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Homework # 6 Solutions

set of units used: MKSA

-Problem 1- Find all elements of the Maxwell stress tensor for a monochro-
matic plane wave traveling in the x̂-direction and linearly polarized in the
ŷ−direction. Does your answer make sense? (Remember that T represent
the momentum flux density.) How is the momentum flux density related to
the energy density?

SOLUTION

Monochromatic plane wave traveling in the x̂-direction and linearly polarized
in the ŷ−direction{

E(x, t) = Eo cos(kx− ωt+ δ)ŷ ,
B(x, t) = Bo cos(kx− ωt+ δ)ẑ .

(1)

Element (i, j) of the Maxwell stress tensor

Ti,j = εo(EiEj −
1

2
δi,jE

2) +
1

µo

(BiBj −
1

2
δi,jB

2) . (2)

Calculating Ti,j for i, j = 1, 2, 3 using the fields in eqns. (1) one gets

T =

 −εo|E(x, t)|2 0 0
0 0 0
0 0 0

 (3)

The result (3) make sense because −Ti,j is the momentum carried by the
fields (1) on the x̂−direction, crossing a surface oriented in the ŷ−direction
per unit area per unit time. Since the fields (1) represents a wave traveling
in the x̂−direction then the flow of momentum density will be different from
zero only across a surface oriented in the x̂−direction. This means that
only the first column of the matrix T can have elements different from zero.
Result (3) shows how only the first element of such column is effectively
different from zero. This is due to the electromagnetic plane wave property
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of carrying a momentum parallel to the direction of propagation (x̂ in our
case, k̂ = k/|k|, where k is the wave vector, in general) 1.

The momentum flux density as we have already seen is defined by the
matrix −T. The energy density is defined by the scalar W ≡ (εoE

2 +
B2/µo)/2 = εoE

2 (= SS · k̂/v), where S is the Poynting vector and v = c/n
the phase velocity of the wave (c is the speed of light and n the index of
refraction of the material).
Since in a plane wave E, B and k̂ are an orthogonal ordered set of vectors

E×B = k̂
E2

v
, (4)

then if we define the vector v as vk̂ we get

3∑
j=1

Ti,jvj =
3∑

j=1

[εo(EiEj −
1

2
δi,jE

2) +
1

µo

(BiBj −
1

2
δi,jB

2)]vj (5)

= −1

2
vi[εoE

2 +
1

µo

B2] = −viW , (6)

where we have used the properties E · v = B · v = 0. Result (5) can be
rewritten more concisely as

−Ti · v = viW (= Si) , ∀ i = 1, 2, 3 (7)

1See the effect of the pressure of light.
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-Problem 2- Prove that in the problem of normal incidence of an elec-
tromagnetic plane wave on the boundary between two linear media, the re-
flected and transmitted wave must have the same polarization of the inci-
dent wave. (Let the polarizations of the transmitted and reflected wave be
n̂T = cos θT ŷ+ sin θT ẑ, and n̂R = cos θRŷ+ sin θRẑ respectively. Then prove
from the boundary conditions that θT = θR = 0.)

SOLUTION

Suppose the yz plane forms the boundary between two linear media. A
plane wave of frequency ω, traveling in the x̂−direction and polarized in the
ŷ−direction, approaches the interface from the left (see figure 1).
The electric and magnetic fields of the incident (I) wave can be written as

k
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ẑ
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Figure 1: Reflection and transmission at normal incidence, without any apri-
ori assumption on the polarization of the reflected and of the transmitted
wave.

follows 
EI(x, t) = EoIe

i[kIx−ωt]ŷ ,

BI(x, t) = x̂× EI

v1
.

(1)

It gives rise to a transmitted (T) and a reflected (R) wave
ER,T (x, t) = EoR,T e

i[(−)
αR,T kR,T x−ωt]n̂R,T ,

BR,T (x, t) = k̂R,T × ER,T

v1,2
,

(2)
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where αT = −αR = 1 and k̂T = −k̂R = x̂ since the transmitted and the
reflected wave are travelling in opposite directions, v1 = c/n1 and v2 = c/n2

are the phase velocities of the waves in media 1 and media 2 and finally{
n̂T = cos θT ŷ + sin θT ẑ ,
n̂R = cos θRŷ + sin θRẑ ,

(3)

are the polarization vectors of the transmitted and the reflected wave.
The boundary conditions at the surface of separation of the two media for
the parallel components of the electric fields and the parallel components of
the magnetic fields, are the following

EIn̂I + ERn̂R = ET n̂T ,
EI

µ1v1
(k̂I × n̂I) +

ER

µ1v1
(k̂R × n̂R) =

ET

µ2v2
(k̂T × n̂T ) ,

(4)

where k̂I = x̂, n̂I = ŷ,{
k̂R × n̂R = − cos θRẑ+ sin θRŷ ,

k̂T × n̂T = cos θT ẑ− sin θT ŷ .
(5)

and µv =
√
µ/ε = Z is the impedence of the media.

Projecting the boundary conditions (4) along the ẑ we get(
ER −ET

Z2ER Z1ET

)(
sin θR
sin θT

)
= 0 . (6)

Since the determinant of the 2×2 matrix is different from zero then sin θR =
sin θT = 0. This shows that the polarizations of the reflected and transmitted
wave (3) must be parallel to the polarization of the incident wave (ŷ).

