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Homework # 9 Solutions

set of units used: MKSA

-Problem 1- A rectangular waveguide has a 1cm× 2cm cross section.

(a) What are the two minimum frequencies ?

(b) What are the phase and group velocities of the single propagating mode
just below the higher of the two minimum frequencies ?

SOLUTION

Consider a wavguide (hollow cylindrical pipe) along the ẑ axis. For a given
frequency ω, an electromagnetic wave can propagate inside it only for par-
ticular values of the wavevector, namely

kλ =
√
µoεo

√
ω2 − ω2

λ , (1)

with the cut-off frequencies ωλ = γλ/
√
µoεo, where γλ for λ = 1, 2, 3, . . .

represents the spectrum of eigenvalues of the following eigenvalues problem

(∇2 − ∂2

∂z2
)ψ = γψ , (2)

with the following boundary conditions{
ψ|s = 0 for TM waves ,
n̂ · ∇ψ|s = 0 for TE waves ,

(3)

where ψ exp(±ikz) represents Ez(Hz) for TM (TE) waves, s is the waveguide
surface and n̂ its normal. In corrispondence to γλ exists an orthogonal set of
solutions ψλ called the modes of the waveguide.

If ω < ωλ the wavenumber runs imaginary and instead of a traveling
wave we have exponentially attenuated fields. For this reason ωλ is called
the cut-off frequency for the mode in question.
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(a) In a waveguide with a rectangular shape with height a and width b
(suppose a > b) solving eq. (2) one find λ = {m,n} and

γ2m,n = π2

(
m2

a2
+
n2

b2

)
, (4)

ωm,n =
π

√
µoεo

√
m2

a2
+
n2

b2
, (5)

For example the TEm,n mode will be given by

ψm,n = Ho cos
nπ

b
x cos

mπ

a
y , (6)

k = km,nẑ+
nπ

b
x̂+

mπ

a
ŷ . (7)

The two minimum cut-off frequencies are ω1,0 = πc/a and ω0,1 = πc/b.
In the problem a = 2b = 2cm then we find

ω0,1 = 2ω1,0 ≃
(
π 3× 1010

1

)
S−1 = 9.4× 1010S−1 . (8)

(b) The mode {m,n} travels along the waveguide with a phase velocity
given by

v =
ω

km,n

=
c√

1− (ωm,n/ω)2
> c . (9)

However the energy carried by the wave travels at the group velocity

vg =
1

dkm,n/dω
= c

√
1− (ωm,n/ω)2 . (10)

At ω just below ω0,1 the mode {0, 1} cannot propagate and the only
mode which travels in the wave guide will be the {1, 0}. 1 then we get
for the phase velocity (9)

v =
ω

km,n

=
c√

1− (ω1,0/ω0,1)2
=

c√
1− b/a

(11)

=
2√
3
c ≃ 3.5× 1010cm/S , (12)

1for ω1,0 < ω < ω0,1 the {1, 0} is the only mode that can propagate into the waveguide.
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and for the group velocity (10)

vg =
1

dkm,n/dω
= c

√
1− (ω1,0/ω0,1)2 = c

√
1− b/a (13)

=

√
3

2
c ≃ 2.6× 1010cm/S . (14)
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-Problem 2- Calculate the capacitance and inductance per unit length
of a coaxial cable. To calculate C, put ±λ on the two conductors and use
C = λ/V . Similarly, calculate L, let ±I flow and use L = ϕ/I. The flux
is through the surface shown in figure 1. Show that the speed of a wave,
1/
√
LC = c. What ratio b/a is needed for the impedence to equal 75Ω (a

typical value) ?

V

−λ

λ

− I

I

l

S

a

b

Figure 1: Coaxial cable

SOLUTION

Consider the coaxial cable as a cylindrical capacitor. Immagine that a linear
charge density +λ is uniformily distributed along the inner cylinder of radius
a (and −λ along the outer cylinder of radius b). The electric field between
the two cylinder is radial and his modulus can be found by Gauss’s law

E(2πr)l =
λl

εo
⇒ E =

λ

2πεo

r̂

r
, (1)

where we have taken as Gauss’ s surface a cylinder of height l, radius r such
that a < r < b and coaxial with the cable.

The potential difference between the two conducting cylinders is

∆V =
∫

E dl =
λ

2πεo

∫ b

a

1

r
dr =

λ

2πεo
ln

(
b

a

)
. (2)

The capacitance per unit length can then be determined as

C =
λ

∆V
=

2πε

ln(b/a)
. (3)
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Consider the inner cylinder of the coaxial cable as a wire traveled by a
current +I (with a current −I flowing in the outer cylindrical conductor).
Then by Ampere’ s law we can determine the magnetic field inside the coaxial
cable as follows

B(2πr) = µoI ⇒ B =
µoI

2πr
ϕ̂ , (4)

where we took as Amperian loop a circle of radius r such that a < r < b and
coaxial with the cable (note that the current flowing in the outer conductor
is not concatenated with the loop).

