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Homework # 2 Solutions

set of units used: MKSA

-Problem 1- A perfectly conducting spherical shell of radius R rotates
about the ẑ axis with angular velocity ω, in a uniform magnetic fieldB = Boẑ.

(a) Calculate the emf developed between the “north pole” and the equator.

(b) Suppose that the device is used as the emf in a circuit which contains
only a resistor as shown. Assume that the current flows from the pole
to the equator along the dotted line as shown. Calculate the power
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Figure 1: Rotatin, perfectly conducting spherical shell immersed in a uniform
magnetic field and used as the emf in a circuit.

dissipated in the resistor (in terms of Bo, R, ω and Ro). Also calculate
the torque that must be applied to the sphere to maintain a constant
ω. Is energy conserved ?
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SOLUTION

(a) In absence of a magnetic field each charge on the rotating, perfectly
conducting spherical shell, has a uniform circular motion around axis
ẑ. If one switch on a magnetic field B = Boẑ a charge at a distance
r⊥(θ) from the axis of rotation feels the Lorentz force

F = ev ×B = eωr⊥(θ)Bo[θ̂ cos θ + r̂ sin θ] . (1)

One can associate to F an apparent electric fieldE and electric potential
V suches that

E = −∇V = F/e . (2)

Using the gradient theorem one can find the emf developed between
the north pole (in fig. 1 point b) and the equator (in fig. 1 point a) as
follows

V (b)− V (a) =
∫ b

a
∇V · dl = −

∫ b

a
E · dl

(1)+(2)
=

∫ π/2

0
ωBor⊥(θ) cos θ Rdθ (3)

where r⊥(θ) = R sin θ (see fig. 1). Finally one obtains

emf = V (b)− V (a) = ωBoR
21

2

∫ π/2

0
sin 2θ dθ

=
1

2
ωR2Bo (4)

Notice that if the spherical shell inverts its rotation (i.e. ω < 0) the
emf changes sign.

The power dissipated in the resistor by Joule effect is then

PR =
V 2

R
=

ω2R4B2
o

4Ro

(5)

(b) As stated in the problem, one can assume that the current

I =
V

Ro

=
ωR2Bo

2Ro

. (6)
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flows from the pole to the equator along a meridian.

Consider an elementary length dl on the meridian determined by the
contact b of the circuit with the shell and at an angle θ from the ẑ axis
(see fig. 2). A current I flows through it, and the force

dF(θ) = I dl×B = −IRdθBo cos θϕ̂ (7)

will act on it 1.

To maintain ω constant one must then apply to the shell a torque that
balances the one due to the Lorentz force, namely

τz = ẑ
∫ π/2

0
r× dF(θ) dθ =

∫ π/2

0
(ẑ× r) · dF(θ) dθ

=
∫ π/2

0
r⊥ϕ̂ · F(θ) dθ = −R2BoI

1

2

∫ π/2

0
sin 2θ dθ . (8)

Using eq. (6) one finally obtain

τz = −B2
oR

4ω

4Ro

(9)

The energy is conserved. The energy spent in keeping ω constant by
applying the torque (−τzẑ) to the shell is dissipated by Joule effect
in the resistor. This can be easily shown observing that the power
necessary to maintain constant the angular velocity of the rotation

Pω =
dE

dt
=

d(−τzϕ)

dt
= −τzω =

B2
oR

4ω2

4Ro

coincides with the power dissipated in the resistor, PR (5), thus the
total energy is constant in time.

1The Lorentz force act on the singles charges within the dl considered. The component
along ϕ̂ of the velocity of this charges, due to the rotation of the shell, doesn’ t contribute
to the Lorentz force.
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-Problem 2- A capacitor made made from parallel circular plates, of ra-
dius a and separation s, is inserted into a long straight wire carrying current
I (see fig. 2). As the capacitor charges up, find the induced magnetic field
midway between the plates, at a distance r (r < a) from the center. Assume
s ≪ a.
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Figure 2: Parallel circular plates capacitor. The shaded surface S is the disk
inside circle C midway between the plates with radius r and axes ẑ.

SOLUTION

The corrent I charging the capacitor cause a variation on time of the charge
surface density on the plates, and consequently of the electric field stored
between the plates. Maxwell’ s law tells that a magnetic field B(r) different
from zero must exist between the plates. Let’ s see how.

