat case in the thermo-
dynamic limit.
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