The flux of the magnetic field through the rectangular shaded region S
shown in figure 1 is then

ΦB =
∫

B da =
∫ b

a

(
µoI

2πr

)
l dr =

µoIl

2π
ln
(
a

b

)
. (5)

The inductance per unit lenght of the coaxial cable is then found by

L =
ΦB

lI
=
µo

2π
ln
(
a

b

)
. (6)

Using eqs. (3) and (6) we can find the speed of an electromagnetic wave
traveling into the cable as

v =
1√
LC

= (
µo

2π
ln(a/b)2πεo

1

ln(a/b)
)−1/2 =

1
√
µoεo

= c . (7)

Using eqs. (3) and (6) we can find the impedence of the cable as

Z =

√
L

C
=

ln(a/b)

2π

√
µo

εo
. (8)

Knowing that Z = 75Ω we can finally determine the ratio b/a from equation
(8)

b

a
= exp(2πZcεo) ≃ 3.5 . (9)
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-Problem 3- Consider a two conductor transmission line (TL),

(a) What is the relation between the current and the voltage in it for a
wave traveling to the right (vx > 0) ?

(b) What is the relation for a wave traveling to the left ?

(c) Suppose the TL is terminated by a resistor, R, which connects the two
conductors. What is the relation between the current and the voltage
at the termination point ?

(d) Use the results of parts (a), (b), and (c) to calculate the reflection
coefficient when a TL of impedence Z is terminated by a resistance
Ro ̸= Z

(e) Suppose the termination is a capacitor Co. Redo parts (c) and (d) for
this case.

SOLUTION

(a,b) Consider a two conductor transmission line (TL) with a capacitance
per unit length C (F/S) and an inductance per unit length L (H/S),
lying along the x̂ direction. Call V (x, t) and Q(x, t) respectively the
potential drop between the two conductor and the charge, at point x
and time t. These quantities must satisfy the following relationships

i

r

I

I
dx

=Z oZ

oV

L

C

Figure 2: Schematic representation of a two conductor trasmission line (TL)
excited by a potential Vo(t) and terminated on an impedence Zo. the impe-

dence of the TL is Z =
√
L/C where L and C are respectively the inductance

and the capacitance per unit length.

V (x, t) =
1

C

∂Q(x, t)

∂x
, (1)



Physics 336 page 7 Due Nov. 8, 1995

and if I(x, t) = ∂Q(x, t)/∂t

∂I(x, t)

∂t
=

1

L

∂V (x, t)

∂x
, (2)

these two eqs. (1) and (2) can be justified observing that an element
of length dx of the TL (shaded part in figure 2) have a capacitance
(C dx) and an inductance (L dx).

Deriving eq. (2) two times with respect to time one gets

∂2V

∂t2
=

1

C

∂2I

∂x∂t
, (3)

deriving eq. (2) once with respect to x one gets

∂2I

∂t∂x
=

1

L

∂2V

∂x2
. (4)

Combining eqs (3) and (4) one gets the following wave equation for
V (x, t)

∂2V

∂t2
=

1

LC

∂2V

∂x2
. (5)

In an analogous way one find that I(x, t) satisfies the same equation

∂2I

∂t2
=

1

LC

∂2I

∂x2
. (6)

The solutions to eqs. (5) and (6) are a “potential wave” and a “current
wave” traveling into the TL at a speed v±x = ±1/

√
LC. If we excite

the TL with a potential Vo(t) = Vo exp(iωt) at x = 0 (see figure 2) the
potential and current waves generated can be written as

V±(x, t) = Vo exp[i(k±x− ωt)] , (7)

I±(x, t) = Io exp[i(k±x− ωt)] , (8)

where k± = ω/v±x , V+, I+ represents waves traveling to the right and
V+, I+ represents waves traveling to the left. From eq. (1) one gets

−iωV±(x, t) =
1

C
ik±I±(x, t) , (9)
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from which follows

V±(x, t)

I±(x, t)
= − 1

v±x
= ∓

√
L

C
= ∓Z , (10)

where Z is the impedence of the TL.

(c) At the termination point, say x = l, one has

v(l, t) = ZoI(l, t) , (11)

where Zo is the impedence on which the TL is terminated (see figure
2).

(d,e) Call Vi, Ii the potential and current waves incideing on Zo and Vr, Ir
the potential and current waves reflected from Zo. From equation (10)
we get

Vi = −ZIi , (12)

Vr = ZIr , (13)

and from equation (11)

Vr + Vi = Zo(Ir + Ii) . (14)

Using eqs. (12) and (13) in eq. (14) one gets

Z(Ir − Ii) = Zo(Ir + Ii) ⇒ (15)

Ir(Z − Zo) = Ii(Z + Zo) ⇒ (16)

Vr
Vi

= −Ir
Ii

=
Zo − Z

Zo + Z
. (17)

When the TL is terminated by a resistance R then Zo = R is real.
When the TL is terminated by a capacitor C then Zo = 1/(iωC) is
imaginary 1.

1In general C = Q(t)/V (t) then V (t) = (1/C)
∫
I(t)dt. If I(t) ∼ exp(iwt) then Zo =

V (t)/I(t) = 1/(iωC).


