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Homework # 10 Solutions

set of units used: MKSA

-Problem 1- A spherical shell of charge undergoes purely radial oscilla-
tions. Show that no radiation is emitted. (This is H&M, problem 9-2).

SOLUTION

We will give two solutions of the problem: a long one (i.) and a short one
(ii.)

i. Consider the limit case in which the distribution of the source currents
generated by the shell oscillations (J(r′, t)), is confined into a region
very small with respect to its distance from the point of observation,
namely 1

d ≪ r , (1)

where d is of the order of magnitude of the dimension of the source and
r ≡ |x− x′| is the distance between the source, at x′ and the point at
which we measure the fields x. In this limit the following relation holds

|x− x′| ≃ x− x′
(
x

x

)
, (2)

so that

1

r
≃ 1

x

(
1 +

x · x′

x2

)
. (3)

The general solution for the vector potential generated by a localized
oscillating source is

A(x, t) =
µo

4π

∫ J(x′, t− r/c)

r
dx′ . (4)

1This limit case is a good approximation either for the so called radiation zone,
defined by d ≪ λ ≪ r, or for the static zone, defined by d ≪ r ≪ λ.
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Assuming a sinusoidal time dependence of the current density, J(r′, t) =
J(r′) exp(−iωt) and using approximation (3) we get

A(x, t) =
µoe

−iω(t−x/c)

4πx

∫
J(x′)e−ikr′r̂dx′ , (5)

where k = ω/c and we kept only the dominant term in kx. Since for
the spherical shell with oscillating radius we have J(r′, t) ∝ r′ then
from eq. (5) we get

A(x[≫ d, λ], t) ∝
∫
r′f(r′ · r) dr′ = 0 . (6)

where f is a certain function. Then a spherical shell of constant total
charge whose radius scillates does not radiate.

ii. From the radiation zone the Electric field of the spherical shell whose
radius oscillates is indistinguishable from the one of a point charge of
constant charge Q 2 (the total charge on the shell is infact constant).
This means that the electric field due to the oscillating shell is a static
field: it coincides with the one of an electric monopole with constant
charge. Then it does not radiate 3

2According to Gauss’ s law the field outside is exactly Qr̂/(4πϵor
2), regardless of the

fluctuations in size.
3In the acoustic analog, by the way, monopoles radiate: witness the croak of a bullfrog
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-Problem 2- A piece of wire bent into a loop, as shown in figure 1,
carries a current that increases linearly with time:

I(t) = αt . (1)

Calculate the retarded vector potential A at the center. Find the electric
field at the center. Why does this (neutral) wire produces an electric field?
(Why can’t you determine the magnetic field from this expression for A?)
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Figure 1: Neutral wire bent in a loop and carring current I(t) = αt.

SOLUTION

Since the wire is electrically neutral the scalar potential is zero. The retarded
vector potential at the center is given by

A(O, t) = A1(O, t) +A2(O, t) +A3(O, t) +A4(O, t) , (2)

where Ai are the vector potential due to the i-th piece of wire (see figure 1),
namely

Ai(x, t) =
µo

4π

∫ Ji(x
′, t− r/c)

r
dx′ , (3)

where r = |x− x′| and Ji(x
′, t− r/c) is the current density in the i-th piece

of wire calculated at the retarded time. In the problem we have to calculate



Physics 336 page 4 Due Nov. 15, 1995

the vector potential at x = O then r = x′ For the various pieces of wire (see
figure 1) we have

J1(x
′, t− r/c) = x̂′δ(z′)δ(y′)θ(−x′ − a)θ(x′ + b)α(t− r/c) , (4)

J3(x
′, t− r/c) = x̂′J1(−x′, t− r/c) , (5)

J2(x
′, t− r/c) = (x̂′ sin θ − ŷ′ cos θ)δ(z′)δ(r − a)α(t− r/c) , (6)

J4(x
′, t− r/c) = −(x̂′ sin θ + ŷ′ cos θ)δ(z′)δ(r − b)α(t− r/c) , (7)

where θ(x) is the Heaviside step-function defined as θ(x) = 1 for x > 0 and
θ(x) = 0 otherwise. Inserting these expressions into eq (3) we get

A1 = A3 = x̂′αµo

4π

∫ b

a

t− x/c

x
dx (8)

= x̂′
(
αµo

4π
t ln

(
b

a

)
− αµo

4πc
(b− a)

)
, (9)

A2 = x̂′ µo

4π

∫ π

0

t− a/c

a
sin θ adθ = x̂′ µo

2π
(t− a/c) , (10)

A4 = −x̂′ µo

4π

∫ π

0

t− b/c

b
sin θ bdθ = −x̂′ µo

2π
(t− b/c) . (11)

We can finally collect all these results to get A as

A = (A1 +A3) + (A2 +A4) (12)

= x̂′
{
µoα

2π

[
t ln

(
b

a

)
− (b− a)

c

]
+

µoαt

2π

(b− a)

c

}
(13)

= x̂′µoαt

2π
ln

(
b

a

)
. (14)

We can then find the electric field at the center O as

E(O, t) = −∂A(O, t)

∂t
= −x̂′µoα

2π
ln

(
b

a

)
. (15)

The neutral wire produces an electric field because it contains accelerated
charges. We cannot determine the magnetic field from the expression (12)
for A because we have only calculated A at one point in space.
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-Problem 3- Find the radiation resistance of the wire joining the two
ends of a dipole. (This is the resistance that would give the same average
power loss - to heat - as the oscillating dipole in fact puts out in the form
of radiation.) Show that R = 790(s/λ)2Ω, where λ is the wavelength of the
radiation. For the wires in ordinary radio (say, s = 5cm), should you worry
about the radiative contribution to the total resistance?

