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Preface

The electron is the main actor of this assay, a mysterious character and at the same time om-
nipresent in our daily life. At the same time elementary and complex. It is an elementary particle
and as such is described by a vector, a wave function, of a �nite dimensional irreducible unitary
representation of its group of symmetries (the Galileo group in the non-relativistic case and the
Poincare' group in the relativistic case, extended to the parity transformation). The invariants of
the group are the mass and the spin and the electron has spin 1/2. The spin-statistics theorem
states that, as a consequence of Lorentz invariance and of locality, half integer spin particles
must obey to Fermi statistics and integer spin particles must obey to Bose statistics.

Its role in a ionic crystal in the Feyman polaron problem, in atomic structure in the Mendeleev
periodic system, and in the redox chemical bond is discussed as few electron systems examples.
The assay is concluded with the properties of a many electron system, the Jellium. Its gound
state and �nite temperature state are discussed from a (computational) theoretical point of view.
Some phenomenology is also presented in the very end.
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Chapter 1

Introduction

Composition:
Statistics:
Family:
Generation:
Interactions:
Symbol:
Antiparticle:
Theorized:
Discovered:
Mass (m):

Mean lifetime:
Electric charge:

Magnetic moment:

Spin:
Weak isospin:
Weak hypercharge:

Elementary particle [1]
Fermionic [2]
Lepton [2]
First [2]
Weak, electromagnetic, gravity [2]
e´, β´ [2]
Positron [2]
Richard Laming (1838-1851), [3] G. Johnstone Stoney (1874) and others.
J. J. Thomson (1897) [4]
9.1093837139p28q ˆ 10´31 kg [2]
5.485799090441p97q ˆ 10´4 Da
r1822.888486209p53qs´1 Da
0.51099895069p16q MeV/c2 [2]
ą 6.6 ˆ 1028 years [5] (stable)
´1 e [2]
´1.602176634 ˆ 10´19 C [2]
´9.2847646917p29q ˆ 10´24 J/T [2]
´1.00115965218128p18q µB [2]
1
2 ℏ [2]
LH: ´ 1

2 , RH: 0 [2]
LH: ´1, RH: ´2 [2]

The electron is a subatomic particle with a negative one elementary electric charge. Electrons
belong to the �rst generation of the lepton particle family,[14] and are generally thought to be
elementary particles because they have no known components or substructure.[1] The electron's
mass is approximately 1

1836 that of the proton. Quantum mechanical properties of the electron
include an intrinsic angular momentum (spin) of a half-integer value, expressed in units of the
reduced Planck constant, ℏ. Being fermions, no two electrons can occupy the same quantum state,
per the Pauli exclusion principle.[14] Like all elementary particles, electrons exhibit properties
of both particles and waves: They can collide with other particles and can be di�racted like
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1. INTRODUCTION

light. The wave properties of electrons are easier to observe with experiments than those of
other particles like neutrons and protons because electrons have a lower mass and hence a longer
de Broglie wavelength for a given energy.

Electrons play an essential role in numerous physical phenomena, such as electricity, mag-
netism, chemistry, and thermal conductivity; they also participate in gravitational, electromag-
netic, and weak interactions.[16] Since an electron has charge, it has a surrounding electric �eld;
if that electron is moving relative to an observer, the observer will observe it to generate a
magnetic �eld. Electromagnetic �elds produced from other sources will a�ect the motion of an
electron according to the Lorentz force law. Electrons radiate or absorb energy in the form of
photons when they are accelerated. [6]

Laboratory instruments are capable of trapping individual electrons as well as electron plasma
by the use of electromagnetic �elds. Special telescopes can detect electron plasma in outer space.
Electrons are involved in many applications, such as tribology or frictional charging, electrolysis,
electrochemistry, battery technologies, electronics, welding, cathode-ray tubes, photoelectricity,
photovoltaic solar panels, electron microscopes, radiation therapy, lasers, gaseous ionization de-
tectors, and particle accelerators.

Interactions involving electrons with other subatomic particles are of interest in �elds such
as chemistry and nuclear physics. The Coulomb force interaction between the positive protons
within atomic nuclei and the negative electrons without allows the composition of the two known
as atoms. Ionization or di�erences in the proportions of negative electrons versus positive nuclei
changes the binding energy of an atomic system. The exchange or sharing of the electrons
between two or more atoms is the main cause of chemical bonding. [7]

Electrons participate in nuclear reactions, such as nucleosynthesis in stars, where they are
known as beta particles. Electrons can be created through beta decay of radioactive isotopes and
in high-energy collisions, for instance, when cosmic rays enter the atmosphere. The antiparticle
of the electron is called the positron; it is identical to the electron, except that it carries electrical
charge of the opposite sign. When an electron collides with a positron, both particles can be
annihilated, producing gamma ray photons.

The ancient Greeks noticed that amber attracted small objects when rubbed with fur. Along
with lightning, this phenomenon is one of humanity's earliest recorded experiences with electric-
ity. In his 1600 treatise De Magnete, the English scientist William Gilbert coined the Neo-Latin
term electrica, to refer to those substances with property similar to that of amber which at-
tract small objects after being rubbed. Both electric and electricity are derived from the Latin
	electrum (also the root of the alloy of the same name), which came from the Greek word for
amber, ηλϵκτρoν (	elektron).

In 1838, British natural philosopher Richard Laming �rst hypothesized the concept of an
indivisible quantity of electric charge to explain the chemical properties of atoms. [3] Irish
physicist George Johnstone Stoney named this charge �electron� in 1891, and J. J. Thomson and
his team of British physicists (John S. Townsend and H. A. Wilson) identi�ed it as a particle
in 1897 during the cathode-ray tube experiment. [4] J. J. Thomson would subsequently in 1899
give estimates for the electron charge and mass as well: e „ 6.8ˆ 10´10esu and m „ 3ˆ 10´26g.

The electron's charge was more carefully measured by the American physicists Robert Mil-
likan [8] and Harvey Fletcher in their oil-drop experiment of 1909, the results of which were
published in 1911. This experiment used an electric �eld to prevent a charged droplet of oil
from falling as a result of gravity. This device could measure the electric charge from as few
as 1-150 ions with an error margin of less than 0.3%. Comparable experiments had been done
earlier by Abram Io�e, who independently obtained the same result as Millikan using charged
microparticles of metals, then published his results in 1913. However, oil drops were more stable
than water drops because of their slower evaporation rate, and thus more suited to precise ex-
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1. INTRODUCTION

perimentation over longer periods of time. The experiment of Millikan took place in the Ryerson
Physical Laboratory at the University of Chicago. Millikan received the Nobel Prize in Physics
in 1923.

In particle physics, the electroweak interaction or electroweak force is the uni�ed description of
two of the fundamental interactions of nature: electromagnetism (electromagnetic interaction)
and the weak interaction. Although these two forces appear very di�erent at everyday low
energies, the theory models them as two di�erent aspects of the same force. Above the uni�cation
energy, on the order of 246 GeV,1 they would merge into a single force. Thus, if the temperature
is high enough � approximately 1015 K � then the electromagnetic force and weak force merge
into a combined electroweak force. [9, 10, 11] Fermions with negative chirality 2 (also called
�left-handed� fermions) have a weak isospin T “ 1

2 and can be grouped into doublets with
T3 “ ˘ 1

2 that behave the same way under the weak interaction. By convention, electrically
charged fermions are assigned T3 with the same sign as their electric charge. In all cases, the
corresponding anti-fermion has reversed chirality (�right-handed� antifermion) and reversed sign
T3. Fermions with positive chirality (�right-handed� fermions) and anti-fermions with negative
chirality (�left-handed� anti-fermions) have T “ T3 “ 0 and form singlets that do not undergo
charged weak interactions. Particles with T3 “ 0 do not interact with W˘ gauge bosons; however,
they do all interact with the Z0 gauge boson.

The weak isospin conservation law relates to the conservation of T3; weak interactions conserve
T3. It is also conserved by the electromagnetic and strong interactions. However, interaction with
the Higgs �eld does not conserve T3, as directly seen in propagating fermions, which mix their
elicities by the mass terms that result from their Higgs couplings. Since the Higgs �eld vacuum
expectation value is nonzero, particles interact with this �eld all the time, even in vacuum.
Interaction with the Higgs �eld changes particles' weak isospin. Only a speci�c combination
of electric charge is conserved. The electric charge, Q “ T3 ` 1

2YW, where YW is the weak
hypercharge. In 1961 Sheldon Glashow proposed this relation by analogy to the Gell-Mann-
Nishijima formula for charge to isospin. [12]

Have you ever asked yourselves how can we be certain that the Sun is a giant nuclear candle?
If Galileo Galilei was here he would ask: �where are the proofs?� The proofs can be found in
the Gran Sasso Laboratory where we measure the �ux of solar neutrinos. Every second, on
every centimeter square of the Earth, arrive something like sixty billions neutrinos. Night and
Day. In fact, Earth is transparent to these mysterious particles that goes through anything
without ever stopping. If our eyes could see the neutrinos, the night would not exist! And
what do these neutrinos tell us? Performing the exact calculations, we discover that their �ux
corresponds exactly to that predicted for a perfectly regulated nuclear candle. But who controls
this ��re�? The answer lies in the extraordinary discovery of Fermi �rst and Salam, Weinberg,
and Glashow later: The weak charge, that Enrico Fermi identi�ed as a new force of Nature. This
is the �security valve� which allows the production of the Sun �fuel�: the neutrinos. Even if the
Sun is made almost exclusively by protons and electrons, the Fermi force allows the necessary
transformation for fusion to happen. Without this perfect regulation, the Sun would not be our
�neverending� source of light and life.

1The particular number 246 GeV is taken to be the vacuum expectation value v “ pGF

?
2q´1{2 of the Higgs

�eld (where GF is the Fermi coupling constant).
2The chirality is the intrinsic helicity discussed in Section 2.5.1.
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Appendix A

Particle Data Group

We include here the particle listing for the electron from the Particle Data Group [2] followed by
an illustrative key.
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Citation: S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024)

e J = 1
2

e MASS (atomic mass units u)e MASS (atomic mass units u)e MASS (atomic mass units u)e MASS (atomic mass units u)

The primary determination of an electron’s mass comes from measuring
the ratio of the mass to that of a nucleus, so that the result is obtained in
u (atomic mass units). The conversion factor to MeV is more uncertain
than the mass of the electron in u; indeed, the recent improvements in
the mass determination are not evident when the result is given in MeV.
In this datablock we give the result in u, and in the following datablock in
MeV.

VALUE (10−6 u) DOCUMENT ID TECN COMMENT

548.579909065±0.000000016548.579909065±0.000000016548.579909065±0.000000016548.579909065±0.000000016 TIESINGA 21 RVUE 2018 CODATA value

• • • We do not use the following data for averages, fits, limits, etc. • • •
548.579909070±0.000000016 MOHR 16 RVUE 2014 CODATA value

548.57990946 ±0.00000022 MOHR 12 RVUE 2010 CODATA value

548.57990943 ±0.00000023 MOHR 08 RVUE 2006 CODATA value

548.57990945 ±0.00000024 MOHR 05 RVUE 2002 CODATA value

548.5799092 ±0.0000004 1 BEIER 02 CNTR Penning trap

548.5799110 ±0.0000012 MOHR 99 RVUE 1998 CODATA value

548.5799111 ±0.0000012 2 FARNHAM 95 CNTR Penning trap

548.579903 ±0.000013 COHEN 87 RVUE 1986 CODATA value

1BEIER 02 compares Larmor frequency of the electron bound in a 12C5+ ion with the

cyclotron frequency of a single trapped 12C5+ ion.
2 FARNHAM 95 compares cyclotron frequency of trapped electrons with that of a single

trapped 12C6+ ion.

e MASSe MASSe MASSe MASS

The mass is known more precisely in u (atomic mass units) than in MeV.

The conversion is: 1 u = 931.494 102 42(28) MeV/c2 (2018 CODATA
value, TIESINGA 21). The conversion error dominates the uncertainty of
the masses given below.

VALUE (MeV) DOCUMENT ID TECN COMMENT

0.51099895000±0.000000000150.51099895000±0.000000000150.51099895000±0.000000000150.51099895000±0.00000000015 TIESINGA 21 RVUE 2018 CODATA value

• • • We do not use the following data for averages, fits, limits, etc. • • •
0.5109989461 ±0.0000000031 MOHR 16 RVUE 2014 CODATA value

0.510998928 ±0.000000011 MOHR 12 RVUE 2010 CODATA value

0.510998910 ±0.000000013 MOHR 08 RVUE 2006 CODATA value

0.510998918 ±0.000000044 MOHR 05 RVUE 2002 CODATA value

0.510998901 ±0.000000020 1,2 BEIER 02 CNTR Penning trap

0.510998902 ±0.000000021 MOHR 99 RVUE 1998 CODATA value

0.510998903 ±0.000000020 1,3 FARNHAM 95 CNTR Penning trap

0.510998895 ±0.000000024 1 COHEN 87 RVUE 1986 CODATA value

0.5110034 ±0.0000014 COHEN 73 RVUE 1973 CODATA value

https://pdg.lbl.gov Page 1 Created: 5/31/2024 10:15



Citation: S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024)

1Converted to MeV using the 1998 CODATA value of the conversion constant,
931.494013 ± 0.000037 MeV/u.

2BEIER 02 compares Larmor frequency of the electron bound in a 12C5+ ion with the

cyclotron frequency of a single trapped 12C5+ ion.
3 FARNHAM 95 compares cyclotron frequency of trapped electrons with that of a single

trapped 12C6+ ion.

(me+ − me−) / maverage(me+ − me−) / maverage(me+ − me−) / maverage(me+ − me−) / maverage

A test of CPT invariance.

VALUE CL% DOCUMENT ID TECN COMMENT

<8× 10−9<8× 10−9<8× 10−9<8× 10−9 90 1 FEE 93 CNTR Positronium spectroscopy

• • • We do not use the following data for averages, fits, limits, etc. • • •
<4× 10−23 90 2 DOLGOV 14 From photon mass limit

<4× 10−8 90 CHU 84 CNTR Positronium spectroscopy

1 FEE 93 value is obtained under the assumption that the positronium Rydberg constant
is exactly half the hydrogen one.

2DOLGOV 14 result is obtained under the assumption that any mass difference between
electron and positron would lead to a non-zero photon mass. The PDG 12 limit of

1× 10−18 eV on the photon mass is in turn used to derive the value quoted here.

∣∣qe+ + qe−
∣∣/e

∣∣qe+ + qe−
∣∣/e

∣∣qe+ + qe−
∣∣/e

∣∣qe+ + qe−
∣∣/e

A test of CPT invariance. See also similar tests involving the proton.

VALUE DOCUMENT ID TECN COMMENT

<4× 10−8<4× 10−8<4× 10−8<4× 10−8 1 HUGHES 92 RVUE

• • • We do not use the following data for averages, fits, limits, etc. • • •
<2× 10−18 2 SCHAEFER 95 THEO Vacuum polarization

<1× 10−18 3 MUELLER 92 THEO Vacuum polarization

1HUGHES 92 uses recent measurements of Rydberg-energy and cyclotron-frequency ra-
tios.

