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Homework # 11 Solutions

set of units used: MKSA

-Problem 1- A particle of charge q moves in a circle of radius R at a
constant angular velocity ω. (Assume that the circle lies in the xy plane,
centered at the origin, and at time t = 0 the charge is at (R, 0), on the posi-
tive x axis.) Find the Liénard-Wiechert potentials for points on the z axis.

SOLUTION

The Liénard Wiechert potentials for a moving point charge q can be written
as follows

V (r, t) =
1

4πεo

q

|r− r′| − (r− r′) · v/c
, (1)

A(r, t) =
v

c2
V (r, t) , (2)

where we have:

r ≡ point of observation = (0, 0, z) ,

r′ ≡ retarded position of the charge

= (R cosωtr, R sinωtr, 0) ,

|r− r′| =
√
z2 +R2 ,

v ≡ retarded velocity of the charge

= (−Rω sinωtr, Rω cosωtr, 0) ,

(r− r′) · v = 0 ,

tr ≡ retarded time = t− |r− r′|
c

= t−
√
z2 +R2

c
.

In the above eqs. R is the radius of the circle traveled by the charge at a
constant angular velocity ω. Collecting all the previous results we get for the
scalar potential

V (z, t) =
q

4πεo

1√
z2 +R2

, (3)
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which is the same result as in the static case. For the vector potential we get

A(z, t) =
Rω

4πεoc2
q√

R2 + z2
{−x̂ sin[ω(t−

√
z2 +R2/c)]

+ŷ cos[ω(t−
√
z2 +R2/c)]} . (4)
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-Problem 2- Suppose an electron decelerates at a constant rate a from
some initial velocity vo down to zero.

(a) What fraction of its initial kinetic energy is lost to radiation? (The rest
is absorbed by whatever mechanism keeps the acceleration constant.)
Assume vo ≪ c so thet Larmor formula can be used.

(b) To get a sense of the numbers involved, suppose the initial velocity is
thermal (around 105m/s) and the distance the electron goes is 30Å.
What can you conclude about radiation losses for the electrons in an
ordinary conductor?

SOLUTION

(a) The electron has an initial energy Eo = (1/2)mv2o . It decelerate at a
constant rate a down to zero velocity and since vo ≪ c we can approx-
imately describe its radiation power through the Larmor formula

dE

dt
= − 1

4πεo

2

3

q2

c3
a2 . (1)

The above eq. can be easily integrated since its right hand side is a
constant in time. Calling ∆E the energy lost to radiation during the
deceleration of the charge we get

∆E =
1

4πεo

2

3

q2

c3
a2∆t , (2)

where ∆t is the time interval in which the partice velocity changes
from vo to 0. Since the motion of the charge is uniformly decelerated
∆t = vo/a and we can rewrite eq. (2) as

∆E =
1

4πεo

2

3

q2

c3
avo , (3)

and the fraction of initial kinetic energy lost to radiation will be

∆E

Eo

=
1

3πεo

q2

mc3
a

vo
. (4)
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(b) If the electron has an initial velocity vo = 105m/s and travels a distance
d = 30Å = 30 × 10−10m before coming to rest ∆t = 2d/vo and a =
vo/∆t = v2o/2d. We can then rewrite eq. (4) in terms of the known
quantities as follows

∆E

Eo

=
1

6πεo

q2

mc3
vo
d

= 2.1× 10−10 . (5)

Consider for example a piece of iron at room temperature. The number
density of free electron in it is

n ∼ 17× 1022cm−3 , (6)

the resistivity (at 373K) is

ρ ∼ 14.7× 10−6Ωcm , (7)

the average velocity of the electrons (the fermi velocity)

v ∼ 1.98cm/s . (8)

Using Ohm’ s law we can then write the fraction of initial kinetic energy
lost to heat the iron as

∆E

Eo

=
[ρ(nev)2]d/v

n[(1/2)mv2]
=

2ρne2d

mv
∼ 3.5 . (9)

A comparison of this result with eq. (4) shows that in ordinary con-
ductors the energy loss due to radiation is negligible with respect to
the one due to the resistivity.
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-Problem 3- In Bohr’ s theory of hydrogen, the electron in its ground
state was supposed to travel in a circle of radius 5× 10−11m = 0.5Å, held in
orbit by the Coulomb attraction of the proton. According to classical electro-
dynamics, the electron should radiate, and hence spiral to the nucleus. Show
that v ≪ c for most of the trip (so you can use the Larmor formula), and
calculate the lifespan of Bohr’ s atom. (Assume each revolution is essentially
circular.)

SOLUTION

We want to calculate the lifetime of the electron in the Bohr’ s description of
the hydrogen atom if we apply to it the laws of the classical elettrodynam-
ics. We will make the following three hypotheses (the consistency of these
hypotheses with the following derivation of the lifespan of the electron will
be tested only for the third one as requested by the problem.)

(i.) The initial conditions are such that the electron would describe a cir-
cular orbit if it wouldn’ t radiate (not elliptical, . . . )

(ii.) The electron radiate and spiral into the nucleus. When calculating the
acceleration of the electron we will approximate, at each point, the spi-
ral as the tangent circle passing through the given point. This approx-
imation is a good approximation when the energy lost by the electron
in one turn around the nucleus is much smaller then the energy of the
electron itself. (this is sometimes called the adiabatic hypotheses.)

