
Physics 336 page 1 Due Sep. 20, 1995

Homework # 3 Solutions

set of units used: MKSA

-Problem 1- Consider this static vector potential given in spherical co-
ordinates 

Ar = 0
Aθ = 0

Aϕ =
g

r
tan

(
θ

2

) (1)

Note that A is not defined at θ = π (the −ẑ axis). Calculate the B field that
this A describes.

SOLUTION

We have to take the curl in spherical coordinates of the vector potential

B = ∇×A =
1
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[
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Inserting the vector potential (1) one gets

B = ∇×A =
g

r2 sin θ

∂

∂θ
(sin θ tan(θ/2)) r̂ =

g

r2
r̂ . (5)

One immediately recognizes in B the magnetic field of a magnetic monopole.

COMMENT: the meaning of the singularity. The vector potential given
in the problem can be obtained from the following argument

A(r) =
∫
L
dA(r) , (6)
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where

dA(r) = −gdl′ ×∇ 1

|r− r′|
, (7)

is the vector potential in r due to an elementary magnetic dipole dm = gdl′

in r′, and L is the negative ẑ axis.
This construction suggests the following picture for a monopole: the mag-

netic charge g is the ending point of a ”string” of elementary magnetic dipoles
which extends to infinity as shown in figure 1. The vector potential gener-
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Figure 1: Description of a magnetic monopole g. S is a surface contained
between the two strings L and L′.

ated by the magnetic charges g is singular on the string. as we know. This
definition 1 allows to use for the electromagnetic interactions necessary to
describe the dynamics and statics of a monopole, the same structure of the
ones used in the decription of the electric monopole, B = ∇×A, etc. . .. In
particular the strange fact that the total flux through a closed surface sur-
rounding a magnetic charge g is 4πg (which wouldn’ t allow to use ∇B = 0)
is prevented assuming the existence of a magnetic field B′ very intense on
the string of dipoles and zero outside. B′ is there just to compensate the flux
exiting from the edge of of the string: the monopole. The magnetic field due

1Used by Dirac in his original argument to show how the electric charge quantization
is a necessary consequenc of the assumption of the axistence of the magnetic monopole.
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to the magnetic charge will be then

Bmonopole = ∇×A−B′ . (8)

One can show that the freedom in choosing the string of dipoles from a point
at infinite and the monopole is equivalent to the freedom due to the gauge
tranformations. In particular changing the string L to the string L′ (see
figure 1) produces the following change in the vector potential describing the
monopole

AL′(r, t) = AL(r, t) + g∇ΩS(r, t) (9)

where ΩS(r, t) is the solid angle with vertex in r which sees the surface S (see
figure ??). Try to derive formula (9) using equation (6) as an exercise !
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-Problem 2- Suppose that a current j flows radially outward from a very
small region at the origin

j =
J

4π

r̂

r2
(1)

(a) Calculate the time derivative of the charge density, ρ, at some radius
r ̸= 0.

(b) Calculate the time derivative of the total charge contained in the small
region at the origin.

(c) Currents produce magnetic fields, don’ t they ? Use Ampere’ s law to
calculate the magnetic field at some r ̸= 0. Which direction does it
point ? (Hint: this is a trick question.)

SOLUTION

Let’ s start with a mathematical note: We know from electrostatic that
the more general solution of the equation 1

∇2ϕ(r) = −4πδ(r) , (2)

is, apart for a constant, the Coulomb potential

ϕ(r) =
1

|r|
+ constant , (3)

thus,

E = −∇ϕ(r) =
r̂

|r|2
. (4)

On the other way around we can say that (4) is the more general solution of
the equation

∇E = 4πδ(r) , (5)

1δ(r) is the Dirac delta function which physically represents the charge number density
of a charge distribution composed by one charge on the origin. It is mathematically defined
by the following properties:

i. δ(r) = 0 for r ̸= 0

ii.
∫
Ω
δ(r)dr = 1 for every neighbourhoood Ω of the origin.
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when we look for a solution which can be written as the gradient of some
function.

Coming to the problem, for the current density in eq. (1) one has

(a) From the continuity equation

∂ρ

∂t
= −∇j = −Jδ(r) , (6)

then ∂ρ/∂t = 0 for r ̸= 0.

(b) Integrating equation (6) over the small region at the origin containing
the total charge Q one gets

∂Q

∂t
= −J . (7)

(c) The Ampere Maxwell’ s law tells

∇×B = µo(j+ jD) , (8)

where we have indicated with jD = εo[∂E/∂t] the displacement current.
Taking the gradient of this eq. we get

∇jD = −∇j = −Jδ(r) . (9)

Since we know that exist ϕ such that jD = ∇ϕ (in particular ϕ =
εo[∂E/∂t] the mathematical note tells us that

jD = −J , (10)

from which follows ∇×B = 0 and consequently B = 0.
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-Problem 3- A very long solenoid of radius a, with N turns per unit
lenght, carries a current Is. Coaxial with the solenoid, at radius b ≫ a, is a
circular ring of wire, with resistance R. When the current in the solenoid is
gradually decreased, a current Ir is induced in the ring.