2 SCHAEFER 95 removes model dependency of MUELLER 92.
3MUELLER 92 argues that an inequality of the charge magnitudes would, through higher-
order vacuum polarization, contribute to the net charge of atoms.

e MAGNETIC MOMENT ANOMALYe MAGNETIC MOMENT ANOMALYe MAGNETIC MOMENT ANOMALYe MAGNETIC MOMENT ANOMALY

µe/µB − 1 = (g−2)/2µe/µB − 1 = (g−2)/2µe/µB − 1 = (g−2)/2µe/µB − 1 = (g−2)/2

VALUE (units 10−6) DOCUMENT ID TECN CHG COMMENT

1159.65218062±0.00000012 OUR AVERAGE1159.65218062±0.00000012 OUR AVERAGE1159.65218062±0.00000012 OUR AVERAGE1159.65218062±0.00000012 OUR AVERAGE

1159.65218059±0.00000013 1 FAN 23 MRS Single electron

1159.65218073±0.00000028 HANNEKE 08 MRS Single electron

1159.6521884 ±0.0000043 VANDYCK 87 MRS − Single electron

• • • We do not use the following data for averages, fits, limits, etc. • • •
1159.65218128±0.00000018 TIESINGA 21 RVUE 2018 CODATA value

1159.65218091±0.00000026 MOHR 16 RVUE 2014 CODATA value

1159.65218076±0.00000027 MOHR 12 RVUE 2010 CODATA value

1159.65218111±0.00000074 2 MOHR 08 RVUE 2006 CODATA value

https://pdg.lbl.gov Page 2 Created: 5/31/2024 10:15



Citation: S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024)

1159.65218085±0.00000076 3 ODOM 06 MRS − Single electron

1159.6521859 ±0.0000038 MOHR 05 RVUE 2002 CODATA value

1159.6521869 ±0.0000041 MOHR 99 RVUE 1998 CODATA value

1159.652193 ±0.000010 COHEN 87 RVUE 1986 CODATA value

1159.6521879 ±0.0000043 4 VANDYCK 87 MRS + Single positron

1 FAN 23 report the most accurate measurement of the electron magnetic moment. A
one-electron quantum cyclotron is used. We do not propagate at the moment this
measurement to the fine structure and other physical constants. When discrepancies in
the independent determinations of alpha are resolved, the new measurement uncertainty
of 0.13 ppt is available for precise tests for BSM physics.

2MOHR 08 average is dominated by ODOM 06.
3 Superseded by HANNEKE 08 per private communication with Gerald Gabrielse.
4This VANDYCK 87 reault is for a positron. We do not take it into account for the
average to avoid the assumption of CPT invariance.

(ge+ − ge−) / gaverage(ge+ − ge−) / gaverage(ge+ − ge−) / gaverage(ge+ − ge−) / gaverage

A test of CPT invariance.

VALUE (units 10−12) CL% DOCUMENT ID TECN COMMENT

− 0.5± 2.1− 0.5± 2.1− 0.5± 2.1− 0.5± 2.1 1 VANDYCK 87 MRS Penning trap

• • • We do not use the following data for averages, fits, limits, etc. • • •
< 12 95 2 VASSERMAN 87 CNTR Assumes m

e+
= m

e−
22 ±64 SCHWINBERG 81 MRS Penning trap

1VANDYCK 87 measured (g−/g+)−1 and we converted it.
2 VASSERMAN 87 measured (g+ − g−)/(g−2). We multiplied by (g−2)/g = 1.2 ×
10−3.

e ELECTRIC DIPOLE MOMENT (d)e ELECTRIC DIPOLE MOMENT (d)e ELECTRIC DIPOLE MOMENT (d)e ELECTRIC DIPOLE MOMENT (d)

A nonzero value is forbidden by both T invariance and P invariance.

VALUE (10−28 e cm) CL% DOCUMENT ID TECN COMMENT

< 0.041< 0.041< 0.041< 0.041 90 1 ROUSSY 23 ESR electrons in in-
tramolecular
electric field

• • • We do not use the following data for averages, fits, limits, etc. • • •
< 0.11 90 2 ANDREEV 18 CNTR ThO molecules

< 1.3 90 3 CAIRNCROSS 17 ESR 180Hf19F
molecules

− 5570 ± 7980 ±120 KIM 15 CNTR Gd3Ga5O12
molecules

< 0.87 90 4 BARON 14 CNTR ThO molecules

< 6050 90 5 ECKEL 12 CNTR Eu0.5Ba0.5TiO3
molecules

< 10.5 90 6 HUDSON 11 NMR YbF molecules

6.9 ± 7.4 REGAN 02 MRS 205Tl beams

18 ± 12 ± 10 7 COMMINS 94 MRS 205Tl beams

− 27 ± 83 7 ABDULLAH 90 MRS 205Tl beams

− 1400 ± 2400 CHO 89 NMR TlF molecules

− 150 ± 550 ±150 MURTHY 89 Cs, no B field
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− 5000 ±11000 LAMOREAUX 87 NMR 199Hg

19000 ±34000 90 SANDARS 75 MRS Thallium

7000 ±22000 90 PLAYER 70 MRS Xenon

< 30000 90 WEISSKOPF 68 MRS Cesium

1ROUSSY 23 gives a measurement corresponding to this limit as (−1.3 ± 2.0 ± 0.6) ×
10−30 ecm.

2ANDREEV 18 gives a measurement corresponding to this limit as (4.3 ± 3.1 ± 2.6) ×
10−30 ecm.

3CAIRNCROSS 17 gives a measurement corresponding to this limit as (0.09 ± 0.77 ±
0.17)× 10−28 ecm.

4BARON 14 gives a measurement corresponding to this limit as (−0.21± 0.37± 0.25)×
10−28 ecm.

5 ECKEL 12 gives a measurement corresponding to this limit as (−1.07 ± 3.06 ± 1.74)×
10−25 ecm.

6HUDSON 11 gives a measurement corresponding to this limit as (−2.4 ± 5.7 ± 1.5)×
10−28 ecm.

7ABDULLAH 90, COMMINS 94, and REGAN 02 use the relativistic enhancement of a
valence electron’s electric dipole moment in a high-Z atom.

e− MEAN LIFE / BRANCHING FRACTIONe− MEAN LIFE / BRANCHING FRACTIONe− MEAN LIFE / BRANCHING FRACTIONe− MEAN LIFE / BRANCHING FRACTION

A test of charge conservation. See the “Note on Testing Charge Conserva-
tion and the Pauli Exclusion Principle” following this section in our 1992
edition (Physical Review D45D45D45D45 S1 (1992), p. VI.10).

Most of these experiments are one of three kinds: Attempts to observe
(a) the 255.5 keV gamma ray produced in e− → νe γ, (b) the (K) shell
x ray produced when an electron decays without additional energy deposit,
e.g., e− → νe νe νe (“disappearance” experiments), and (c) nuclear de-
excitation gamma rays after the electron disappears from an atomic shell
and the nucleus is left in an excited state. The last can include both weak
boson and photon mediating processes. We use the best e− → νe γ limit
for the Summary Tables.

Note that we use the mean life rather than the half life, which is often
reported.

e → νe γ and astrophysical limitse → νe γ and astrophysical limitse → νe γ and astrophysical limitse → νe γ and astrophysical limits
VALUE (yr) CL% DOCUMENT ID TECN COMMENT

>6.6 × 1028>6.6 × 1028>6.6 × 1028>6.6 × 1028 90 AGOSTINI 15B BORX e− → ν γ
• • • We do not use the following data for averages, fits, limits, etc. • • •
>1.22× 1026 68 1 KLAPDOR-K... 07 CNTR e− → ν γ

>4.6 × 1026 90 BACK 02 BORX e− → ν γ

>3.4 × 1026 68 BELLI 00B DAMA e− → ν γ, liquid Xe

>3.7 × 1025 68 AHARONOV 95B CNTR e− → ν γ

>2.35× 1025 68 BALYSH 93 CNTR e− → ν γ, 76Ge detector

>1.5 × 1025 68 AVIGNONE 86 CNTR e− → ν γ

>1 × 1039 2 ORITO 85 ASTR Astrophysical argument

>3 × 1023 68 BELLOTTI 83B CNTR e− → ν γ
1The authors of A. Derbin et al, arXiv:0704.2047v1 argue that this limit is overestimated
by at least a factor of 5.

2ORITO 85 assumes that electromagnetic forces extend out to large enough distances and

that the age of our galaxy is 1010 years.
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Disappearance and nuclear-de-excitation experimentsDisappearance and nuclear-de-excitation experimentsDisappearance and nuclear-de-excitation experimentsDisappearance and nuclear-de-excitation experiments
VALUE (yr) CL% DOCUMENT ID TECN COMMENT

>6.4× 1024>6.4× 1024>6.4× 1024>6.4× 1024 68 1 BELLI 99B DAMA De-excitation of 129Xe

• • • We do not use the following data for averages, fits, limits, etc. • • •
>1.2× 1024 90 ABGRALL 17 HPGE Ge K-shell disappearance

>4.2× 1024 68 BELLI 99 DAMA Iodine L-shell disappearance

>2.4× 1023 90 2 BELLI 99D DAMA De-excitation of 127I (in NaI)

>4.3× 1023 68 AHARONOV 95B CNTR Ge K-shell disappearance

>2.7× 1023 68 REUSSER 91 CNTR Ge K-shell disappearance

>2 × 1022 68 BELLOTTI 83B CNTR Ge K-shell disappearance

1BELLI 99B limit on charge nonconserving e− capture involving excitation of the 236.1

keV nuclear state of 129Xe; the 90% CL limit is 3.7× 1024 yr. Less stringent limits for
other states are also given.

2BELLI 99D limit on charge nonconserving e− capture involving excitation of the 57.6

keV nuclear state of 127I. Less stringent limits for the other states and for the state of
23Na are also given.

LIMITS ON LEPTON-FLAVOR VIOLATION IN PRODUCTIONLIMITS ON LEPTON-FLAVOR VIOLATION IN PRODUCTIONLIMITS ON LEPTON-FLAVOR VIOLATION IN PRODUCTIONLIMITS ON LEPTON-FLAVOR VIOLATION IN PRODUCTION

Forbidden by lepton family number conservation.

This section was added for the 2008 edition of this Review and is not
complete. For a list of further measurements see references in the papers
listed below.

σ(e+ e− → e± τ∓) / σ(e+ e− → µ+µ−)σ(e+ e− → e± τ∓) / σ(e+ e− → µ+µ−)σ(e+ e− → e± τ∓) / σ(e+ e− → µ+µ−)σ(e+ e− → e± τ∓) / σ(e+ e− → µ+µ−)
VALUE CL% DOCUMENT ID TECN COMMENT

<8.9× 10−6<8.9× 10−6<8.9× 10−6<8.9× 10−6 95 AUBERT 07P BABR e+ e− at Ecm = 10.58 GeV

• • • We do not use the following data for averages, fits, limits, etc. • • •
<1.8× 10−3 95 GOMEZ-CAD... 91 MRK2 e+ e− at Ecm = 29 GeV

σ(e+ e− → µ± τ∓) / σ(e+ e− → µ+µ−)σ(e+ e− → µ± τ∓) / σ(e+ e− → µ+µ−)σ(e+ e− → µ± τ∓) / σ(e+ e− → µ+µ−)σ(e+ e− → µ± τ∓) / σ(e+ e− → µ+µ−)
VALUE CL% DOCUMENT ID TECN COMMENT

<4.0× 10−6<4.0× 10−6<4.0× 10−6<4.0× 10−6 95 AUBERT 07P BABR e+ e− at Ecm = 10.58 GeV

• • • We do not use the following data for averages, fits, limits, etc. • • •
<6.1× 10−3 95 GOMEZ-CAD... 91 MRK2 e+ e− at Ecm = 29 GeV

e REFERENCESe REFERENCESe REFERENCESe REFERENCES

FAN 23 PRL 130 071801 X. Fan et al. (HARV, NWES)
ROUSSY 23 SCI 381 46 T.S. Roussy et al. (COLO)
TIESINGA 21 RMP 93 025010 E. Tiesinga et al. (NIST)
ANDREEV 18 NAT 562 355 V. Andreev et al. (ACME Collab.)
ABGRALL 17 PRL 118 161801 N. Abgrall et al. (MAJORANA Collab.)
CAIRNCROSS 17 PRL 119 153001 W.B. Cairncross et al. (NIST,COLO)
MOHR 16 RMP 88 035009 P.J. Mohr, D.B. Newell, B.N. Taylor (NIST)
AGOSTINI 15B PRL 115 231802 M. Agostini et al. (Borexino Collab.)
KIM 15 PR D91 102004 Y.J. Kim et al. (IND, YALE, LANL)
BARON 14 SCI 343 269 J. Baron et al. (ACME Collab.)
DOLGOV 14 PL B732 244 A.D. Dolgov, V.A. Novikov
ECKEL 12 PRL 109 193003 S. Eckel, A.O. Sushkov, S.K. Lamoreaux (YALE)
MOHR 12 RMP 84 1527 P.J. Mohr, B.N. Taylor, D.B. Newell (NIST)
PDG 12 PR D86 010001 J. Beringer et al. (PDG Collab.)
HUDSON 11 NAT 473 493 J.J. Hadson et al. (LOIC)
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HANNEKE 08 PRL 100 120801 D. Hanneke, S. Fogwell, G. Gabrielse (HARV)
MOHR 08 RMP 80 633 P.J. Mohr, B.N. Taylor, D.B. Newell (NIST)
AUBERT 07P PR D75 031103 B. Aubert et al. (BABAR Collab.)
KLAPDOR-K... 07 PL B644 109 H.V. Klapdor-Kleingrothaus, I.V. Krivosheina, I.V. Titkova
ODOM 06 PRL 97 030801 B. Odom et al. (HARV)
MOHR 05 RMP 77 1 P.J. Mohr, B.N. Taylor (NIST)
BACK 02 PL B525 29 H.O. Back et al. (Borexino/SASSO Collab.)
BEIER 02 PRL 88 011603 T. Beier et al.
REGAN 02 PRL 88 071805 B.C. Regan et al.
BELLI 00B PR D61 117301 P. Belli et al. (DAMA Collab.)
BELLI 99 PL B460 236 P. Belli et al. (DAMA Collab.)
BELLI 99B PL B465 315 P. Belli et al. (DAMA Collab.)
BELLI 99D PR C60 065501 P. Belli et al. (DAMA Collab.)
MOHR 99 JPCRD 28 1713 P.J. Mohr, B.N. Taylor (NIST)

Also RMP 72 351 P.J. Mohr, B.N. Taylor (NIST)
AHARONOV 95B PR D52 3785 Y. Aharonov et al. (SCUC, PNL, ZARA+)

Also PL B353 168 Y. Aharonov et al. (SCUC, PNL, ZARA+)
FARNHAM 95 PRL 75 3598 D.L. Farnham, R.S. van Dyck, P.B. Schwinberg (WASH)
SCHAEFER 95 PR A51 838 A. Schaefer, J. Reinhardt (FRAN)
COMMINS 94 PR A50 2960 E.D. Commins et al.
BALYSH 93 PL B298 278 A. Balysh et al. (KIAE, MPIK, SASSO)
FEE 93 PR A48 192 M.S. Fee et al.
HUGHES 92 PRL 69 578 R.J. Hughes, B.I. Deutch (LANL, AARH)
MUELLER 92 PRL 69 3432 B. Muller, M.H. Thoma (DUKE)
PDG 92 PR D45 S1 K. Hikasa et al. (KEK, LBL, BOST+)
GOMEZ-CAD... 91 PRL 66 1007 J.J. Gomez-Cadenas et al. (SLAC MARK-2 Collab.)
REUSSER 91 PL B255 143 D. Reusser et al. (NEUC, CIT, PSI)
ABDULLAH 90 PRL 65 2347 K. Abdullah et al. (LBL, UCB)
CHO 89 PRL 63 2559 D. Cho, K. Sangster, E.A. Hinds (YALE)
MURTHY 89 PRL 63 965 S.A. Murthy et al. (AMHT)
COHEN 87 RMP 59 1121 E.R. Cohen, B.N. Taylor (RISC, NBS)
LAMOREAUX 87 PRL 59 2275 S.K. Lamoreaux et al. (WASH)
VANDYCK 87 PRL 59 26 R.S. van Dyck, P.B. Schwinberg, H.G. Dehmelt (WASH)
VASSERMAN 87 PL B198 302 I.B. Vasserman et al. (NOVO)

Also PL B187 172 I.B. Vasserman et al. (NOVO)
AVIGNONE 86 PR D34 97 F.T. Avignone et al. (PNL, SCUC)
ORITO 85 PRL 54 2457 S. Orito, M. Yoshimura (TOKY, KEK)
CHU 84 PRL 52 1689 S. Chu, A.P. Mills, J.L. Hall (BELL, NBS, COLO)
BELLOTTI 83B PL 124B 435 E. Bellotti et al. (MILA)
SCHWINBERG 81 PRL 47 1679 P.B. Schwinberg, R.S. van Dyck, H.G. Dehmelt (WASH)
SANDARS 75 PR A11 473 P.G.H. Sandars, D.M. Sternheimer (OXF, BNL)
COHEN 73 JPCRD 2 664 E.R. Cohen, B.N. Taylor (RISC, NBS)
PLAYER 70 JP B3 1620 M.A. Player, P.G.H. Sandars (OXF)
WEISSKOPF 68 PRL 21 1645 M.C. Weisskopf et al. (BRAN)
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heme also
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\Naming S
heme for Hadrons" for de-

tails.

