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Homework # 1 Solutions

all problems are from D.J.Griffiths: “introduction to electrodynamics” unless stated
set of units used: MKSA

-SOLUTION to problem 1.13-

Given the following definitions

r = (2—2)X+ (Y —Y)y + (2 — 2)2 ,

ro= =@ - m)? 4 -y + (2 2)?
o= = ,
,
.0 0 .
it follows:
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It’ s worthwhile to observe at this point that the following simple rule gen-
erally hold for the gradient of a function of r

V) =1 0)
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-SOLUTION to problems 1.15 (a),(b); 1.19 (a),(b)-

(a) Given v = (2%, 3x2%, —2xz) one gets for the divergence

Vv = aax(mQ) + aay(szz) + i(—sz)
= 20—2x=0 ,
and for the curl
X y oz
_ o o0 0
Uy Uy Uy

oz
= %x(—6z2) +y(22) +2(32%) ,

+z [a(?sz) — —(2%)

(b) Given v = (zy,2yz, 3zz) one gets for the divergence

0 0 0
v o= — = (2 =
V-v ax(any) + 8y( yz) + 82(3233)
=y+2z2+3z ,
and for the curl
.| 0 0
Vxv = x [324(3226) — aZ(Qyz)]
|0 0
+3 |5t 4 350)]

+2 [gc@yz) - ;y(xy)]

= X(—2y) +y(-32) +2z(—2) .
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-SOLUTION to problem 1.31-

We have to test the divergence theorem for the function v = (zy, 2yz, 3zz).

/‘/V-vdT:ng-da, (1)

where V' is the volume of the cube shown in fig. 1 and S is its surface. We

z

T fs /nz

ny n3

Figure 1: cube of side 2. n; is the unitary vector orthogonal to the i** face.

will calculate separately the right hand side (RHS) and the left hand side
(LHS) of equation (1) and show that they are equal:

(LHS) As calculated in the solution to problem 1.15 (b) V- v =y + 2z + 3z.
/ V.vdr = /(y—i—?z—l—?)x) drdydz
v v
2 2 2
= / dz/ dy/ dz(y + 2z + 3x)
0 0 0
2 2
= / dz/ dy(2y + 4z + 6)
0 0
2
- / dz(4+ 82+ 12) = 8 + 16 + 24 = 48
0

(RHS)

v-da = / v-n; da
%5' Xl: ith face ’
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= (/ 2yz dxdz — / 2yz dxdz)
3rd face 4tk face
+ (/ 3zx dxdy — 3zx dxdy)
5th face 6th face
+ (/ xy dydz — / xy dydz)
15t face 2nd face
2 2 2 2 2 2
= / / 2y dydz+/ / 4z d:cdz—i—/ / 6z dxdy
0 Jo 0o Jo 0o Jo

2 2 2
_ /4dz+/ 8da:+/ 12 dy
0 0 0

= 8+16+24 =48
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-SOLUTION to problem 1.33-

We have to test Stokes’ theorem for the function v = (xy, 2yz, 3zx) .

/Svada:va-dl, (1)

where S is the triangula shaded area shown in fig. 2 and L is its boundary.

di=(-y ) dy

Figure 2: Triangular surface S.

We will calculate separately the right hand side (RHS) and the left hand side
(LHS) of equation (1) and show that they are equal:

(LHS) As calculated in the solution to problem 1.15 (b) Vxv = (—2y, —3z, —x).

/S(V Xv)-da = /S(V X V) - xdzdy = /S(—2y) xdzdy

— /02 dy /OH dz(—2y) = /02 2y(y —2) dy

8

2 2
= dy —20*) dy = -8 — 8 = ——
/O(y y°) dy 3 3

(RHS)

Y{Lv-dl = Z/pathiv-dl 2)

=1
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= [/20 v, g2z dz + /02 v, (—y) dy (3)

Sy R e 2R 5]
- [0+0+/202y(2—y)dy] ()
8

2 2
= 4y —2y*) dy = -8 —8 = —— . 6
|y =29 ay = - (6)
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-SOLUTION to problem 2.1 (a), (b)-

Figure 3: shows twelve equal charges, ¢, fixed at the corners of a regular
12-sided polygon (one on each numeral of a clock face). n; is the versor
poynting the center of the polygon from the i'® charge. A test charge Q is
at the center of the polygon.