Choosing θR = θT = 0 we get{
EI + ER cos θR = ET cos θT ,
Z2(EI − ER cos θR) = Z1ET cos θT ,

(7)

from which follows 
ER =

(
1− β

1 + β

)
EI ,

ER =

(
2

1 + β

)
EI ,

(8)

where β = Z1/Z2. So choosing θR = θT = 0, if β < 1 and EI > 0 then
ER, ET > 0 (convention usually used).
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-Problem 3- A wave in air is normally incident on a coated piece of glass
(see figure 2 below). The air has an index of refraction n1 = 1, the coating
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Figure 2: Non reflecting film.

has n2, and the glass has n3. The coating has a thickness, d, and the air
and glass are infinitely thick. The wavelength of the wave in air is λ. What
condition must n2 and d satisfy in order to minimize the reflected wave (i.e.,
in terms of n1, λ, and n3)?
HINT: the two reflected waves must exactly cancel.

SOLUTION

We want to construct a non reflecting film. We can increase the fraction
of light reflected by a glass surface (correspondingly increasing the fraction
of transmitted light) by evaporating on glass a thin film of a transparent
material (the so called “coated lenses” are created this way).

Since we are assuming that there isn’ t any metallic deposit on the surface
of the two boundaries, no phase change different from 0 or π occour at
reflection (in the reflected wave) or refraction (in the transmitted wave) at
the two separation surfaces S1−2 or S2−3. We shall denote by τ1,2 the ratio
of the transmitted to the incident amplitude when the wave passes from the
air to the coating and by τ2,3 the ratio of the transmitted to the incident
amplitude when the wave passes from the coating to the glass. Let ρ1,2 and
r23 be the corresponding ratios of the reflected to the incident amplitudes
and let A be the amplitude of the incident wave (EI in figure 2). For the
case of normal incidence on the boundary of two linear materials i and j with
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µi = µj = µo (the case of the problem) we have

τi,j =
2ni

ni + nj

, ρi,j =
ni − nj

ni + nj

. (1)

The incident wave EI traveling in the air will be partly transmitted in
the wave ET traveling in the coating. ET will be partly transmitted in
the wave ET1 traveling in the glass and partly reflected through an internal
reflection into a wave remaining into the coating. The successive internal
reflections of the wave trapped into the coating will generate a series of waves
ET2 , . . . , ETn , . . . transmitted into the glass (see the schematic representation
of figure 3). Thus the various transmitted waves at S2−3 are represented by
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Figure 3: Schematic representation of the internal reflections.

ET1 = τ1,2τ2,3Ae
iωt , (2)

ET2 = τ1,2τ2,3(ρ2,1ρ2,3)Ae
iωt−α , (3)

...

ETn = τ1,2τ2,3(ρ2,3ρ2,1)
(n−1)Aei[ωt−(n−1)α] = τ1,2τ2,3Ae

iωt(ρ2,3ρ2,1e
−iα)n−1 ,(4)

...

where we have indicated with α the phase difference between neighboring
waves, namely

α = 2dkc = 2d
(
2π

λc

)
= 2d

(
n22π

λ

)
(5)
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where kc is the modulus of the wave vector and λc the wavelength of the
wave propagating in the coating 1. The resultant transmitted wave is

ETtot = ET1 + ET1 + . . .+ ET1 + . . . = τ1,2τ2,3Ae
iωt

∞∑
n=1

(ρ2,3ρ2,1e
−iα)n−1 . (7)

Since |ρ2,3ρ2,1e−iα| < 1 then

ETtot =
τ1,2τ2,3

1− ρ2,3ρ2,1e−iα
Aeiωt . (8)

Calling II the intensity of the incident wave on air (EI) IT the intensity of
the transmitted wave on glass (ETtot) and IR the intensity of the transmitted
wave on glass (ERtot , which can be computed by a similar procedure as ETtot),
we have for the conservation of energy

II = IR + IT . (9)

Then minimizing IR equals to maximizing IT . From the result (8) follows
that

IT
II

= n3

(
(τ1,2τ2,3)

2

1 + (ρ2,3ρ2,1)2 − 2(ρ2,3ρ2,1) cosα

)
. (10)

To maximize IT we have to minimize the denominator of the left hand side
of equation (10). We have two cases.

-i- When 1 < n2 < n3 then ρ2,3ρ2,1 < 0 then the maximum of IT appear
when cosα = −1, i.e. when α = (2n + 1)π (n = 0,±1,±2, . . .). From
equation (5) follows that in this case the condition that n2 and d must
satisfy in order to minimize the reflected wave is

2d =
λ

n2

(n+
1

2
) (11)

1To determine how the wavelength of the wave change going from media i to media
j is sufficient to remember that at the interface the frequency of the wave traveling with
velocity vi = c/ni and wave vector ki on media i has to equal the frequency of the wave
traveling with velocity vj = c/nj and wave vector kj on media j, namely

kivi = kjvj ⇒ λj

λi
=

vj
vi

=
ni

nj
. (6)
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-ii- When 1 < n3 < n2 then ρ2,3ρ2,1 > 0 then the maximum of IT appear
when cosα = 1, i.e. when α = 2nπ (n = 0,±1,±2, . . .). From equation
(5) follows that in this case the condition that n2 and d must satisfy in
order to minimize the reflected wave is

2d =
λ

n2

n (12)

In this cases IR will reduce to

IT
II

= n3
(τ1,2τ2,3)

2

(1− ρ2,3ρ2,1)2
∼ (τ1,2τ2,3)

2 , (13)

where we have used the fact that usually ρ2,3ρ2,1 ≪ 1. This approximation
justify the HINT of the problem.

One can show that the index of refraction n2 of the thin film must be
intermediate between those of the air and of the glass in order to have IT
minimized for a wide range of wavelength λ centered around the value given
in equation (11).

It’ s important to observe that in our case (1 ̸= n3) IR will never vanish.
That is possible only when n1 = n3

2.

2This case is analyzed for example in “Optics” by Bruno Rossi par.3-10 page 135.