Quantity tabulated below.

Top line gives our best value (and er-

ror) of quantity tabulated here, based

on weighted average of measurements

used. Could also be from �t, best

limit, estimate, or other evaluation.

See next page for details.

Footnote number linking measure-

ment to text of footnote.

Number of events above ba
kground.

Measured value used in averages, �ts,

limits, et
.

Error in measured value (often statis-
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al only; followed by systemati
 if

separately known; the two are 
om-

bined in quadrature for averaging and

�tting.)
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. See the Introdu
tory

Text for explanations.

Arrow points to weighted average.
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aled

by \s
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tor" S) from weighted av-

erage.

Value and error for ea
h experiment.

Partial de
ay mode (labeled by �

i

).

Bran
hing ratio.

Our best value (and error) of quantity

tabulated, as determined from 
on-

strained �t (using all signi�
ant mea-

sured bran
hing ratios for this parti-


le).

Weighted average of measurements of

this ratio only.

Footnote (referring to LYNCH 81).

Con�den
e level for measured upper

limit.

Referen
es, ordered inversely by year,

then author.

\Do
ument id" used on data entries

above.

Journal, report, preprint, et
. (See

abbreviations on next page.)

Parti
le quantum numbers (where

known).

Indi
ates parti
le omitted from Parti-


le Physi
s Summary Table, implying

parti
le's existen
e is not 
on�rmed.

General 
omments on parti
le.

\Do
ument id" for this result; full ref-

eren
e given below.

Measurement te
hnique. (See abbre-

viations on next page.)

S
ale fa
tor > 1 indi
ates possibly in-


onsistent data.

Rea
tion produ
ing parti
le, or gen-

eral 
omments.

\Change bar" indi
ates result added

or 
hanged sin
e previous edition.

Charge(s) of parti
le(s) dete
ted.

Ideogram to display possibly in
onsis-

tent data. Curve is sum of Gaus-

sians, one for ea
h experiment (area

of Gaussian = 1/error; width of Gaus-

sian = ±error). See Introdu
tory Text
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ussion.

Contribution of experiment to χ2 (if

no entry present, experiment not used
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al
ulating χ2 or s
ale fa
tor be-


ause of very large error).

Our best value for bran
hing fra
tion

as determined from data averaging,

�tting, evaluating, limit sele
tion, et
.

This list is basi
ally a 
ompa
t sum-

mary of results in the Bran
hing Ratio

se
tion below.

Bran
hing ratio in terms of partial

de
ay mode(s) �
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above.

Partial list of author(s) in addition to
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this referen
e.

Institution(s) of author(s). (See ab-

breviations on next page.)
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a

0

(1200) MASS

a

0

(1200) MASS

a

0

(1200) MASS

a

0

(1200) MASS

VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT

1206± 7 OUR AVERAGE

1206± 7 OUR AVERAGE

1206± 7 OUR AVERAGE

1206± 7 OUR AVERAGE

1210± 8±9 3000 FENNER 87 MMS − 3.5 π− p

1198±10 PIERCE 83 ASPK + 2.1 K

−
p

1216±11±9 1500

1

MERRILL 81 HBC 0 3.2 K

−
p

• • • We do not use the following data for averages, �ts, limits, et
. • • •
1192±16 200 LYNCH 81 HBC ± 2.7 π− p

1

Systemati
 error was added quadrati
ally by us in our 1986 edition.

a

0

(1200) WIDTH

a

0

(1200) WIDTH

a

0

(1200) WIDTH

a

0

(1200) WIDTH

VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT

41±11 OUR AVERAGE

41±11 OUR AVERAGE

41±11 OUR AVERAGE

41±11 OUR AVERAGE

Error in
ludes s
ale fa
tor of 1.8. See the ideogram below.

50± 8 PIERCE 83 ASPK + 2.1 K

−
p

70

+30

−20

200 LYNCH 81 HBC ± 2.7 π− p

25± 5±7 MERRILL 81 HBC 0 3.2 K

−
p

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<60 FENNER 87 MMS − 3.5 π− p

WEIGHTED AVERAGE
41±11 (Error scaled by 1.8)

MERRILL 81 HBC 3.4
LYNCH 81 HBC 2.1
PIERCE 83 ASPK 1.3

χ2

       6.8
(Confidence Level = 0.033)

-50 0 50 100 150 200
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0

(1200) width (MeV)
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0
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0
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S
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i
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e level

�

1

3π (65.2±1.3) % S=1.7

�

2

K K (34.8±1.3) % S=1.7

�

3

ηπ± < 5 × 10

−4
CL=95%

a

0

(1200) BRANCHING RATIOS

a

0

(1200) BRANCHING RATIOS

a

0
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0
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(
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total

�

1
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1

/�
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)
/�

total

�

1

/�

VALUE DOCUMENT ID TECN CHG COMMENT

0.652±0.013 OUR FIT

0.652±0.013 OUR FIT

0.652±0.013 OUR FIT

0.652±0.013 OUR FIT

Error in
ludes s
ale fa
tor of 1.7.

0.643±0.010 OUR AVERAGE

0.643±0.010 OUR AVERAGE

0.643±0.010 OUR AVERAGE

0.643±0.010 OUR AVERAGE

0.64 ±0.01 PIERCE 83 ASPK + 2.1 K

−
p

0.74 ±0.06 MERRILL 81 HBC 0 3.2 K

−
p

• • • We do not use the following data for averages, �ts, limits, et
. • • •
0.48 ±0.15 2

LYNCH 81 HBC ± 2.7 π− p

2

Data has questionable ba
kground subtra
tion.

�

(
K K
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K K
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�

2

/�

VALUE DOCUMENT ID TECN CHG COMMENT

0.348±0.013 OUR FIT

0.348±0.013 OUR FIT

0.348±0.013 OUR FIT

0.348±0.013 OUR FIT

Error in
ludes s
ale fa
tor of 1.7.

0.35 ±0.050.35 ±0.05
0.35 ±0.050.35 ±0.05
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−
p

�

(
K K

)
/�

(
3π

)
�

2

/�

1

�

(
K K

)
/�

(
3π

)
�

2

/�

1

�

(
K K

)
/�

(
3π

)
�

2

/�

1

�

(
K K

)
/�

(
3π

)
�

2

/�

1

VALUE DOCUMENT ID TECN CHG COMMENT

0.535±0.030 OUR FIT

0.535±0.030 OUR FIT

0.535±0.030 OUR FIT

0.535±0.030 OUR FIT

Error in
ludes s
ale fa
tor of 1.7.

0.50 ±0.030.50 ±0.03
0.50 ±0.030.50 ±0.03
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(1200) REFERENCES

a

0

(1200) REFERENCES

a

0

(1200) REFERENCES
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0

(1200) REFERENCES

FENNER 87 PRL 55 14 H. Fenner et al. (SLAC)

PIERCE 83 PL 123B 230 J.H. Pier
e (FNAL) IJP

LYNCH 81 PR D24 610 G.R. Lyn
h et al. (CLEO Collab.)

MERRILL 81 PRL 47 143 D.W. Merrill et al. (SACL, CERN)



Chapter 2

The particle

In Relativistic Quantum Theory [13] we describe a pointwise, structureless, elementary, free
particle through a �nite dimensional irreducible unitary representation of its group of symmetries
(the Galileo group in the non-relativistic case and the Poincaré group in the relativistic case,
extended to the parity transformation). The invariants of the group are the mass and the spin.
The wave functions of the particles are in bijective correspondence with the vectors of such
representations, and the scalar product for such vectors is expressible in terms of wave functions.
We determine the wave equation satis�ed by the particles. In the relativistic case, the locality
requirement, forces the introduction of �negative energy� solutions. It is an experimental fact
that the number of particles may change in physical processes. Then, there exist transitions
between states with di�erent number of particles. We will present a formalism that allows to
describe systems of many free particles, used in any many-body theory, relativistic or not, and
known as Fock method. It allows to describe many particles states with the correct statistics and
to introduce operators that change the number of particles (creation and annihilation operators).
We will introduce the free �eld operators, and we will interpret in terms of �eld operators the
negative energy solutions of the equations of free motion. We will denote as �antiparticles� the
negative energy particles with a non-hermitian �eld operator. We construct the representation
of the group on the many free particles states. And we prove the spin-statistics theorem which
states that, as a consequence of Lorentz invariance and of locality, half integer spin particles
must obey to Fermi statistics and integer spin particles must obey to Bose statistics.

This chapter is extracted from the �Theoretical Physics� course given by Prof. Adriano di
Giacomo at the physics department of the University of Pisa in 1993.

2.1 De�nition of Invariance

A reference frame is de�ned by a set of operative rules to measure physical quantities.
The same physical phenomenon can be observed from two di�erent reference frames. In order

for the two reference frames to be de�ned, the transformation between the quantities measured
in the two frames must be known.

In a given reference frame a phenomenon obeys certain physical laws. A physical law is a
relationship which poses conditions on the quantities measured at a given instant.

The frames are said to be equivalent respect to a class of phenomena if:

a) Any physical situation realizable in one can also be realizable in the other.

b) The time evolution laws are the same in the two frames.
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�2.2. Invariance in quantum mechanics 2. THE PARTICLE

The equivalence between frames produced by the invariance is an equivalence relationship in
the mathematical sense: Given R,R1, R2 three frames; R is equivalent to R, if R is equivalent
to R1 then R1 is equivalent to R; if R is equivalent to R1 and R1 is equivalent to R2 then R is
equivalent to R2.

The transformation laws between quantities in equivalent frames form a group:

a) The identity transformation exists: The one between any frame and itself.

b) Given any transformation, an inverse transformation exists which is itself an equivalence
relationship respect to the class of phenomena in exam.

c) The product of two equivalence relationships, de�ned as the application in succession and
ordered of two transformations, is still an equivalence relationship.

The equivalence of a class of frames relative to a set of phenomena is called invariance of such
phenomena relative to the group of transformations between the frames.

2.1.1 Conventions

Through the note we will conform to the following conventions:

Units

We will always use relativistic units with ℏ “ 1, c “ 1. In these units, we have for the elementary
charge e2{4π “ 1{137.

Fourier transform

The tridimensional Fourier transform is

fppq “

ż

fpqqe´iq¨p dq, (2.1)

fpqq “

ż

fppqeiq¨p dp

p2πq3
, (2.2)

and analogously for the four-dimensional case.

Operators

We will not introduce a di�erent symbol for the operators on the Hilbert space and their eigen-
values. The reader should understand the di�erence from the context of the various equations
introduced.

2.2 Invariance in quantum mechanics

In quantum mechanics the invariance respect to a change of reference frame is de�ned as follows:

a) The possible states in the two frames are the vectors of a same Hilbert space. The ob-
servables are the same. The transformation law is a mapping of the Hilbert space onto
itself.

b) Starting from the same initial state the time evolution is the same in the two frames.
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2. THE PARTICLE �2.2. Invariance in quantum mechanics

The invariance transformations are a group. So an invariance transformation is a realization
of the group on an Hilbert space.

Let |ay be a state, in a certain frame, de�ned by the simultaneous measure of a complete
set of commuting observables. Any vector of the form xa|ay where xa is an arbitrary phase
factor, is an eigenstate of the same observables with the same eigenvalues. So it represents the
same physical state. The phase is not observable. A measurement on |ay means to observe the
probability that |ay contains a state |by de�ned by the measure instruments. What one measures
is

Pab “ |xb|ay|2, (2.3)

where the phases xa and xb cancel. A vector of the Hilbert space modulo a phase is called a
�ray� of the Hilbert space and will be denoted |tauy.
Wigner theorem: Given a bijective transformation between rays in a Hilbert space |tsuy Ñ

|ts1uy such that

|xts1
2u|ts1

1uy|2 “ |xts2u|ts1uy|2 @|ts1uy, |ts2uy (2.4)

it is always possible to choose the phases in such a way that the transformation is realized on
the Hilbert space vectors as a unitary or antiunitary transformation.
Proof:

1. Let |eny be an orthonormal complete base of the Hilbert space and let |tenuy be the
correspondent rays. The transformed rays are orthonormal

xei|ejy “ δij ùñ |xte1
iu|te1

juy|2 “ δij (2.5)

Let us choose in an arbitrary way a set of phases on the rays |te1
iuy, i.e. a set of vectors

|e1
iy that represent the states. Then

xe1
i|e

1
jy “ δij , (2.6)

The set of vectors so obtained is also a complete base of the Hilbert space. In fact, if there
exists a vector |v1y such that xv1|v1y ‰ 0 and xv1|e1

ny “ 0 @n, then, by hypothesis, there
would exist a vector |vy such that xv|vy ‰ 0 and xv|eny “ 0 @n, against the hypothesis
of completeness of the base |eny.

2. Let |Fky “ |e1y ` |eky. The generic representative of the transformed ray |tF 1
kuy will be

|F 1
ky “ xkp|e1

1y ` yk|e1
kyq, (2.7)

with xk and yk phases factors. In fact

|xFk|eny| “ δn1 ` δnk ùñ |xF 1
k|e1

ny| “ δn1 ` δnk. (2.8)

Next I can de�ne the following S transformation

|Se1y “ |e1
1y |Seky “ yk|e1

ky (2.9)

|SFky “
1

xk
|F 1

ky “ |e1
1y ` yk|e1

ky. (2.10)

With this choice

|SFky “ |Se1y ` |Seky. (2.11)

In other words we realized the transformation S as a linear transformation on vectors of
kind |Fky. Let us next extend this construction to all vectors of the Hilbert space.
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�2.2. Invariance in quantum mechanics 2. THE PARTICLE

3. Consider a generic vector

|vy “
ÿ

n

an|eny. (2.12)

Let us assume, without loss of generality, a1 real. The correspondent ray |tvuy will be
transformed into a ray |tv1uy with the following generic representative

|v1y “
ÿ

n

a1
n|e1

ny, (2.13)

and since by hypothesis

|xv|eny|2 “ |xv1|e1
ny|2, (2.14)

we have

|a1
n| “ |an|. (2.15)

We de�ne

|Se1y “ |e1
1y, (2.16)

|Seny “ yn|e1
ny @n ‰ 1, (2.17)

with yn some phase factors, so that for any vector belonging to the transformed ray |tv1uy

|v1y “ x

#

a1|Se1y `

8
ÿ

n“2

a1
n

yn
|Seny

+

, (2.18)

with x a phase factor. We then de�ne

|Svy “
1

x
|v1y. (2.19)

By hypothesis it must be

|xFk|vy|2 “ |a1 ` ak|2 “ |xSFk|Svy|2 “

ˇ

ˇ

ˇ

ˇ

a1 `
a1
k

yk

ˇ

ˇ

ˇ

ˇ

2

. (2.20)

Since we also have |ak| “ |a1
k| we require

Repa1akq “ Re

ˆ

a1
a1
k

yk

˙

. (2.21)

Then there are only two possibilities:

i. ak “ a1
k{yk

ii. ak “ pa1
k{ykq˚

or

i. |Svy “ Sp
ř

n an|enyq “
ř

n an|Seny

ii. |Svy “ Sp
ř

n an|enyq “
ř

n a
˚
n|Seny

In the �rst case the operator S is linear, in the second is antilinear. We also have

i. xSv1|Sv2y “ xv1|v2y @|v1y, |v2y

ii. xSv1|Sv2y “ xv2|v1y @|v1y, |v2y

In the �rst case S is unitary, in the second it is antiunitary.
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2. THE PARTICLE �2.3. Invariance and time evolution

2.3 Invariance and time evolution

The requirement b) for invariance tells us that the evolution of the transformed must coincide
with the transformation of the evolved

Upt, t1qSpt1q|ψy “ SptqUpt, t1q|ψy, (2.22)

where Upt, t1q is the time evolution operator. Since |ψy is arbitrary we must have

S:ptqUpt, t1qSpt1q “ Upt, t1q. (2.23)

If the Hamiltonian H is independent of time

Upt, t1q “ e´iHpt´t1
q, (2.24)

and we require

Sptq “ e´iHpt´t1
qSpt1qeiHpt´t1

q. (2.25)

2.4 Galilean relativity

We require invariance under translations, rotations, and velocity transformations for pointwise
non relativistic particles.