The whole physical system described in the problem, has a cylindrical
symmetry around the ẑ axis (see fig. 2). This implies:

i. B cannot depend on ϕ, B = B(r, z)

ii. The field lines of B (which has to be closed) must have axis ẑ as an
axis of symmetry. Thus the field lines have to be circles (see fig. 2)
with ẑ as their axes of symmetry.

To find the modulus of B midway between the plates at a distance r
(< a) from the axis, one has to integrate the Ampere-Maxwell law on a
suitable surface S bounded by the circle (C in the fig. 2) of radius r which
lies midway between the plates and has the ẑ axis as its symmetry axis. The
simplest choice is to take S as the surface which lies in the plane of the circle
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C (surface S2 in fig. 2). In this case one will have∫
S
∇×B da =

∮
C
B dl = B2πr = εoµo

d

dt

∫
S
E(t)da (1)

If ±σ(t) is the surface charge density on the plates then the electric field
inside the capacitor is found from Gauss’ law (due to the condition s ≪ a
one can assume E and σ to be uniform on the interior surfaces of the plates.
They will be only functions of time) to be

E(t) = ẑ
σ(t)

εo
. (2)

Because of the continuity equation one has on each plate

d

dt
σ(t) = −∇J(t) . (3)

This eq. integrated over the volume of a cylinder with one basis coincident
with the interior surface of a plate and the other outside of the capacitor and
intersected by the wire carrying the current to such plate, gives

d

dt

∫
plate

σ(t) da = πa2
d

dt
σ(t) = I(t) . (4)

Using this result in eq (2) and eq. (2) in eq. (1) one gets

2πrB = µo
I(t)

πa2

∫
S
da , (5)

which gives

B =
µoIr

2πa2
. (6)
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-Problem 3- Assuming that “Coulomb’ s law” for magnetic charges (s1
and s2) reads

F =
µo

4π

sq sp
|rq − rp|2

r̂ ,

work out the “Lorentz force law” for a monopole s moving with velocity v
through electric and magnetic fields E and B.

SOLUTION

Assuming that “Coulomb laws” for magnetic charges (sq and sp) reads

F =
µo

4π

sq sp
|rq − rp|2

r̂ , (1)

then the magnetic field generated by a magnetic charge sq will be

B = F/sp . (2)

The Maxwell eq. ∇B = 0 must be substituted with the new one

∇B = µoδ(r− rq)sq , (3)

or for a generic magnetic distribution ρm(r), by

∇B = µoρm(r) . (4)

This new equation has the same structure of the Gauss-Coulomb law thus
one can immediately say that the new set of Maxwell equations will be

∂µF
µ,ν = µoJ

ν
e (5)

∂µG
µ,ν =

1

εo
Jν
m (6)

where F , G and Je are unchanged and the following magnetic charge-current
four-vector has been introduced 1

Jν
m(cρm,Jm) and Jm = uρm (7)

1Here one is tacitly ammitting that the magnetic densities satisfy a continuity equation
of the same form of that satisfied by the electric densities.
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with uu the velocity.
The tensor properties of F and G determine the connections between the

field vector E and B as they appear in an unprimed system to the corre-
sponding vectors in a primed system moving with velocity v. When terms of
relativistic magnitude (i.e. where β2 = (v/c)2 ≪ 1 with c the speed of light)
are neglected one has

B = B′ − v × E′ (8)

E = E′ +
v

c2
×B′ (9)

If the primed system signifies the rest system of a magnetic charge s then
in this system the force sB = sBo acts on the charge. From eq. (9) it is
seen that this leads directly to the expression for the Lorentz force law for
magnetic monopoles

F = s(B− v

c2
× E) (10)

Comparing this eq. with the Lorentz force law for electric charges one con-
cludes that interchanging E with B one goes in the otherone except for the
minus sign between the contribution of E and the contribution of B.
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-Problem 4- In a perfect conductor, the conductivity is infinite, so
E = 0, and any net charges resides on the surface (just as it does for an
imperfect conductor, in electrostatics.

(a) Show that the magnetic field is constant (i.e., ∂B/∂t = 0), inside a
perfect conductor.

A superconductor is a perfect conductor with the additional property that
this constant B is always zero. (This “flux exclusion” is known as Meissner
effect.)