(a) Given the arrangement of charges depicted in fig. 3 and assuming fixed
the charges ¢ at the corners of the 12-sided regular polygon the force
exercited by the i'"-charge (i.e. the charge at “i o’clock”) on a test
charge @) at the center of the polygon can be written as

_ 1 Qg
Are, L "7

where L is half dyagonal of the polygon and n; is the unit vector point-
ing the test charge from the i**-charge. The total force exercited on Q
is then

12 1 qQ 12
; 4me, L n (1)

i=1

6 6
= Py mne) =TS mon)=0 . @




Physics 335 page 9 Due Jan 19, 1995

(b) when we remove the charge at 6 o’clock the force on @ will be

as follows from eq. (1).
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-SOLUTION to problem 2.2-

Figure 4: two charges ¢; and ¢ of equal charge q.

(a) When ¢1 = 2 = ¢

L (e, 4 ; 1 4 .
By = Ame, <T127q1 Togy + 2 r”‘”) T drme, 22 + 22 /4 (Fpqr + Fpgo)
1 q . 2z 1 22q .,
= Z =
dneo 2+ BN\ [2ppja)  Ameo (24 &[4
1 2q Ldfe<l . 1 (2q ) )
- = z— (5 +0((d
Tre, 2T (@2 7 P, 2 T O

In the limit z > d the dominant term in E, resembles the electric field
generated in P by a charge 2q at the origin.

(b) when ¢1 = —¢q2 =¢q

B, — — (Lg, - Lo, )= T )
P 477'50 qul pq1 quQ Pq2 47’(’60 22+d2/4 pq1 Pq2

1 qd .

1 q . d
© dme, 22+ d2/4 (X /.2 +d2/4) = dme, (22 + d2/4)32
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1 qd Ldfz<1 . 1 [qd
23

dne, B+ (d)2)2/a 2 Xige, +0((d/2)2)>

In the limit 2 > d the dominant term in E, resembles the electric field
generated in P by a “pure” dipole —qdX at the origin .

!The assembly of charge used in this part (b) of the problem is called a “physical”
dipole of magnitude p = —qdx. The “pure” dipole is defined as a physical dipole with ¢
infinitely big (¢ — e(c0)) and d infinitely small in such a way to keep the product ¢d = p
a finite quantity. p is the magnitude of the dipole.
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-SOLUTION to problem 2.5-

The electric field at a point P on the axis of a circular loop of radius r
carrying a uniform line charge A (see fig. 5) can be calculated as follows.

Adl (

Figure 5: loop of radius r carrying a uniform line charge \.

First consider the electric field due to two diametral opposite elementary
pieces dl of the circular loop

1 2cosf
dE, = —————()\dl)z
P 47r€or2+z2< )z,
z

NEEw

then sum over half-loop to obtain the electric field due to all the uniformly
charged loop

cosf =

1 2z
E, — / dE, = 7 / Adl
P 1/2—loop P z 1/2—loop 4dme, (7"2 + 22)3/2
1 22\ 1 2mrAz
VA / dl =17z
drte, (12 + 22)3/2 J1/2-100p dme, (r2 + 22)3/2
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-SOLUTION to problem 2.10-

Using Gauss’s law we know that the flux of the electric field due to the

face 1

face 2 face 3

Figure 6: cube with a charge ¢ at one of its corners.

charge ¢ placed at one of the corner of the cube of fig. 6 through a surface
enclosing the charge must be equal to ¢/¢, . The flux of the electric field, for
how it is defined ([ E - da), is different from zero only on the faces 1, 2 and
3 of the cube (see fig. 6; on the other 3 faces the electric field component
orthogonal to the face vanishes) and for the symmetry of the problem has an
equal value on each of the three faces. Since only 1/8 of the total flux ¢/e,
goes through the cube one can then conclude that the flux of the electric
field through the shaded face must be

[ Bda- L
face—3 (8 * 3)80