2.4.1 Spatial translations

Let us consider a reference frame R1 translated by a relative to the frame R. If the spatial
translations are a symmetry of the system it must exist a unitary transformation Upaq which
relates the dynamical variables q1 and p1 in R1 to the variables q and p in R. The transformation
law must be

q1 “ q ´ a, (2.26)

p1 “ p. (2.27)

It is easy to see that the unitary operator exists and is

Upaq “ eia¨p. (2.28)

Since the transformation is unitary the commutation relations do not change

rq1
i, p

1
js “ rqi, pjs “ iδij , (2.29)

rq1
i, q

1
js “ rqi, qjs “ 0, (2.30)

rp1
i, p

1
js “ rpi, pjs “ 0, (2.31)

where q “ Upaq:qUpaq and p “ Upaq:pUpaq. Moreover from Hadamard lemma (B.11) follows
immediately that Eqs. (2.26)-(2.27) are satis�ed.

The invariance of the time evolution between two frames R and R1 imposes

U :pa, tqe´iHpt´t1
qUpa, t1q “ e´iHpt´t1

q, (2.32)

which means

rp, Hs “ 0. (2.33)

In other words, the momentum is a constant of motion. We can also write

BH

Bq
“ 0. (2.34)
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2.4.2 Rotations

A rotation is de�ned by a versor n̂ which indicates the axis of rotation and an angle θ. We de�ne
θθθ “ θn̂. The angles are taken as positive for anti-clockwise rotations. Let us consider a frame
R1 rotated by θθθ relative to frame R. The component of a vector v will change according to

v1
i “ Rpθθθqijvj , (2.35)

where Rpθθθq is the rotation matrix. For in�nitesimal transformations

δv “ v1 ´ v « ´θθθ ^ v. (2.36)

If the quantum system is invariant under rotations it must be possible to construct a unitary
transformation on the Hilbert space which realizes the transformation and commutes with the
time evolution. Let us then consider the angular momentum

J “ q ^ p. (2.37)

It is easy to verify that for v “ q or v “ p we have

rθθθ ¨ J ,vs “ ´iθθθ ^ v. (2.38)

Then the transformation we are looking for is

Upθθθq “ eiθθθ¨J , (2.39)

as can be readily veri�ed for in�nitesimal transformations

v1 “ U :pθθθqvUpθθθq « v ´ irθθθ ¨ J ,vs “ v ´ θθθ ^ v. (2.40)

The transformation commutes with the time evolution if

rJ , Hs “ 0 (2.41)

which means that H must be a scalar and the angular momentum a constant of motion. Since
the transformation is unitary it preserves the commutation relations.

If the particle has a spin the generator of the rotations is the total angular momentum

J “ q ^ p ` s. (2.42)

2.4.3 Galilean transformations

If we go from a frame R to a frame R1 moving relative to R with a constant speed v we must
have

q1 “ q ´ tv, (2.43)

p1 “ p ´mv. (2.44)

It is easy to verify that these laws of transformation are induced by the unitary operator

Upt,vq “ eippt´qmq¨v, (2.45)

so that

U :pt,vqqUpt,vq “ q ´ tv, (2.46)

U :pt,vqpUpt,vq “ p ´mv. (2.47)
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If the Galilean transformation has to be an invariance we must also require

Upt,vq “ e´iHpt´t1
qUpt1,vqeiHpt´t1

q, (2.48)

or

tp ´mq “ e´iHpt´t1
qpt1p ´mqqeiHpt´t1

q. (2.49)

If the system is invariant under translations rp, Hs “ 0, so

pt´ t1qp “ mq ´me´iHpt´t1
qqeiHpt´t1

q. (2.50)

For in�nitesimal time di�erences we get

p

m
“ irH, qs “

BH

Bp
. (2.51)

So

H “
p2

2m
. (2.52)

2.4.4 Galileo group

We analyzed the symmetries under translations, rotations, and Galileo transformations for a non
relativistic system. The corresponding unitary transformations are

Upaq “ eia¨p, (2.53)

Upθθθq “ eiθθθ¨J , (2.54)

Upvq “ e´iv¨K K “ mq ´ tp (2.55)

The group corresponding to the set of these transformations is called �Galileo group� and the
corresponding invariance �galilean invariance�.

From the canonical commutation relationships, the following algebra for the group generators,
follows

rpµ, pνs “ 0 P0 “ H (2.56)

rJ , Hs “ 0 rJi, pjs “ iϵijkpk (2.57)

rJi, Jjs “ iϵijkJk rJi,Kjs “ iϵijkKk (2.58)

rKi,Kjs “ 0 rKi, pjs “ imδij rKi, Hs “ ipi (2.59)

In the Hilbert space of the physical system is then de�ned an unitary representation of the group
that transforms the spec into itself.

If this representation is reducible it is possible to write the Hilbert space as a direct sum of
one or more orthogonal Hilbert spaces each one transforming in itself. The generators are written
as sum of the generators acting in each subspace and generators acting on di�erent irreducible
subspaces commute. The states in each subspace evolve with their Hamiltonian each in states
belonging to the same subspace.

A physical system can then be written as a sum of irreducible representations of the Galileo
group.
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The simplest case is a particle without internal structure. In this case the only internal
variable is the spin which commutes with the orbital variables. A complete set of state is

|py|s, szy. (2.60)

Assuming the usual metric

xp1|py “ p2πq3δ3pp ´ p1q, (2.61)

xs1
z|szy “ δs1

zsz
(2.62)

these states constitute an irreducible representation of the Galileo group if the states |szy are an
irreducible representation of internal rotations. Let us show this explicitly:

p|py “ p|py, (2.63)

peiθθθ¨J |py “ eiθθθ¨Je´iθθθ¨Jpeiθθθ¨J |py

“ Rpθθθqpeiθθθ¨J |py, (2.64)

where p on the right hand side denotes the momentum operator acting on the eigenstate |py and
on the left denotes the eigenvalue. The eigenvalues of the rotated state is the rotated momentum.
In the same way:

pe´iv¨K |py “ e´iv¨Keiv¨Kpe´iv¨K |py

“ pp ´mvqe´iv¨K |py, (2.65)

so

eiθθθ¨J |py “ |Rpθθθqpy, (2.66)

e´iv¨K |py “ |p ´mvy, (2.67)

and we see that starting from any vector |py it is possible to reach any other vector |p1y through
successive applications of rotations or of Galileo transformations. The internal degrees of freedom
only transform by rotations independently.

So a pointwise free particle is described by an irreducible unitary representation of the Galileo
group.

2.4.5 Parity invariance

The parity transformation is de�ned by

p Ñ ´p q Ñ ´q s Ñ s (2.68)

This is a canonical transformation since it does not change the commutation relations. The
transformation operator is

UP “ ei
π
2 pp`iqq¨pp´iqq. (2.69)

The parity transformation has square 1

UP “ U´1
P “ U :

P . (2.70)

If the parity transformation is an invariance we must have

U´1
P HUP “ H (2.71)
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or

rUP , Hs “ 0. (2.72)

Let us now prove Eq. (2.69) in the one-dimensional case

UP “ ei
π
2 pp2

`q2´1q. (2.73)

Apart from a phase this operator coincides with the time evolution operator of a harmonic
oscillator of mass 1 and ω “ 1 from time t “ 0 to time t “ π. The Heisenberg equations for

qptq “ eiHtqp0qe´iHt, (2.74)

pptq “ eiHtpp0qe´iHt, (2.75)

are

9q “ irH, qs, (2.76)

9p “ irH, ps, (2.77)

with H “ pp2 ` q2q{2. They have solution

qptq “ q cos t` p sin t, (2.78)

pptq “ p cos t´ q sin t. (2.79)

It follows for t “ π

qpπq “ U :

P qUP “ ´q, (2.80)

ppπq “ U :

P pUP “ ´p, (2.81)

which is what we wanted.

2.4.6 Time reversal

The time reversal acts as follows

q Ñ q p Ñ ´p s Ñ ´s t Ñ ´t (2.82)

This transformation cannot be realized by a unitary operator because in such case the commu-
tation relations would be preserved. Instead we want, in one dimension,

rq, ps “ i Ñ rq,´ps “ ´i (2.83)

If the transformation is antiunitary this is possible:

rq1, p1s “ U :

T rq, psUT “ U :

T iUT “ ´i. (2.84)

An antilinear operator is de�ned by

T |s1y “ |Ts1y T |s2y “ |Ts2y (2.85)

T pa|s1y ` b|s2yq “ a˚T |s1y ` b˚T |s2y. (2.86)

For a linear operator O

xa|Oby “ xO:a|by “ xb|O:ay˚, (2.87)
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and the operator is Hermitian if

xa|Oby “ xOa|by. (2.88)

For an antilinear operator T

xa|Tby “ xb|T :ay, (2.89)

which is antilinear in |ay and in |by. An antilinear operator is antiunitary if

TT : “ T :T “ 1, (2.90)

or

xa|T :Tby “ xTb|Tay “ xa|by. (2.91)

The transformed of O under T

O1 “ T :OT, (2.92)

is still linear and

xb|T :OTay “ xOTa|Tby “ xTa|O:Tby. (2.93)

In particular for O “ i we �nd

T :iT “ TiT : “ ´i. (2.94)

The time reversal is realizable with an antiunitary operator:

T :qT “ q T :pT “ ´p T :sT “ ´s (2.95)

Moreover, in order to have invariance, we must require

T :HT “ H. (2.96)

If O is an observable

xb|OTay “ xb|TT :OTay “ xT :OTa|T :by. (2.97)

So if T :OT “ ˘O we have

xb|OTay “ ˘xOa|T :by. (2.98)

For eigenstates of O, O|ay “ Oa|ay, we have

xb|OTay “ ˘Oaxa|T :by “ ˘Oaxb|Tay, (2.99)

which means that |Tay is an eigenstate of O with the transformed eigenvalue.
So for a state |ay “ |p, szy we have

|Tay “ | ´ p,´szy, (2.100)

modulo a phase.
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For a spinless particle with canonical variables q and p the time reversal is realized through

xq|Tay “ ψTapqq “ ψ˚
a pqq “ xq|ay˚, (2.101)

on wave functions in coordinate representation. In fact we have

xa|T :pTby “ xpTb|Tay “

ż

ψbpqqp´i∇∇∇qψ˚
a pqq dq “ ´

ż

ψ˚
a pqqp´i∇∇∇qψbpqq dq “ ´xa|pby,(2.102)

where we used an integration by parts. Analogously we verify

xa|T :qTby “ xqTb|Tay “ xa|qby. (2.103)

The Hamiltonian is an Hermitian function of q and p. In the coordinate representation, q is a
real variable and p “ ´i∇∇∇. The transformation p Ñ ´p is equivalent to a complex conjugation.
We will have invariance under T if Hpq,pq “ Hpq,´pq or if H is real. A Hamiltonian of the
form

H “
p2

2m
` V pqq, (2.104)

is invariant under T .
If the particle has spin, it is described by 2s` 1 functions of q

ψpqq “

¨

˚

˝

ψ1pqq

...
ψ2s`1pqq

˛

‹

‚

. (2.105)

The spin is represented by three matrices ΣΣΣ “ pΣ1,Σ2,Σ3q independent from q. We now take

ψTapqq “ Uψ˚
a pqq, (2.106)

with U an unitary matrix independent from q and acting on spin space. To have the correct
spin transformations we must have

xa|T :sTby “ xsTb|Tay “ ´xa|sby, (2.107)

or

´

ż

ψ:
aΣΣΣψb “

ż

ψTrb U :ΣΣΣUψ˚
a , (2.108)

which means

UTrΣΣΣTrU :Tr “ ´ΣΣΣ, (2.109)

and taking the complex conjugate, since ΣΣΣ: “ ΣΣΣ, we �nd

U :ΣΣΣU “ ´ΣΣΣ˚. (2.110)

With the usual choice of phases in the angular momentum representation Σ1 and Σ3 are real
matrices and Σ2 is pure imaginary.

For example for spin 1{2 particles

Σ3 “
1

2

ˆ

1 0
0 ´1

˙

Σ1 “
1

2

ˆ

0 1
1 0

˙

Σ2 “
1

2

ˆ

0 i
´i 0

˙

(2.111)

Then apart from an unessential phase we �nd

U “ eiπΣ2 , (2.112)

a rotation of π around the 2 axis, which changes sign to Σ1 and Σ3. In conclusions we have

ψTa “ eiπΣ2ψ˚
a . (2.113)
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2.5 Einstein Relativity

The invariance under the Galileo group is valid in the limit of small velocities. But, actually,
physics is invariant under Lorentz transformations in addition to spatial translations. This
invariance is known as Einstein relativity.