(b) Show that the current in a superconductor is confined to the surface.

Superconductivity is lost above a certain critical temperature (Tc), which
varies from one material to another.

(c) Suppose you had a sphere (radius R) above the critical temperature,
and you held it in a uniform magnetic field Boẑ while cooling it below
Tc. Find the induced surface current density K, as a function of the
polar angle θ.

(d) Suppose you made a loop of perfectly conducting wire, and a single
magnetic monopole g passed through it. If the self inductance of the
loop is L, what is the resulting current ?

SOLUTION
In a perfect conductor:

i. the conductivity σ → ∞;

ii. the electric field inside is zero E → 0;

iii. net charges only on the surface.

(a) Inside a perfect conductor, Maxwell eq. ∇ × E = −∂B/∂t gives
∂B/∂t = 0.

A superconductor:

i. is a perfect conductor;
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ii. the magnetic field inside is zero B → 0;

(b) Inside a superconductor, Maxwell eq. ∇×B = µoJ+ µoεo∂E/∂t gives
J = 0, since

∮
Bdl is zero for every Amperian loop inside the supercon-

ductor. Current densities can exist but only confined on the surface.

(c) For T > Tc the magnetic field lines which passed through the sphere
at T < Tc are bended out of the superconductor (see fig. 3). The

n̂
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Figure 3: Schematic representation of the magnetic field lines in the neigh-
borhood of a superconducting sphere above (on the left) and below (on the
right) its critical temperature

process of cooling the superconducting sphere produces on the magnetic
induction inside and outside the sphere, the same effect produced in a
perfect conducting sphere immersed in a uniform magnetic field Boẑ,
by the switching on of a uniform magnetization M = −Moẑ opposed
to the field. It’ s known that the magnetic field inside a uniformly
magnetized sphere is

B =
2

3
µoM . (1)

In order to have B = 0 inside the sphere the magnitude of the magne-
tization must be

Mo =
3Bo

2µo

. (2)
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The magnetization of the sphere will be produced by a volume current
density

J = ∇×M = 0 (3)

plus a surface current

K = M× n̂ = ϕ̂Mo sin θ = ϕ̂
3Bo

2µo

sin θ . (4)

(d) A magnetic monopole of charge g generates around itself the following
magnetic field

B =
µo4

π

g

r2
r̂ . (5)

To find the flux of the magnetic field generated by the monopole in r

d Ω

| r − r  |/

n̂

da /

C

g

θ

Figure 4: Magnetic monopole of charge g in r approaching the loop C from
right. da′ is an elementary surface around r′.

through the loop C (see fig. 4), one has to fix a surface S bounded by
the loop and to calculate

Φg(r) =
∫
S
B · da′ =

µog

4π

∫
S

cos θ da′

|r− r′|2
=

µog

4π

∫
S
dΩ (6)

where dΩ is the elementary solid angle under which g sees the elemen-
tary surface da′ of surface S (see fig. 4).
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Equation (6) shows that as the monopole passes through the loop the
flux of its magnetic field through the loop has to have a jump of µog (as
shown in fig. 5). Infact for g approaching S from the right dΩ → 2π
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Figure 5: Schematic time dependence of the flux through loop C of a mag-
netic monopole approaching and leaving the loop. The solid line represents
the case of the monopole passing thgough the loop. The dotted line repre-
sents the case of the monopole missing the loop.

and when g passes the elementary surface da′, dΩ = −2π.

This jump can be physically interpreted as due to the presence in the
loop, of a current I ̸= 0 which generate a magnetic field in the opposite
direction of the one generated by the monopole and such that its flux
through the loop (responsible for the jump in Φg) is

1

Φloop = LI = µog (7)

Then I must be equal to µog/L.

COMMENT: An anologous problem dealing with electric field instead
than magnetic field would be the parallel plate capacitor with sur-
face charge ±ω on the plates and small plate spacing d (the so called
“double-layer”). In this case the role of Φg is played by the electric po-
tential which must undergo a discontinuity of 4πD passing through the
double-layer. D = ωd beeing the moment of the double-layer (d → 0).

1Mathematically speaking the existence of the current I is necessary in order to make
the total flux through the loop (Φg +Φloop) a single valued function.