(iii.) We will assume that the speed of the electron v ≪ c while traveling
along most of the spiral. This allow us to use Larmor formula (exact
only in the rest frame of the particle) to describe the electron energy
loss due to radiation.

The power radiated by the accelerating electron is given by Larmor formula
(hypotheses (iii.))

dE

dt
= − 1

4πεo

2

3

q2

c3
|a|2 , (1)

where

E =
1

2
mv2 − 1

4πεo

e2

r
. (2)
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Equating (see hypotheses (i.) and (ii.)) the Coulomb attraction and the
centripetal force we obtain the dependence of the energy from r, namely

m
v2

r
=

1

4πεo

e2

r2
, (3)

which gives 1

1

2
mv2 =

1

2

[
1

4πεo

e2

r

]
⇒ (4)

E = −1

2

[
1

4πεo

e2

r

]
, (5)

v =

√√√√ e2

(4πεo)mr
. (6)

Inserting m = 9.11 × 10−31kg, e = 1.60 × 10−19coul, and εo = 8.85 ×
10−12coul2/Nm2 into eq. (6) we get that the electron will approach the
speed of light only at a radius r ∼ 2.82 × 10−15m = 2.82fm 2. This shows
that hypotheses (iii.) is reasonable: for most of the trip along the spiral the
alectron velocity is much smaller then the speed of light.

From eq. (3) we get the acceleration of the electron as

a =
1

4πεo

e2

mr2
. (7)

Taking the derivative of eq. (5) with respect to time and substituting the
result and eq. (7) into Larmor formula (eq. (1)) we get

1

4πεo

e2

2r2
dr

dt
= −

(
1

4πεo

)2 2

3

q2

c3
e4

m2r4
. (8)

Integrating this eq. between R and the nucleus radius ro we get the lifespan
τ of the electron as

τ =
∫ τ

0
dt = −3(4πεo)

2

4

m2c3

e4

∫ ro

R
r2dr . (9)

Since R ≫ ro (R = 0.5Å and ro ∼ 1fm) we get

τ =
(4πεo)

2

4

m2c3R3

e4
≃ 1.32× 10−11s . (10)

1Note that this is nothing else than the virial theorem for Coulomb force: T = −V/2
⇒ E = T + V = V/2.

2The nucleus radius is of the order of magnitude of 1fm.
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-Problem 4- A nonrelativistic electron with initial speed vo is aimed
directly at a repulsive Coulomb field V (r) = −Ze/r (i.e., a negative point
charge Q = −Ze). The electron decelerates, comes to rest, and accelerates
outward as it returns to infinity. Show that the final kinetic energy of the
electron is approximately:

1

2
mv2f =

1

2
mv2o

(
1− 16v3o

45Zc3

)
.

(This is H&M, problem 8-12).

SOLUTION

For a nonrelativistic electron v ≪ c so we can approximately describe its loss
of energy by radiation, through the Larmor formula (which holds exactly
only in the rest frame of the particle in the framework of classical electrody-
namics), namely

dE

dt
= − 1

4πεo

2

3

q2

c3
·
v
2
= −α

·
v
2

, (1)

where E is the total energy of the particle. It will be usefull to rewrite eq.
(1) as

dE

dv
=

dE

dt

dt

dv
= −α

·
v . (2)

The problem can be treated as a one dimensional problem where the total
energy of the charged particle is given by its kinetic energy and its interaction
with the coulomb field generated by a charge −ze at the origin, namely

E =
1

2
mv2 − ze2

x
. (3)

The particle comes from x = ∞ with an initial total energy

Eo =
1

2
mv2o , (4)

decelerates, come at rest after loosing energy ∆E by radiation and return to
infinity loosing again an energy ∆E by radiation and with an kinetic energy

Ef =
1

2
mv2f , (5)
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1 Since at x = ∞ the potential energy of the charged particle due to the
Coulomb field of the scattering center is zero we have

2∆E = Ef − Eo =
1

2
mv2f −

1

2
mv2o . (6)

In order to solve the problem we have to find ∆E and to show that

2∆E = Eo

[
16v3o
45Zc3

]
(7)

From eq. (2) and using Newton’ s law we get

dE

dv
= −αa = −α

ze2

mx2
. (8)

Next we assume a small radiation by the nonrelativistic particle and approx-
imate E ∼ Eo in eq. (3), namely solving for x

x =
2ze2

mv2 − 2E
. (9)

Sobstituting eq. (9) into eq. (8) we obtain a differential equation which
integrated gives

∆E =
∫ Ef

Eo

dE = − α

4ze2

∫ 0

vo
dv(m2v4 − 4mv2E + 4E2)

=
α

4ze2

(
m2v

5
o

5
−mEo

4v3o
3

+ 4E2
ovo

)

=
α

4ze2

(
2

5
− 4

3
+ 2

)
Eov

3
o =

α

4ze2
16

15
Eov

3
o , (10)

and recolling the definition of α in eq. (1) we get in the end

∆E = Eo
1

2

[
16v3o
45Zc3

]
, (11)

which is the desired result (compare with eq. (7)).

1From the Larmor formula follows that the power radiated by the particle is propor-
tional to the square of its acceleration, and the deceleration in approaching the scattering
center must be equal in absolute value to the acceleration in leaving it since in both travels
the force acting on the particle is the same.