The Lorentz group is de�ned as the group of linear transformations which leaves invariant
the quadratic form

ds2 “ dt2 ´ dx2. (2.114)

Let dx “ pdx0, dx1, dx2, dx3q “ pdt, dxq we can write

ds2 “ gµνdx
µdxν , (2.115)

where Einstein summation convention is used with

gµν “ gµν “

¨

˚

˚

˝

1 0 0 0
0 ´1 0 0
0 0 ´1 0
0 0 0 ´1

˛

‹

‹

‚

gµνgνα “ δµα (2.116)

The Lorentz transformations are de�ned as the linear transformations

dx1µ “ Λµ
νdx

ν , (2.117)

such that

gµνdx
1µdx1ν “ gµνΛ

µ
αΛ

ν
βdx

αdxβ . (2.118)

Due to the arbitrariness of dxµ we have

gµν “ gαβΛ
α
µΛ

β
ν , (2.119)

or

g “ ΛΛΛTrgΛΛΛ, (2.120)

which de�nes the Lorentz group. Taking the 00 component in Eq. (2.119)

1 “ gαβΛ
α
0Λ

β
0 “ pΛ0

0q2 ´
ÿ

i

pΛi
0q2, (2.121)

or

pΛ0
0q2 ě 1, (2.122)

or

Λ0
0 ě 1 or Λ0

0 ď ´1. (2.123)

Taking the determinant in Eq. (2.119) follows

pdetΛΛΛq2 “ 1, (2.124)
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or

detΛΛΛ “ ˘1. (2.125)

The transformations obtained continuously from the identity have Λ0
0 ě 1 and detΛΛΛ “ 1 and

constitute the proper Lorentz group. The transformations with Λ0
0 ě 1 and detΛΛΛ “ ´1 can

be written as the product of the parity P : x Ñ ´x times a proper transformation. The ones
with Λ0

0 ď ´1 and detΛΛΛ “ 1 as a product of the time reversal T : x0 Ñ ´x0 times the proper
transformations. The ones with Λ0

0 ď 1 and detΛΛΛ “ ´1 as PT times a proper transformation.
An in�nitesimal proper transformation

Λµ
µ1 “ δµµ1 ` Ωµ

µ1 , (2.126)

must satisfy Eq. (2.119). So

gµ1ν1 “ gµ1ν1 ` Ωµ
µ1gµν1 ` Ων

ν1gνµ1 ` OpΩΩΩ2q. (2.127)

Let

Ωµν “ gµαΩ
α
ν , (2.128)

then we must have

Ωµν “ ´Ωνµ. (2.129)

The group has 6 parameters as the number of components of an antisymmetric 4 ˆ 4 matrix.
The most general 4 ˆ 4 antisymmetric matrix can be written as

Ωµν “
1

2

ÿ

ρσ

ωpρσqM
pρσq
µν , (2.130)

M pρσq
µν “ δρµδ

σ
ν ´ δρνδ

σ
µ “ ´M pσρq

µν . (2.131)

We write
´

M pρσq
¯µ

ν
“ gµαM pρσq

αν , (2.132)

so

Ωµ
ν “ gµαΩαν “ gµα

1

2
ωpρσqM

pρσq
µν “

1

2
ωpρσq

´

M pρσq
¯µ

ν
. (2.133)

The matrices M pµνq satisfy the following algebra

rM pαβq,M pµνqs “ ´

´

gαµM pβνq ` gβνM pαµq ´ gβµM pανq ´ gανM pβµq
¯

. (2.134)

We can then introduce

J pµνq ” ´iM pµνq, (2.135)

and

J i “ ´
1

2
ϵ0ijkJ

pjkq, (2.136)

Ki “ J p0iq, (2.137)
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where ϵµ0µ1µ2µ3
is the Levi-Civita symbol with ϵ0123 “ 1 1. Then Eq. (2.134) is rewritten as

rJ i, Jjs “ iϵijkJ
k, (2.141)

rJ i,Kjs “ iϵijkK
k, (2.142)

rKi,Kjs “ ´iϵijkJ
k. (2.143)

The generators J i are the rotations generators, which constitute a subgroup of the Lorentz
transformations. The Ki are the generators of the velocity (v) transformations and are vectors,
as follows from their commutation relations with the J i. The in�nitesimal transformations are
then

ΛΛΛ “ 1 ` ipθθθ ¨ J ´ααα ¨ Kq. (2.144)

The �nite ones are

ΛΛΛ “ e
i
2

ř

αβ Jpαβqωpαβq “ eipθθθ¨J´ααα¨Kq v “ ptanhα1, tanhα2, tanhα3q, (2.145)

where θθθ is the rotation angle vector and ααα is the rapidity vector.
Under the Lorentz group the generators of the translations pµ must transform as four-vectors

rJ pµνq, pαs “ ipgµαpν ´ gανpµq, (2.146)

or

rJ , p0s “ ´δp0 “ ´Jp0 “ 0, (2.147)

which expresses the conservation of angular momentum, and

rJ i, pjs “ ´δpj “ ´J ipj “ iϵijkp
k, (2.148)

which tells us that p is a vector. On the momenta the generators of the velocity transformations
act as follows

rKi, p0s “ ´δp0 “ ´Kip0 “ ig00pi, (2.149)

rKi, pjs “ ´δpj “ ´Kipj “ ´igijp0. (2.150)

The invariance under translations is written as

rpµ, pνs “ 0. (2.151)

The commutation relations between the generators are then

rpµ, pνs “ 0, (2.152)

rJ pµνq, pαs “ ipgµαpν ´ gανpµq, (2.153)

rJ pαβq, J pµνqs “ i
´

gαµJ pβνq ` gβνJ pαµq ´ gβµJ pανq ´ gανJ pβµq
¯

. (2.154)

1For any antisymmetric tensor Fµν it is possible to use a decomposition of the following kind: Fµν “ pP,Aq

with

A1 “ ´F 23 A2 “ ´F 31 A3 “ ´F 12 (2.138)

P 1 “ F 01 P 2 “ F 02 P 3 “ F 03 (2.139)

For the product of two tensors of this kind we have

1

2
F

p1q
µν F

p2qµν
“ Ap1q ¨ Ap2q ´ Pp1q ¨ Pp2q. (2.140)
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They de�ne the Lie algebra of a 10 parameters group known as the Poincaré group.
The Poincaré group is de�ned by the transformation laws

pΛ, aq : x Ñ x1 “ ΛΛΛx´ a, (2.155)

where a is a translation and Λ is a Lorentz transformation. We immediately �nd the multiplica-
tion properties of the group as

pΛ1, aqpΛ2, bq “ pΛ1Λ2,´Λ1b´ aq, (2.156)

from which immediately follows that the translations are an abelian invariant subgroup. In fact
applying repetitively Eq. (2.156) we �nd that the transformed by similitude of a translation
p1, aq,

pΛ, cqp1, aqpΛ´1,´cq “ p1,Λpc´ aq ´ cq, (2.157)

is still a translation.
By Wigner theorem the states of a physical system are the basis of a unitary representation

of the Poincaré group. An elementary system will be described by an irreducible representation
of the Poincaré group.

We note that

J˘ “
J ˘ iK

2
, (2.158)

obey the following commutation relations

rJ i
`, J

j
`s “ iϵijkJ

k
`, (2.159)

rJ i
´, J

j
´s “ iϵijkJ

k
´, (2.160)

rJ i
`, J

j
´s “ 0. (2.161)

So the generators of J` and J´ obey to the algebra SUp2q b SUp2q. Let us show now that an
irreducible representation of the Poincaré group, i.e. an elementary particle, is determined by
the mass and the spin.

An irreducible representation is characterized by the value of the invariants, i.e. of the
operators built with the generators of the group that commute with all the group generators.
We then de�ne

Γµ “
1

2
ϵµαβσJ

pαβqpσ, (2.162)

Γµp
µ “ 0, (2.163)

gµ “ J pµνqpν , (2.164)

gµpµ “ 0. (2.165)

One can prove [14, 15, 16, 17, 18] 2 that

p2J pµνq “ gµpν ´ gνpµ ´ ϵσµνλΓσpλ. (2.167)

2One can use the identity

ϵσµνλϵσαβρ “ det

¨

˝

δµα δµβ δµρ
δνα δνβ δνρ
δλα δλβ δλρ

˛

‚, (2.166)

and the de�nition of Γσ to calculate the product ϵσµνλΓσpλ.
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This tells us that J pµνq can be expressed in terms of pµ,Γµ, and gµ if p2 “ pµp
µ ‰ 0.

Moreover we have

rΓµ,Γνs “ iϵρµνλΓ
ρpλ, (2.168)

rgµ,Γσs “ ´iΓµpσ, (2.169)

rgµ, pνs “ ipgµνp
2 ´ pµpνq, (2.170)

rgµ, gνs “ ´ipgµpν ´ gνpµ ´ ϵσµνλΓσpλq (2.171)

rpµ,Γσs “ 0. (2.172)

An invariant should be constructed with the vectors pµ,Γµ, and gµ. Recalling that gµpµ “ 0 and
Γµp

µ “ 0 the only independent invariants under the Lorentz group are

p2,Γ2, g2,Γµg
µ. (2.173)

But g2 and Γµg
µ do not commute with translations. Then the representation is determined

by p2,Γ2, and by the sign of p0, which is also invariant under the proper Lorentz group and
commutes with translations, if p2 ě 0.

The physical interpretation of the two invariants is obvious:

i. For the invariant p2 we have 4 cases

p2 ą 0, (2.174)

p2 “ 0 p ‰ 0, (2.175)

p2 “ 0 p “ 0, (2.176)

p2 ă 0. (2.177)

Since p2 “ m2 we will be interested only in the �rst two cases. In these two cases, for
the representations of the proper group (Λ0

0 ě 0 and detΛ “ 1) we will have another
invariant, namely the sign of p0.

ii. The invariant Γ2 can be calculated in the reference frame where p “ 0. In such a frame

Γ “ pΓ0,Γ1,Γ2,Γ3q “ pΓ0,ΓΓΓq “ p0,mJq Γ2 “ ´m2JpJ ` 1q. (2.178)

The modulus of J in the rest frame is by de�nition the particle spin, so Γ2 “ ´m2sps`1q

Then the representation is determined by the mass m and by the spin s, exactly as in the
nonrelativistic happens for the Galileo group.

2.5.1 The irreducible unitary representation of the Poincaré group

We want now to explicitly construct the irreducible unitary representations of the Poincaré group.

Massive particles

We can build a base of the Hilbert space which diagonalizes simultaneously the components pµ
of the four-momentum, which commute among themselves, and other observables which we will
denote by now with σ. The vector of the base will have the form |p, σy with

pi|p, σy “ pi|p, σy p0|p, σy “ sgnpp0qp0|p, σy, (2.179)
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with p0 “ p0 ”
a

p2 `m2 and p “ pp1, p2, p3q “ p´p1,´p2,´p3q. We will call UpΛq the unitary
operators which represents the generic Lorentz transformation ΛΛΛ. We will have

UpΛq|p, σy “
ÿ

σ1

RpΛ,pqσσ1 |Λp, σ1y. (2.180)

In fact, using the group algebra we have

U :pΛqpµUpΛq “ Λν
µpν , (2.181)

then

pµUpΛq|p, σy “ UpΛqU :pΛqpµUpΛq|p, σy

“ Λν
µpνUpΛq|p, σy. (2.182)

So UpΛq|p, σy belongs to the eigenvalue pΛΛΛpqµ of the four-momentum. And this proves Eq.
(2.180). The Lorentz invariant measure, for momentum p “ pp0, p1, p2, p3q “ pp0,pq, is

dΩp “
d4p

p2πq3
δp
a

p2 ´mqθpp0q “
d3p

p2πq32p0
. (2.183)

One can easily verify that with the invariant normalization

xp1, σ1|p, σy “ p2πq32p0δpp ´ p1qδσσ1 , (2.184)

the matrix RpΛ,pqσσ1 in Eq. (2.180) is unitary due to the unitarity of UpΛq.
The operator Γµ commutes with all the components of pµ. Then when applied to the state

|p, σy it can only mix it with states of the same p.
Let us start by considering the case p2 “ m2 ą 0 with p “ 0, |0, σy, for which

p|0, σy “ 0 p0|0, σy “ sgnpp0qm|0, σy. (2.185)

On this subspace Γµ “ 1
2ϵµαβγJ

pαβqpγ can be easily calculated

Γ0 “ 0 ΓΓΓ “ mJ ” ms. (2.186)

The angular momentum of the rest frame is called spin by de�nition. The dimension of the
subspace is 2s` 1.

For the variable σ we can take the eigenvalue of one of the spin component, i.e. s3.
If UpΛpq is a Lorentz transformation which brings the momentum from 0 to a certain value

p, since Γµ is a four-vector, we will have

U :pΛpqΓµUpΛpq “ pΛpqµνΓ
ν . (2.187)

If we call Γ̄µ
σ1σ the representative of the Γµ on the subspace |0, σy we will have

ΓµUpΛpq|0, σy “ UpΛpqU :pΛpqΓµUpΛpq|0, σy

“ UpΛpqpΛpqµνΓ
ν |0, σy

“ pΛpqµν Γ̄
ν
σ1σUpΛpq|0, σy. (2.188)

Then pΛpqµν Γ̄
ν
σ1σ is the representative of Γµ on the subspace |p, σy, in the representation in which

the base vectors are |p, σy “ UpΛpq|0, σy.
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The Lorentz transformation UpΛpq which brings the momentum from 0 to p is not univocally
de�ned: it is indetermined on the right by a transformation of the small group 3 of the initial
momentum 0 and on the left by a transformation of the small group of the �nal momentum p.

For each choice of these transformations we will have a choice of the base vectors UpΛpq|0, σy

and of the representative of Γµ. We will adopt, in the following, a standard choice for UpΛpq.
Namely a simple velocity transformation e´iααα¨K in the p direction, which sends the momentum
from 0 to p. The base vectors are then

|p, σy “ UpΛpq|0, σy “ e´iααα¨K |0, σy, (2.189)

and

Γµppq “ pΛpqµνΓ
νp0q “

ˆ

p ¨ s,ms `
pp ¨ sqp

p0 `m

˙

. (2.190)

This can be proved as follows. We can write for a general velocity transformation

ΛΛΛp “

ˆ

γ ´γβββTr

´γβββ 1 ` pγ ´ 1qββββββTr{β2

˙

γ “
1

a

1 ´ β2
, (2.191)

with

´γβββ “
p

m
ùñ γ “

p0
m

and pγ ´ 1q{β2 “
p20

mpp0 `mq
(2.192)

The transformation we are looking for is then

pΛpqµν “ δµν ´
1

p0 `m

„

mδµ0δ
0
ν ` δµ0pν `

pµpν
m

´ δ0νp
µ
´

1 ` 2
p0
m

¯

ȷ

, (2.193)

from which we immediately �nd Eq. (2.190).
To complete the construction of the representation we could now look for the representative

of gµ de�ned in (2.164), using the commutation relations (2.168)-(2.172), and construct the
representative of the generic J pµνq using Eq. (2.167). Alternatively we may proceed as follows:

a) Let us �rst consider the rotations. If Λ is a rotation Rθθθ

UpRθθθq|p, σy “ UpRθθθqUpΛpqU :pRθθθqUpRθθθq|0, σy. (2.194)

We know that

UpΛpq “ e´iααα¨K , (2.195)

and since

U :pRθθθqKUpRθθθq “ RθθθK, (2.196)

we have

UpRθθθqUpΛpqU :pRθθθq “ e´ipRθθθαααq¨K , (2.197)

and

UpRθθθq|p, σy “

´

eiθθθ¨s
¯

σ1σ
|Rθθθp, σ

1y. (2.198)
3The small group of p is the subgroup of the transformations which leaves p unchanged.
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b) For a Lorentz transformation sending p into p1

UpΛq|p, σy “ UpΛp1 qU :pΛp1 qUpΛqUpΛpq|0, σy. (2.199)

The matrix U :pΛp1 qUpΛqUpΛpq belongs to the small group of p “ 0, i.e. it is a rotation
RpΛ,pq in the subspace |0, σy. To determine it we just need to calculate

ΛΛΛ´1
p1 ΛΛΛΛΛΛp, (2.200)

using the formula (2.193) and the explicit one (2.191). If we call RpΛ,pqσ1σ the represen-
tative of such a rotation in the space |0, σy we will have

UpΛq|p, σy “ RpΛ,pqσ1σ|Λp, σy. (2.201)

Explicitly, if Λ is a velocity transformation with velocity β in the direction n̂, we �nd

pΛΛΛ´1
p1 ΛΛΛΛΛΛp, q

µ
ν “

ˆ

R̄0
0 R̄0

j

R̄i
0 R̄i

j

˙

“

¨

˚

˝

p1
0

m
´
p1
j

m

´
p1
i

m
δik `

p1
ip

1
k

mpp1
0 `mq

˛

‹

‚

ˆ

γ ´γβnl

´γβnk δkl ` pγ ´ 1qnknl

˙

¨

˝

p0
m

pj
mpl

m
δlj `

plpj
mpp0 `mq

˛

‚.(2.202)

To �rst order in β

p1
0 “ γpo ´ γβn̂ ¨ p “ p0 ´ βββ ¨ p ` Opβ2q, (2.203)

p1 “ ´γβn̂p0 ` p ` pγ ´ 1qn̂pn̂ ¨ pq “ p ´ βββp0 ` Opβ2q, (2.204)

and

R̄i
j “ δij `

β

p0 `m
pnipj ´ pinjq ` Opβ2q. (2.205)

Recalling that in the vector representation pJ iqjk “ iϵjik and using ϵijkϵilm “ δjlδkm ´

δjmδkl we �nally �nd

R « 1 ´ i
βββ ^ p

p0 `m
¨ J . (2.206)

The �nite transformation RpΛ,pq is then of the following form

RpΛ,pq “ e´i βββ^p
p0`m ¨J . (2.207)

This rotation is called the Wigner rotation.