SOLUTION

Imagine two tiny metal spheres separated by a distance s and connected by
a fine wire. Assume the system as a whole is electrically neutral, so if at
time t the charge on one sphere is q(t), then the charge on the other sphere
is −q(t). Suppose further that we somehow contrive to drive the charge back
and forth through the wire, from one end to the other, at a frequency ω

q(t) = qo cos ωt . (1)

This is a simple model for an oscillating electric dipole

p(t) = q(t)s , (2)

where s is the vector connecting the two spheres. The average power radiated
from the dipole is

⟨P ⟩ = 1

4πεo

p2oω
4

3c3
, (3)

where ω is the frequency of the radiation and po = sqois the maximum value
of the dipole moment.

The average power dissipated in heat (by Joule effect) into the wire joining
the two spheres is

⟨P ⟩ = R⟨I2⟩ , (4)

where

⟨I2⟩ = ⟨
·
q
2

(t)⟩ = ⟨q2oω2 sin2(ωt)⟩ (5)

=
p2oω

2

s2
⟨sin2ωt⟩ = p2oω

2

2s2
. (6)
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Equating eqs. (3) and (4) as suggested by the problem and using the relation
ω = 2πc/λ we find the radiation resistance as

R =

[
1

4πεo

p2oω
4

3c3

] [
p2oω

2

2s2

]−1

=
2π

3cεo

(
s

λ

)2

(7)

∼ 790Ω
(
s

λ

)2

. (8)

In ordinary radio s ∼ 5cm. Short radio waves: 10−1cm − 102m, radio
broadcast: 102m− 104m. Taking a wavelenght of 103m ≫ s (we want to be
as close as possible to the condition of perfect dipole) we get

R ∼ 2× 10−6Ω . (9)

then we shouldn’ t worry about the radiative contribution to the total resis-
tance.
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-Problem 4- As you know, the magnetic north pole of the earth does
not coincide with the geographic north pole - in fact, it’ s off by about 11o.
Relative to the fixed axis of rotation, therefore, the magnetic dipole moment
vector of the earth is changing with time, and the earth must be giving off
magnetic dipole radiation.

(a) Find the formula for the total power radiated, in terms of the following
parameters

Ψ (the angle between the geographic and magnetic north poles) ,

M (the magnitude of the earth’ s magnetic dipole moment) ,

ω (the angular velocity of rotation of the earth) .

(b) Using the fact that the earth’ s magnetic field is about 1/2gauss at the
equator, estimate the magnetic dipole moment M of the earth.

(c) Find the power radiated in watts

(d) Pulsars are thought to be rotating neutron stars, with a typical radius
of 10km, a rotational period of 10−3s, and a surface magnetic field of
108T . What sort of radiated power would you expect from such a star?
(See J. P. Ostriker and J. E. Gunn, Astrophys. J., 157, 1395 (1969).)

SOLUTION

(a) The formula for the total power radiated by the earth is

⟨P ⟩ = −2
1

4πεo

m2
⊥ω

4

3c5
, (1)

where m⊥ = M sinΨ is the components of the magnetic-dipole mo-
ment perpendicular to the rotation axes. The factor of two can be ex-
plained with the following superposition argument. When we project
the magnetic-dipole moment M of the earth on the rotation axis and
on other two perpendicular axis on the equatorial plane, the component
along the rotation axis is constant with time and doesn’ t contribute
to the radiation, while the other two components consitutes oscillating
magnetic-dipole moment with an amplitude given by M sinΨ.
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(b) Taking the ẑ axes coincident with the direction of the magnetic-dipole
moment of the earth we have for the magnetic field at an angle θ

B =
µo

4π

M

R3
(2 cos θr̂+ sin θθ̂) . (2)

At the equator θo ∼ 90o − 11o = 79o. Knowing that the earth’ s
magnetic field is about Beq ∼ 0.5gauss = 5× 10−5T at the equator we
can then estimate the magnetic-dipole moment M of the earth as

M =
Beq4πR

3

µo

√
4 cos2 θo + sin2 θo

∼ 1.23× 1023Am2 (3)

where we used R ∼ 6.37× 106m and µo ∼ 4π10−7N/A2.

(c) From eq. (1) and using εo = 8.85×10−12coul2/Nm2 and c = 3×108m/s
we get

⟨P ⟩ ∼ 4× 10−5W . (4)

(d) Using again eq. (1) but this time using B ∼ 108T , R ∼ 104m and
ω ∼ 2π/10−3rad/s ∼ 6.3× 103rad/s we get

⟨P ⟩ ∼ 2× 1036W . (5)