(a) Calculate Ir, in terms of dIs/dt.

(b) The power (I2rR) delivered to the ring must have come from the solenoid.
Confirm this by calculating the Poynting vector just outside the solenoid
(the electric field is due to the changing flux in the solenoid; the mag-
netic field is due to the current in the ring). Integrate over the entire
surface of the solenoid, and check that you recover the correct total
power.

SOLUTION
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Figure 2: The apparatus described in the problem.

(a) The magnetic field inside the solenoid is

B(t) = µoNIs(t)ẑ . (1)
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Since B(t) is varying with time an electric field with will be present with
circles concentric with the solenoid as field lines. Then using Faraday’
s law one can determine the electric potential felt by the electrons in
the circular ring of wire ∂C (see figure 2)

V =
∮
C
E · dl = 2πbE = − d

dt

∫
∂C

B · da = −πa2µoN
dIs
dt

. (2)

Ohm law gives then for the current in the circular ring of resistance R

Ir =
µoNπa2

R

dIs
dt

. (3)

and for the power dissipated through Joule effect

Pr = RI2r = IrµoNπa2
dIs
dt

. (4)

(b) Let’ s now calculate the Poynting vector just outside the solenoid. The
electric field is due to the changing magnetic field inside the solenoid.
Near the solenoids it will be

E = −µo
µoNπa

2

dIs
dt

ϕ̂ . (5)

The magnetic field is due to the current induced in the ring. Near the
solenoids surface r⊥ ≈ a ≪ b, with r⊥ the component of r orthogonal
to ẑ, we have (see eq.(3) in problem 3 of Homework #1 Solutions)

B ≈ −µo

2

b2

(z2 + b2)3/2
Irẑ . (6)

Using equations (5) and (6) one can construct the Poynting vector (see
figure 3)

S =
1

µo

(E×B) = Ir
µoNab2

4

1

(z2 + b2)3/2
r̂⊥ . (7)

The power Pr of eq. (4) dissipated in the resistor must come from the
solenoid. Then integrating the Poynting vector over the surface of the
solenoids we expect to get again Pr.

P =
∫

S · da = Ir
µoNπa2b2

2

∫ ∞

−∞

1

(z2 + b2)3/2
dz = Pr . (8)
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Figure 3: The Poynting vector near the surface of the solenoid.

-Problem 4- Show that it is always possible to choose

∇A = −µoεo
∂V

∂t
, (1)

as required for the Lorentz gauge, assuming you know how to solve the non
homogeneous wave eqation. Is it always possible to pick V = 0? How about
A = 0?

SOLUTION

It is alwaus possible, through a gauge transformation, choose the potentials
A and V in such a way that they satisfy the Lorentz gauge (1). Suppose you
have the potentials that don’ t satisfy the Lorentz gauge. Through a gauge
transformation A(r, t) → A′(r, t) = A(r, t) +∇χ(r, t)

V (r, t) → V ′(r, t) = V (r, t)− ∂

∂t
χ(r, t)

(2)

we get the potentials in the new gauge A′ and V ′ which describe the same
physics as A and V ; i.e. the electric and magnetic fields don’ t change
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(are invariant under the gauge transformation). If we now impose that the
potentials in the new gauge satisfy the Lorentz gauge (1) we get

∇A′ +
1

c2
∂V ′

∂t
= 0 = ∇A+

1

c2
∂V

∂t
+

(
∇2χ− 1

c2
∂2χ

∂t2

)
. (3)

This shows that if we are able to find a gauge function χ(r, t) which satisfies
the equation

∇2χ− 1

c2
∂2χ

∂t2
= −(∇A+

1

c2
∂V

∂t
) , (4)

then the new potentials will be in the Lorentz gauge.
It is not always possible to have a gauge in which V ′ = 0. Immagine

that you have found a gauge χ in which that condition holds. This means
that in the preceding gauge one had V = ∂χ/∂t then taking the gradient,
E = −∇(∂χ/∂t) and finally taking the curl, ∂B/∂t. This means that is
possible to find a gauge in which V ′ = 0 only if originally we were in a
situation in which the magnetic field wasn’ t varying with time.

It is not always possible to have a gauge in which A′ = 0. Immagine that
you have found a gauge χ in which that condition holds. This means that
in the preceding gauge one had A = −∇χ then B = 0. This means that is
possible to find a gauge in which A′ = 0 only if originally were in a situation
in which the magnetic field was zero.