The transformations on the wave functions can be determined from the one on the states.
The generic |ϕy is written as

|ϕy “

ż

dΩp φσppq|p, σy, (2.208)

and the scalar product

xϕ1|ϕy “

ż

dΩp φ
1˚

ppqφppq. (2.209)

33



�2.5. Einstein Relativity 2. THE PARTICLE

Under a transformation UpΛ, aq

|Λϕy “ UpΛ, aq|ϕy “

ż

dΩp e
´ipaφσppqRpΛ,pqσ1σ|Λp, σ1y. (2.210)

Changing variables from p to Λ´1p and using the fact that the measure is invariant we �nd

|Λϕy “

ż

dΩp e
´ipΛ´1pqaRσ1σφσpΛ´1pq|p, σ1y, (2.211)

or

pΛφqσppq “ Rσσ1φσ1 pΛ´1pq. (2.212)

The matrix R is given by Eq. (2.198) for the rotations and by Eq. (2.202) for the velocity
transformations and is unitary respect to the metric xϕ1|ϕy.

For an in�nitesimal transformation Eq. (2.212) gives the form of the generators:

a) For an in�nitesimal rotation of an angle θθθ

Λ´1p « p ` θθθ ^ p R « 1 ` iθθθ ¨ s, (2.213)

so

δφσ ” pΛφσq ´ φσ « iθθθ ¨ sσσ1φσ1 ` pθθθ ^ pq
B

Bp
φσ. (2.214)

The generator is de�ned by δφ “ ipθθθ ¨ Jqφ so

J “ s ´ ip ^
B

Bp
. (2.215)

b) For a velocity transformation

Λ´1p « p ` βp0 R « 1 ´ i
βββ ^ p

p0 `m
¨ s, (2.216)

so

δφσ « ´ipβββ ¨ Kqφσ “ ´i
βββ ^ p

p0 `m
¨ sσσ1φσ1 ` βββ ¨ p0

B

Bp
φσ, (2.217)

or

K “
p ^ s

p0 `m
` ip0

B

Bp
. (2.218)

One can verify that the generators J and K satisfy the algebra of the group. This completes
the construction of the representation of the group on the Hilbert space of the multiplets of
functions φppq with the metric of Eq. (2.209).
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The Helicity

We just saw that states can be taken as simultaneous eigenstates of p2 and Γ2 and accordingly
labeled as |m, s, . . .y, with

p2|m, s, . . .y “ m2|m, s, . . .y, (2.219)

Γ2|m, s, . . .y “ ´msps` 1q|m, s, . . .y. (2.220)

What are the additional quantum numbers we can use to label the states? They must be
eigenvalues of operators which commute with each other. So we are free to consider states of
de�nite four-momentum pµ. Since the mass is already �xed, it is only necessary to specify in
addition the three-momentum p, the energy being determined by p0 “

a

m2 ` p2. We cannot
simultaneously give de�nite value for the third component of the angular momentum operator
J3 because J and p do not commute. However there is an angular momentum operator which
commutes with p, namely the helicity. This operator is the component of the spin along the
direction of the momentum, J ¨ p{|p|, and its eigenvalues are labeled a. Thus the complete
speci�cation of the momentum eigenstates of a massive particle is |m, s;p, ay with

pµ|m, s;p, ay “ pµ|m, s;p, ay, (2.221)
J ¨ p

|p|
|m, s;p, ay “ a|m, s;p, ay. (2.222)

Massless particles

Let us consider the base |p, σy. For p2 “ 0 it does not exist a rest frame. We will take as the
standard state the state with

pµ “ pp̄, 0, 0, p̄q, (2.223)

with p̄ chosen arbitrarily. We will call |p̄, σy the corresponding subspace. We will assume
sgnpp0q “ 1. The discussion for sgnpp0q “ ´1 is analogous.

On the states |p̄, σy, Γµ acts mixing them, since it commutes with pµ. The condition Γµpµ “ 0
gives

p̄pΓ0 ´ Γ3q “ 0. (2.224)

We will de�ne

Γ0 “ p̄Γ̃ Γ˘ “ Γ1 ˘ Γ2. (2.225)

The the commutation rule

rΓµ,Γνs “ iϵµνρλΓ
ρpλ, (2.226)

gives

rΓ˘, Γ̃s “ ¯Γ˘, (2.227)

rΓ`,Γ´s “ 0, (2.228)

rΓ2, Γ̃s “ 0, (2.229)

rΓ2,Γ˘s “ 0. (2.230)
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Moreover

Γ2 “ Γ`Γ´, (2.231)

since Γ2
0 ´ Γ2

3 “ 0.
In a unitary representation Γ` “ pΓ´q:. If we diagonalize Γ̃,

Γ̃|p̄, ay “ a|p̄, ay, (2.232)

from Eq. (2.227) the operators Γ` and Γ´ are the operators of highering and lowering of a
respectively. Their representative is then

pΓ`qmn “ bnδm,n`1, (2.233)

pΓ´qmn “ b˚
mδn,m`1. (2.234)

(2.235)

Then Eq. (2.231) imposes Γ2 “ |bn|2 “ α2, independent from n. If α ‰ 0 the Γµ repre-
sentation is in�nite dimensional. In order to have a �nite number of states of �xed spin and
momentum it must be α “ 0. This implies Γ` “ Γ´ “ 0 and, by Eq. (2.231), Γ2 “ 0. So we can
say that

Γµ “ Γ̃pµ. (2.236)

The physical signi�cance of Γ̃ can be obtained from the de�nition (2.162) of Γµ

Γ̃ “
J ¨ p

|p|
. (2.237)

Γ̃ is the projection of the spin on the direction of motion, i.e. the helicity.
From Eq. (2.236) follows that Γ̃ is an invariant. For a massless particle the helicity is a

Poincaré invariant. The representation is one dimensional. The helicity is a pseudoscalar: A
representation with a �xed helicity de�nes a system which is not invariant under parity because
the transformed state has opposite helicity and is not a possible state. The invariance under
parity requires the direct sum of the representations with opposite helicity. The photon exists
in the two states of helicity ˘1.

We will de�ne the generic state |py with |p| “ |p̄| through a rotation starting from the
state |p̄y. The rotation sending p̄ into p is undetermined on the right for a rotation around
the direction of p̄ and on the left for a rotation around the direction of p. We will choose |py

adopting a standard convention for the Euler angles that de�ne it, i.e.

Rp “ RzpφqRypθqRzp´φq, (2.238)

where θ and φ are the polar angles of p. This convention is equivalent to de�ne Rp as a rotation
of θ around n3 ^ p̂, with n3 the versor along the 3 axis and p̂ “ p{|p|.

With this convention

|py “ UpRpq|p̄y. (2.239)

It is easy to verify that |py has the same helicity, a, of |p̄y. In fact

J ¨ p

|p|
|py “ UpRpqU´1pRpq

J ¨ p

|p|
UpRpq|p̄y “ UpRpq

J ¨ p

|p|
|p̄y “ a|py. (2.240)
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We will de�ne the state |p̄1y with p̄1
µ of the form (2.223) and p̄1 ‰ p̄ through the transformation

|p̄1y “ UpΛp̄1 q|p̄y, (2.241)

where UpΛp̄1 q is a pure velocity transformation along the 3 axis which sends p̄ into p̄1 without
rotations around p̄ or p̄1. The rotated states of |p̄1y will be de�ned with the convention (2.239).

Once �xed the base in this way let us now construct the representation. If UpΛq is the
representative of the generic Lorentz transformation sending p into p1

UpΛq|py “ UpΛqUpRpq|p̄y “ UpRp1 qU :pRp1 qUpΛqUpRpqU :pΛp̄1 qUpΛp̄1 q|p̄1y. (2.242)

It is easy to see that

U “ R´1
p1 ΛRpΛ

´1
p̄1 , (2.243)

is a transformation that leaves p̄1
µ unchanged, i.e. an element of the small group of p̄1

µ. The
algebra of such a group is formed by the generators ϵµνρσJ pνρqp̄1σ, i.e. J ¨ p̄1{|p̄1|,Γ`,Γ´. Now
Γ` and Γ´ are identically zero in the representation under exam, thus U is a rotation around
the 3 axis of a well de�ned angle φ̄.

A rotation of an angle φ̄ around the 3 axis is represented by

R3pφ̄q|p̄1y “ eiaφ̄|p̄1y, (2.244)

where a is the helicity. Then Eq. (2.242) becomes

UpΛq|py “ eiaφ̄|Λpy. (2.245)

If Λ is an in�nitesimal rotation of parameter δθθθ we �nd

1 ` iφ̄J3 « eiθJ ¨pn3^p̂qp1 ` iδθθθ ¨ Jqe´iθJ ¨pn3^p̂1
q

« 1 ` iδθθθ ¨ J ´ θrJ ¨ pn3 ^ p̂q, δθθθ ¨ Js

« 1 ` iδθθθ ¨ J ´ iθrpJ ¨ p̂qδθ3 ´ J3pp̂ ¨ δθθθqs, (2.246)

where in the �rst equality we used the fact that Λp̄1 “ 1, in the second the fact that for in�nites-
imal rotations we may choose p1 « p in the second exponential, and in the third the use of the
in�nitesimal rotations. We then �nd

φ̄ “ δθ3p1 ´ p̂3θq ` δθθθ ¨ p̂θ, (2.247)

and choosing θ “ |p|{p|p| ` p3q

φ̄ “ δθθθ ¨
p ` |p|n3

|p| ` p3
. (2.248)

Analogously if Λ is an in�nitesimal Lorentz transformation of parameter δβββ we �nd

φ̄ “
δβ1p2 ´ δβ2p1

|p| ` p3
. (2.249)

The generic state of the particle is written as

|Φy “

ż

dΩp Φppq|py, (2.250)
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with the scalar product

xΦ1|Φy “

ż

dΩp Φ
1˚ppqΦppq. (2.251)

For a generic Lorentz transformation

UpΛq|Φy “

ż

dΩp Φppqeiaφ̄pΛ,pq|Λpy “

ż

dΩp ΦpΛ´1pqeiaφ̄pΛ,Λ´1pq|py. (2.252)

The generators on the space of the Φppq functions are

J “ ´ip ^
B

Bp
` s, (2.253)

K “ ip0
B

Bp
`χχχ, (2.254)

with

s1 “ a
p1

|p| ` p3
s2 “ a

p2
|p| ` p3

s3 “ a, (2.255)

χ1 “ a
p2

|p| ` p3
χ2 “ ´a

p1
|p| ` p3

χ3 “ 0. (2.256)

This generators obey the commutation relations of the algebra (2.141)-(2.143) and are hermitian
with the metric (2.251).

This completes the construction of the group representation on the Hilbert space of functions
Φppq for a zero mass particle.

The Wigner rotation

We here want to calculate explicitly the Wigner rotation for a �nite Lorentz transformation, for
a massive particle. The velocity transformation is written as

UpΛq “ e´iK¨y, (2.257)

with

K “ ip0
B

Bp
`

p ^ s

p0 `m
. (2.258)

For zero spin

ey¨p0
B

Bpφppq “ φpΛ´1pq. (2.259)

For non-zero spin

UpΛqφppq “ ey¨p0
B

Bp ´iy¨
p^s

p0`mφppq, (2.260)

where φ has 2s ` 1 components. The operator UpΛq is the exponential of two operators which
do not commute.

In general given two operators A and B one has

eA`B “ eA
8
ÿ

n“0

ż 1

0

dx1 ¨ ¨ ¨ dxn T pBpx1q ¨ ¨ ¨Bpxnqq, (2.261)
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where Bpxq “ e´xABexA and T is the usual time ordered product

T pBpx1q ¨ ¨ ¨Bpxnqq “
1

n!

ÿ

permutations
of tiku

θpxi1 ´ xi2q ¨ ¨ ¨ θpxin´1
´ xnqBpx1q ¨ ¨ ¨Bpxnq. (2.262)

If A and B commute Bpxq “ B and Eq. (2.261) gives eA`B “ eAeB . Eq. (2.261) can be proved
observing that Upλq “ eλpA`Bq obeys the equation

d

dλ
Upλq “ pA`BqUpλq Up0q “ 1. (2.263)

Let

W pλq “ eλA
8
ÿ

n“0

ż λ

0

dx1 ¨ ¨ ¨ dxn T pBpx1q ¨ ¨ ¨Bpxnqq. (2.264)

One easily veri�es that

d

dλ
W pλq “ pA`BqW pλq (2.265)

with W p0q “ 1. The we must have Upλq “ W pλq and for λ “ 1 Eq. (2.261) is recovered.
Let now

A “ y ¨ p0
B

Bp
B “ ´iy ¨

p ^ s

p0 `m
. (2.266)

We will have

Bpxq “ e´xy¨p0
B

BpBppqexy¨p0
B

Bp “ Bpλ´1
´xpq, (2.267)

where Λx is the Lorentz transformation with parameter xy. In the numerator of B, due to the
vector products, only enters the component of p orthogonal to y and this is invariant under the
transformation. So

Bpxq “ ´iy ¨
p ^ s

Λ´1
´xp0 `m

. (2.268)

The Bpxq all commute with themselves and

ż 1

0

dx1 ¨ ¨ ¨ dxn T pBpx1q ¨ ¨ ¨Bpxnqq “
1

n!

„
ż 1

0

Bpxq dx

ȷn

, (2.269)

and

UpΛq “ ey¨p0
B

Bp e
ş1
0
bpxq dx, (2.270)

Moreover

UpΛqφppq “ e
´iy¨

ş1
0
dx p^s

Λ
´1
1´x

p0`mφpΛ´1pq, (2.271)

Then the Wigner rotation is

e
is¨pp^yq

ş1
0

dx

Λ
´1
1´x

p0`m . (2.272)
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The integral can easily be evaluated if we parametrize pµ in the form pK, p0 “ mt cosh y0,
p∥ “ mt sinh y0, and mt “

a

m2 ` p2
K. Using this parametrization we �nd

ż 1

0

dx

Λ´1
1´xp0 `m

“

ż 1

0

dx

mt coshry0 ` yp1 ´ xqs `m

“
1

y

ż y

0

dz

mt coshpy0 ` zq `m

“
1

ypK

φ,

φ “ arcsin

„

mt `m coshpy0 ` zq

m`mt coshpy0 ` zq

ȷz“y

z“0

, (2.273)

is the angle of the Wigner rotation.

Discrete transformations

We want now to discuss the discrete transformations, speci�cally the spatial inversion and the
time reversal.

The spatial inversion Π sends

p Ñ ´p J Ñ J K Ñ ´K. (2.274)

We immediately �nd a representation

Π|py “ η| ´ py, (2.275)

and on the wave functions

φappq Ñ ´ηφap´pq, (2.276)

where η is a phase factor which must be ˘1 since Π2 “ 1. It is easy to show that the transfor-
mation (2.276) is unitary

xΠa1|Πay “

ż

dΩpφ
1:
a p´pqφap´pq

“

ż

dΩpφ
1:
a ppqφappq “ xa1|ay, (2.277)

Moreover xΠa1|pΠay “ ´xa1|pay or

Π:pΠ “ ´p, (2.278)

and

Π:JΠ “ J , (2.279)

Π:KΠ “ ´K, (2.280)

since we assumed η independent of p.
A representation of the time reversal T is in terms of the antiunitary operator

φppq Ñ ηTCφ
˚p´pq, (2.281)
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where the unitary matrix C is de�ned in Section 2.4.6 and ηT is a phase independent of p. So
that

xa1|T :pTay “ xTa|pTa1y “

ż

dΩpφ
Tr
a p´pqpφ˚

a1 p´pq

“ ´

ż

dΩpφ
:

a1 ppqpφappq “ ´xa1|pay (2.282)

or

T :pT “ ´p, (2.283)

Similarly

xa1|T :JTay “ xTa|JTa1y “

ż

dΩpφ
Tr
a p´pqC˚

ˆ

´ip ^
B

Bp
` s

˙

CTrφ˚
a1 p´pq

“

ż

dΩpφ
:

a1 p´pq

ˆ

ip ^
B

Bp
´ s

˙

φap´pq, (2.284)

where we integrated by parts and used CsTrC: “ Cs˚C: “ ´s (see Eq. (2.110)). So xTa|JTa1y “

´xa1|Jay or

T :JT “ ´J . (2.285)

Similarly

T :KT “ K. (2.286)

2.5.2 Wave functions in coordinate space

In relativistic mechanics the coordinates, x “ px0, x1, x2, x3q “ pt,xq, play a privileged role.
The constant speed of light principle, together with the relativity principle, implies that a signal
cannot propagate at a speed greater than c. This implies, for example, that the regions with
x2 ă 0 are causally disconnected from the events at x “ p0,0q. This statement is simple in
coordinate space but it does not have an equally explicit expression in other representations.

It is then convenient to associate to a state a wave function ψpxq which describes the state
point by point in space-time. For the description to be e�ectively linked to the point event it is
necessary that ψpxq transforms locally.

For a Lorentz transformations Λ this means

ψpxq
Λ

ÝÑ ψ1pxq “ SpΛqψpΛ´1xq, (2.287)

or

ψ1pΛxq “ SpΛqψpxq, (2.288)

where SpΛq does not depend on the point and it is a representation of the Lorentz group.
For a translation, a, we require

ψpxq
a

ÝÑ ψ1pxq “ ψpx` aq. (2.289)

Introducing

pµψpxq “ i
B

Bxµ
ψpxq, (2.290)
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the momentum eigenstate ψppxq can be written as follows

ψppxq “ e´ipxψpp0q, (2.291)

where in the exponent we use the simpli�ed notation px ” pµx
µ.

If the time evolution is local we will need that ψpxq obeys to a partial di�erential equation
with derivatives of �nite order. In what follows we will try to build local wave functions for
spin 0, 1{2, 1 particles. Of course the states of these particles are de�ned by the unitary irre-
ducible representations of the Poincaré group. Our wave functions will have to be in bijective
correspondence with the vectors of such representations, and the scalar product for such vectors
will have to be expressible in terms of wave functions. Relative to this metric of the Hilbert
space the symmetry transformations on the ψpxq will have to be unitary. We will verify that the
representations of the Lorentz group SpΛq will necessarily be �nite dimensional.

We conclude observing that

ψ1p0q “ SpΛqψp0q, (2.292)

in fact Λ is the small group of point x “ 0. If we call UpΛq the unitary operator which represents
the Lorentz transformation Λ we will have

UpΛqψpxq “ UpΛqe´ipxψp0q “ UpΛqe´ipxU´1pΛqUpΛqψp0q, (2.293)

but

UpΛqe´ipxU´1pΛq “ e´ipΛpqx “ e´ippΛ´1xq, (2.294)

and, since UpΛqψp0q “ SpΛqψp0q,

UpΛqψpxq “ e´ippΛ´1xqSpΛqψp0q “ SpΛqψpΛ´1xq. (2.295)

2.6 The relativistic wave equations

In Section 2.5 we introduced the Poincaré group and showed that a structureless particle is
described by a unitary irreducible representation of this group identi�ed by the mass and by the
spin. We will now �nd the relativistic wave equations of free motion for these particles.

2.6.1 Particles of spin 0

For a spin 0 particle any given state |sy can be represented as

|sy “

ż

dΩpφsppq|py, (2.296)

φsppq “ xp|sy is the wave function in the representation were the momenta are diagonal. The
wave function associated to the state |py, ψppxq, must have the form (2.291). By the superposition
principle

xx|sy “ ψspxq “

ż

dΩpφsppqe´ipxψpp0q. (2.297)

To determine ψpp0q let us consider the e�ect of a Lorentz transformation

|sy
Λ

ÝÑ

ż

dΩp φsppq|Λpy “

ż

dΩp φspΛ´1pq|py, (2.298)
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and on the wave function

ψspxq
Λ

ÝÑ

ż

dΩp φspΛ´1pqe´ipxψpp0q “

ż

dΩp φsppqe´ippΛ´1xqψΛpp0q. (2.299)

This transformation is certainly local if ψΛpp0q “ ψpp0q. This means that ψpp0q must be an
invariant constructed with pµ. Since p2 “ m2, such an invariant must be a constant, that can
be chosen equal to 1.

So

ψspxq “

ż

dΩp φsppqe´ipx. (2.300)

Under translation

ψspxq
a

ÝÑ ψ1pxq “ ψspx` aq. (2.301)

Under Lorentz transformation

ψspxq
Λ

ÝÑ ψ1pxq “ ψspΛ´1xq. (2.302)

The function ψspxq in Eq. (2.300) transforms locally and the requirement p2 “ m2 implies that
it obeys the Klein-Gordon equation

pl `m2qψspxq “ 0, (2.303)

where

l “
B2

Bt2
´

3
ÿ

i“1

B2

Bxi
2 , (2.304)

is the d' Alambert operator. Eq. (2.303) is invariant under transformations of the Poincaré
group.

Not all solutions of Eq. (2.303) are of kind (2.300). Eq. (2.303) admits also solutions with
negative energy. As a matter of fact the wave function of Eq. (2.300) obeys to the following
equation

ˆ

i
B

Bx0
´
a

m2 ´∇∇∇2

˙

ψspxq “ 0, (2.305)

which is non-local. The requirement for a local equation imposes to have negative energy solutions
as well.

The general solution of Eq. (2.303) can be easily obtained working in Fourier space

ψspxq “

ż

d4p

p2πq4
e´ipxψ̃sppq. (2.306)

Then Eq. (2.303) becomes

pp2 ´m2qψ̃sppq “ 0, (2.307)

or

ψ̃sppq “ φsppq2πδpp2 ´m2q. (2.308)
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Integrating over p0 in Eq. (2.306)

ψspxq “

ż

d3p

p2πq32p0

”

φspp, p0qe´ipx ` φspp,´p0qeip0x
0

`ip¨r
ı

. (2.309)

We then de�ne

φspp, p0q “ φ`
s ppq, (2.310)

φspp,´p0q “ φ´
s p´pq, (2.311)

so that

ψspxq “

ż

dΩp

“

φ`
s ppqe´ipx ` φ´

s ppqeipx
‰

. (2.312)

A natural scalar product can be introduced as follows. Given two solutions of the Klein-Gordon
equation (2.303), ψapxq and ψbpxq, the quantity

J pa,bq
µ pxq “ iψ˚

a

Ø

B µ ψb “ i rψ˚
aBµψb ´ pBµψ

˚
a qψbs , (2.313)

where Bµ ” B{Bxµ, is conserved, i.e.

BµJ pa,bq
µ pxq “ 0. (2.314)

Then, due to Gauss theorem, if the ψ go to zero su�ciently rapidly at spatial in�nity, the integral
extended to an hypersurface of spatial kind extended to in�nity,

ż

dσµJ pa,bq
µ pxq, (2.315)

is independent from the surface (dσµ is the oriented normal). It can be calculated on a surface
x0 “ constant

ż

dσµJ pa,bq
µ pxq “

ż

dxJ
pa,bq

0 pt,xq. (2.316)

We will de�ne the scalar product xa|by through

xa|by “

ż

dσµJ pa,bq
µ pxq

“

ż

dΩp

”

φ`
a

˚
ppqφ`

b ppq ´ φ´
a

˚
ppqφ´

b ppq

ı

. (2.317)

The generators of the group in this representation are

pµ “ i
B

Bxµ
,

J pµνq “ ´i

ˆ

xµ
B

Bxν
´ xν

B

Bxµ

˙

, (2.318)

which are hermitians under the metric of Eq. (2.317).
The Eq. (2.305) satis�ed by these wave functions is non-local. In order to have a local

equation, like (2.303), it is necessary to put together positive and negative energy solutions.
Actually, the Klein-Gordon Eq. (2.303) is second order in the temporal derivative, while, once
the Hamiltonian is known, the evolution equation should be of the �rst order.
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2.6.2 Particles of spin 1/2

The irreducible representations of the Poincaré group corresponding to particles of mass m and
spin 1{2 are in correspondence with vectors |r,py, where r is the eigenvalue of one component of
the spin in the rest frame.

Any state |ay of the Hilbert space generated like so is of the following form

|ay “

ż

dΩp

2
ÿ

r“1

φapr,pq|r,py. (2.319)

The in�nitesimal transformations of the Lorentz group are

φapr,pq Ñ φΛapr,pq “

„

1 ` iθθθ ¨

ˆ

1

i
p ^

B

Bp
` s

˙

´ iααα ¨

ˆ

ip0
B

Bp
`

p ^ s

p0 `m

˙ȷ

rr1

φapr1,pq.(2.320)

We will now construct local wave functions for these states. The locality under translations �xes
the form of the wave functions corresponding to eigenstates of momentum

ψr,ppxq “ ψr,pp0qe´ipx. (2.321)

We will call ψr,pp0q ” upr,pq. Due to the superposition principle we will have

ψapxq “

ż

dΩp

2
ÿ

r“1

φapr,pqupr,pqe´ipx. (2.322)

To �nd an explicit form for the local wave functions we will adopt the following strategy. We will
assume speci�c properties of local transformations for ψapxq. We will write an equation explicitly
covariant under the Poincaré group transformations and will later prove that the solutions of
this equation give a unitary representation of the Poincaré group. And will express the scalar
product between states in terms of these wave functions.

Locality under group transformations requires

ψapxq
Λ

ÝÑ ψΛapxq “ SpΛqψapΛ´1xq, (2.323)

where SpΛq is a �nite dimensional representation of the Lorentz group. The Lorentz group is
locally isomorphic to SUp2q b SUp2q. Hence the �nite dimensional representations are �xed
by two numbers pn`, n´q which determine the representations of the two groups SUp2q with
generators

J` “
J ` iK

2
, (2.324)

J´ “
J ´ iK

2
. (2.325)

We will heuristically construct the ψ with representations of dimension 2.
There exist two inequivalent representations of dimension 2. The p 1

2 , 0q and the p0, 12 q. In the
two representations the group generators, de�ned by the in�nitesimal transformations

ΛΛΛ « 1 ` iθθθ ¨ J ´ iααα ¨ K, (2.326)

are given by

p
1

2
, 0q :

"

J “ σσσ
2

K “ ´iσσσ2
, (2.327)

p0,
1

2
q :

"

J “ σσσ
2

K “ iσσσ2
. (2.328)
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The corresponding �nite transformations are

Sp 1
2 ,0qpΛq “ eiθθθ¨σσσ2 ´ααα¨σσσ2 , (2.329)

Sp0, 12 qpΛq “ eiθθθ¨σσσ2 `ααα¨σσσ2 , (2.330)

with

Sp0, 12 qpΛq “ S:

p 1
2 ,0q

´1
pΛq. (2.331)

We will call ξ the spinors which transform according to p 1
2 , 0q and η the ones transforming

according to p0, 12 q.
Since J is an axial vector, whereas K is a polar vector, we have under parity

p
1

2
, 0q

P
ÐÑ p0,

1

2
q. (2.332)

Then in order to construct a representation invariant under parity we need to consider a reducible
representation of the Lorentz group for SpΛq, namely

p
1

2
, 0q ‘ p0,

1

2
q. (2.333)

The vectorial space for this representation is composed by spinors of 4 components of the form
ˆ

ξ
η

˙

. (2.334)

In such representation, the generators of the Lorentz group are

J “

¨

˝

σσσ

2
0

0
σσσ

2

˛

‚, (2.335)

K “

¨

˝

´i
σσσ

2
0

0 i
σσσ

2

˛

‚. (2.336)

Using the following identities for the Pauli matrices

rθθθ ¨ σσσ,σσσs “ ´2iθθθ ^ σσσ, (2.337)

tααα ¨ σσσ,σσσu “ 2ααα, (2.338)

where r. . .s stands for the commutator and t. . .u for the anticommutator, we easily �nd that

Sp 1
2 ,0qpΛqpp0 ` p ¨ σσσqS:

p 1
2 ,0q

pΛq “ p0 ` p ¨ σσσ ` irθθθ ¨
σσσ

2
, p0 ` p ¨ σσσs ´ tααα ¨

σσσ

2
, p0 ` p ¨ σσσu ` . . .

“ p0 ` p ¨ σσσ `
i

2
rθθθ ¨ σσσ,p ¨ σσσs ´ααα ¨ σσσp0 ´

1

2
tααα ¨ σσσ,p ¨ σσσu ` . . .

“ pp0 ´ααα ¨ p ` . . .q ` σσσ ¨ pp ´ θθθ ^ p ´αααp0 ` . . .q

“ p1
0 ` σσσ ¨ p1, (2.339)

where in the vector representation we used

piJiqjk “ ϵijk, (2.340)

piKiqj0 “ piKiq0j “ δij , (2.341)
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and p1 is the Lorentz transformed of p

p1
µ “ Λν

µpν . (2.342)

Then an equation of the form

pp0 ` p ¨ σqη “ cξ, (2.343)

where c is a scalar, is covariant under Lorentz transformations. In fact, calling S “ Sp 1
2 ,0qpΛq,

we have

Spp0 ` p ¨ σqη “ cSξ, (2.344)

or

Spp0 ` p ¨ σqS:S:´1
η “ cSξ1. (2.345)

Due to Eq. (2.331) S:´1
η “ η1 and using Eq. (2.339)

pp0
1
` p1 ¨ σσσqη1 “ ξ1, (2.346)

so the equation has the same form in all reference frames. Analogously we show that pp0 ´p ¨σσσqξ
transforms as p0, 12 q. The most general system of �rst order covariant equations has then the
following form

pp0 ` p ¨ σqη “ cξ, (2.347)

pp0 ´ p ¨ σqξ “ c1η, (2.348)

and invariance under parity imposes c “ c1. Multiplying the �rst equation by pp0 ´ p ¨ σσσq and
using the second equation we �nd

p0
2

´ p2 “ c2. (2.349)

Then if we want to describe a particle we must identify c with the mass m. In terms of bispinors
we have

ˆ

0 p0 ` p ¨ σσσ
p0 ´ p ¨ σσσ 0

˙ˆ

ξ
η

˙

“ m

ˆ

ξ
η

˙

. (2.350)

We give a more symmetric form to this equation by introducing the 4 ˆ 4 matrices

γ0 “

ˆ

0 1
1 0

˙

γγγ “

ˆ

0 ´σσσ
σσσ 0

˙

, (2.351)

and the bispinor ψ “

ˆ

ξ
η

˙

. We will also introduce

γ5 “

ˆ

1 0
0 ´1

˙

“ iγ0γ1γ2γ3 “ ´
i

4!
ϵµνστγ

µγνγσγτ . (2.352)

We then �nd

pγ0p0 ´ γγγ ¨ pqψ “ mψ, (2.353)
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or

γµpµψ “ mψ. (2.354)

Introducing the notation �p “ γµpµ we have

p�p´mqψ “ 0. (2.355)

This equation is known as the Dirac equation.
Applying the Lorentz transformation SpΛq in the representation p 1

2 , 0q ‘ p0, 12 q to the Dirac
equation

SpΛqγµpµS
´1pΛqSpΛqψ “ mSpΛqψ. (2.356)

Since the bispinor transforms under SpΛq the covariance imposes

SpΛqγµS´1pΛq “ Λµ
νγ

ν , (2.357)

which means that γµ transform as a four-vector.
In coordinate representation

pi�B ´mqψ “ 0, (2.358)

and by construction the solutions of this equation transform locally under Lorentz transforma-
tions. Of course in order to know whether they represent the states of a spin 1{2 particle of mass
m we must verify that they are in bijective correspondence with the states de�ned in terms of
the representations of the Poincaré group, and that a transformation on the states corresponds
to a transformation on the wave functions.

We have

tγµ, γνu “ 2gµν , (2.359)

we can de�ne the covariant component of the gamma matrices

γµ “ gµνγ
ν , (2.360)

and we �nd

tγµ, γνu “ 2gµν . (2.361)

Also

tγµ, γ5u “ 0, (2.362)

and

γ0
:

“ γ0 γi
:

“ ´γi, (2.363)

or

γµ:
“ γ0γµγ0. (2.364)

Using the matrices γµ it is possible to write in a compact form the Lorentz transformations
in the representation p 1

2 , 0q ‘ p0, 12 q. Consider the matrices

σµν “
1

2i
rγµ, γνs. (2.365)
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Under the transformation SpΛqσµνS
´1pΛq they transform as an antisymmetric tensor of rank 2.

One can verify that

Ki “
1

2
σoi J i “

1

2
ϵoijkσjk i, j, k “ 1, 2, 3. (2.366)

The tensor σµν represents the generators of the Lorentz group and we can write

SpΛq “ e
i
4ω

µνσµν . (2.367)

Moreover σµν{2 satis�es the algebra (2.154).
The matrix γ0 has the role of exchanging the representations p 1

2 , 0q and p0, 12 q, so it coincides
with the parity operator up to a phase,

ψapxq
P

ÝÑ ψPapxq “ ηP γ
0ψapx0,´xq. (2.368)

From the anticommutation rules (2.359) follows

γ0γiγ0 “ ´γi i “ 1, 2, 3 γ0γ0γ0 “ γ0. (2.369)

It is interesting to consider the set of the 16 matrices

1, γ5, γµ, γ5γµ, σµν . (2.370)

From the de�nition follow that the properties of Lorentz transformation of the matrices (2.370)
are

1 scalar
γ5 pseudoscalar
γµ vector
γ5γµ pseudovector
σµν antisymmetric tensor

(2.371)

These 16 matrices are linearly independent (in fact they transform di�erently under Lorentz
transformations) so they constitute a complete basis for the 4ˆ 4 matrices, i.e. any 4ˆ 4 matrix
can be written in the form

16
ÿ

a“1

caΓ
a, (2.372)

where tΓau is the set of 16 matrices (2.370).
Note that if ψ and ψ1 are two bispinors, ψ1:

ψ is not a scalar density. In fact

ψ1:
pxqψpxq

pa,Λq
ÝÑ ψ1:

pΛ´1x` aqS:pΛqSpΛqψpΛ´1x` aq, (2.373)

and S:S ‰ 1. The representation SpΛq is not unitary as follows from its de�nition (2.327)-(2.328)
and as should be expected since the Lorentz group is not compact. But we have

S:pΛqγ0 “ γ0S´1pΛq. (2.374)

Then, upon de�ning ψ̄1 “ ψ:γ0, ψ̄1ψ is a scalar density

ψ̄1pxqψpxq
pa,Λq
ÝÑ ψ1:

pΛ´1x` aqS:pΛqγ0SpΛqψpΛ´1x` aq

“ ψ̄1pΛ´1x` aqψpΛ´1x` aq. (2.375)
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Let us �nally mention the following formulas,

Trtγµ1γµ2 ¨ γµ2n`1u “ 0, (2.376)

Trtγµγνu “ 4gµν , (2.377)

Trtγµγνγργσu “ 4tgµνgρσ ´ gµρgνσ ` gµσgνρu, (2.378)

Trtγ5γµγνγργσu “ ´4iϵµνρσ, (2.379)

γµ�Aγ
µ “ ´2�A, (2.380)

γµ�A��Bγ
µ “ 4AB, (2.381)

γµ�A��B�Cγ
µ “ ´2�C��B�A. (2.382)

Dirac equation solutions: momentum eigenstates

Multiplying Eq. (2.355) by γ0 we �nd

p0ψ “ pααα ¨ p ` γ0mqψ, (2.383)

where ααα “ γ0γγγ. Now we do a change of representation where we diagonalize γ0

ψ Ñ Uψ γµ Ñ UγµU´1 U “
1

?
2

ˆ

1 1
1 ´1

˙

“ U´1, (2.384)

explicitly

U

ˆ

ξ
η

˙

“

¨

˚

˝

ξ ` η
?
2

ξ ´ η
?
2

˛

‹

‚

”

ˆ

φ
χ

˙

. (2.385)

After this transformation the algebra of the γ matrices remains the same. The γ matrices are
rewritten as follows

γ0 “

ˆ

1 0
0 ´1

˙

γγγ “

ˆ

0 σσσ
´σσσ 0

˙

γ5 “

ˆ

0 1
1 0

˙

. (2.386)

Since γ0 is diagonal in the non-relativistic limit the states in this representation have de�nite
parity. This is known as Pauli representation. The one of Eq. (2.351) as spinorial or Kramers
representation.

Let us now �nd the solution with de�nite momentum and positive energy in the form

ψppxq “ e´ipxupr,pq, (2.387)

suggested by translational invariance.
In the Pauli representation we �nd then

p0u1 ´ σσσ ¨ pu2 “ mu1, (2.388)

´p0u2 ` σσσ ¨ pu1 “ mu2, (2.389)

where p0 “
a

p2 `m2 and u “

ˆ

u1
u2

˙

.

These equations admit two independent solutions labeled by two Pauli spinors (bidimensional)
w1 and w2 orthonormal

upr,pq “ c

˜

wr
σσσ ¨ p

p0 `m
wr

¸

w:
rws “ δrs. (2.390)
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Since we know that ūu must be invariant, we �nd

ūu “ u:γ0u “ w:wrc
2

ˆ

1 ´
σσσ: ¨ pσσσ ¨ p

pp0 `mq2

˙

“ c2
ˆ

1 ´
p2

pp0 `mq2

˙

“ c2
2m

p0 `m
“ invariant. (2.391)

We then choose conveniently c “
a

p0 `m so that

upr,pq “

¨

˝

a

p0 `mwr
σσσ ¨ p

a

p0 `m
wr

˛

‚, (2.392)

ūpr,pqups,pq “ 2mδrs. (2.393)

As a standard base for the spinors wr we can take the eigenstates of σz

w1 “

ˆ

1
0

˙

w2 “

ˆ

0
1

˙

. (2.394)

As in the scalar case the Dirac equation admits also negative energy solutions. These will be of
the following kind

ψ̃pxq “ eip
0t`ip¨xũpr,pq, (2.395)

Proceeding as in the previous case we �nd

ũpr,pq “

¨

˝

´
σσσ ¨ p

a

p0 `m
w̃r

a

p0 `mw̃r

˛

‚. (2.396)

Calling vpr,pq “ ũpr,´pq we �nd

vpr,pq “

¨

˝

σσσ ¨ p
a

p0 `m
w̃r

a

p0 `mw̃r

˛

‚, (2.397)

v̄pr,pqvps,pq “ ´2mδrs. (2.398)

The spinors u and v satisfy the following algebraic equations

p�p´mqupr,pq “ 0, (2.399)

p�p`mqvpr,pq “ 0, (2.400)

and constitute a complete set of spinors for the description of the momentum eigenstates. The
four solutions found form a set of independent vectors, orthogonal respect to the γ0 metric

ūpr,pqups,pq “ 2mδrs, (2.401)

v̄pr,pqvps,pq “ ´2mδrs, (2.402)

ūpr,pqvps,pq “ v̄pr,pqups,pq “ 0. (2.403)
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Due to the completeness of the set we also have

2
ÿ

r“1

upr,pqūpr,pq “ �p`m, (2.404)

2
ÿ

r“1

vpr,pqv̄pr,pq “ �p´m. (2.405)

Transformation properties and connection with the Poincaré group representations

We will now explicitly study the e�ect of the Lorentz transformation SpΛq on the solutions we
just found. We will �nd that they realize a representation of the Poincaré group for a spin 1{2
particle.

A Lorentz transformation sends solutions with momentum p to solutions with momentum
p1 “ Λp. In fact, using the covariance property of the γ matrices we �nd

SpΛqp�p´mqupr,pq “ p�p
1 ´mqSpΛqupr,pq “ 0. (2.406)

In the Pauli representation we �nd for a rotation Rpθθθq

J “

¨

˝

σσσ

2
0

0
σσσ

2

˛

‚ SpRpθθθqq “

ˆ

eiθθθ¨σσσ2 0

0 eiθθθ¨σσσ2

˙

, (2.407)

so

SpRpθθθqqupr,pq “

¨

˝

a

p0 `meiθθθ¨σσσ2wr

pR´1pθθθqσσσq ¨ p
a

p0 `m
eiθθθ¨σσσ2wr

˛

‚“

¨

˝

a

p0 `meiθθθ¨σσσ2wr

σσσ ¨ pRpθθθqpq
a

p0 `m
eiθθθ¨σσσ2wr

˛

‚, (2.408)

and

eiθθθ¨σσσ2wr “
ÿ

r1

Rpθθθqr1rwr1 Rpθθθqr1r “

´

eiθθθ¨σσσ2

¯

r1r
SpRpθθθqqupr,pq “

ÿ

r1

Rpθθθqr1rupr1, Rpq.(2.409)

A transformation of rapidity ααα is given by

SpΛαααq “

ˆ

e´ααα¨σσσ2 0

0 eααα¨σσσ2

˙

“

¨

˝

cosh
α

2
´ α̂αα ¨ σσσ sinh

α

2
0

0 cosh
α

2
` α̂αα ¨ σσσ sinh

α

2

˛

‚, (2.410)

and in the Pauli representation

USpΛαααqU´1 “

¨

˝

cosh
α

2
´α̂αα ¨ σσσ sinh

α

2
´α̂αα ¨ σσσ sinh

α

2
cosh

α

2

˛

‚. (2.411)

We then �nd explicitly

¨

˝

cosh
α

2
´α̂αα ¨ σσσ sinh

α

2
´α̂αα ¨ σσσ sinh

α

2
cosh

α

2

˛

‚

¨

˝

a

p0 `mwr
σσσ ¨ p

a

p0 `m
wr

˛

‚“

¨

˚

˝

b

p10 `me´iφσσσ¨α̂αα^p̂wr

σσσ ¨ p1

a

p10 `m
e´iφσσσ¨α̂αα^p̂wr

˛

‹

‚

,(2.412)
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where

tanφ “
|p| sinh α

2

pp0 `mq cosh α
2 ´ p∥ sinh

α
2

. (2.413)

Here we used Eqs. (E.23) and (E.24) and p∥ “ α̂αα ¨ p. The matrix R “ e´iφσσσ¨α̂αα^p̂ is a rotation of
an angle ´2φα̂αα ^ p̂ which acts on the components of the spinor w. Explicitly

SpΛαααqupr,pq “
ÿ

r1

RpΛααα,pqr1rupr1,Λαααpq. (2.414)

For an in�nitesimal transformation (α ! 1)

φ «
α

2

|p|

p0 `m
, (2.415)

R « 1 ´ i
σσσ

2
¨
ααα ^ p

p0 `m
“ 1 ` is ¨

p ^ααα

p0 `m
. (2.416)

So in general we �nd

SpΛqupr,pq “
ÿ

r1

RpΛ,pqr1rupr1,Λpq, (2.417)

where R is the Wigner rotation associated to the transformation Λ. And an identical formula
holds for vpr,pq.

Let us now consider any solution of the Dirac equation

ψpxq “

2
ÿ

r“1

ż

dΩp

“

φ`
r ppqupr,pqe´ipx ` φ´

r ppqvpr,pqeipx
‰

. (2.418)

By construction the Poincaré group is realized in a local way on the space of these solutions

Ta : ψpxq
a

ÝÑ ψ1pxq “ ψpx` aq, (2.419)

Λ : ψpxq
Λ

ÝÑ ψ1pxq “ ψpΛ´1xq. (2.420)

For in�nitesimal transformations, recalling that
`

Λ´1x
˘µ

« xµ ´ ωµ
νx

ν , we have

ψpxq
a

ÝÑ p1 ` aµBµqψpxq, (2.421)

ψpxq
Λ

ÝÑ p1 `
i

2
ωµνσµν ´ ωµνxνBµqψpxq. (2.422)

And the generators are

pµ “ iBµ, (2.423)

Jpµνq “ σµν `
1

i
pxµBν ´ xνBµq. (2.424)

For the translations we �nd

φ`
r ppq

a
ÝÑ e´ipaφ`

r ppq, (2.425)

φ´
r ppq

a
ÝÑ eipaφ´

r ppq, (2.426)

which are the usual transformations laws, in the momentum representation, for the eigenstates
of the momenta p and ´p respectively.
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For Lorentz transformations we �nd

ψpxq
Λ

ÝÑ

2
ÿ

r,r1“1

ż

dΩp

”

φ`
r ppqRpΛ,pqr1rupr1,Λpqe´ippΛ´1xq ` φ´

r ppqRpΛ,pqr1rvpr1,ΛpqeippΛ´1xq
ı

“

2
ÿ

r,r1“1

ż

dΩp

“

φ`
r pΛ´1pqRpΛ,Λ´1pqr1rupr1,pqe´ipx ` φ´

r pΛ´1pqRpΛ,Λ´1pqr1rvpr1,pqeipx
‰

.(2.427)

So the law of transformation on the functions φ˘ is

φ`
r ppq

Λ
ÝÑ

ÿ

r1

RpΛ,Λ´1pqrr1φ`
r pΛ´1pq, (2.428)

φ´
r ppq

Λ
ÝÑ

ÿ

r1

RpΛ,Λ´1pqrr1φ´
r pΛ´1pq. (2.429)

This law of transformation is identical with the one constructed in Section 2.5.1. The generators
can be found recalling that for rotations and velocity in�nitesimal transformations we have

Rpθθθq « 1 ` i
σσσ

2
¨ θθθ, (2.430)

Rpαααq « 1 ´ i
σσσ

2
¨
ααα ^ p

p0 `m
. (2.431)

The result is

J “
σσσ

2
´ ip ^

B

Bp
, (2.432)

K “
1

2

p ^ σσσ

p0 `m
` ip0

B

Bp
, (2.433)

which coincides with the expressions (2.215) and (2.218).
Let us now write the scalar product in terms of the ψpxq. Let ψa and ψb be two solutions of

the Dirac equation. Then the quantity

Jµ
pa,bq

pxq “ ψ̄bpxqγµψapxq, (2.434)

is conserved

BµJ
µ
pa,bq

pxq “ 0, (2.435)

as can easily be proved from the Dirac equation and recalling that γ0γ0 “ 1 and γ0γµγ0 “ γµ:.
Jµ

pa,bq
transforms as a four-vector under Lorentz transformations

Jµ
pa,bq

pxq
Λ

ÝÑ ψ̄bpΛ´1xqS´1pΛqγµSpΛqψapΛ´1xq

“ pΛ´1qµνψ̄bpΛ´1xqγνψapΛ´1xq, (2.436)

where we used Eq. (2.357) and (2.374). The conservation law is thus covariant. Applying Gauss
theorem as in the scalar case, the integral extended to any space-like surface with normal dσµ,

ż

dσµJ
µ
pa,bq

pxq, (2.437)
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is independent from the chosen surface. Choosing a surface x0 “ constant, it is independent
from x0. We thus de�ne

xa|by “

ż

dx ψ̄bpx, tqγ0ψapx, tq “

ż

dx ψ̄bpx, 0qγ0ψapx, 0q. (2.438)

Respect to this scalar product, since it is Lorentz invariant and clearly translational invariant,
the transformations of Eqs. (2.421)-(2.422) are realized as unitary operators. It can be easily
shown that their generators (2.423)-(2.424) are hermitian respect to this scalar product.

Using the equations

u:pr,pqups,pq “ v:pr,pqvps,pq “ 2p0δrs, (2.439)

u:pr,pqvps,´pq “ 0, (2.440)

we obtain

xa|by “

ż

dΩp

”

φ`
b

˚
ppqφ`

a ppq ` φ´
b

˚
ppqφ´

a ppq

ı

. (2.441)

So the scalar product coincides, in the two subspaces relative to positive and negative energies,
with the scalar product originally introduced for the representation of the Poincaré group.

We have then realized, in a local way, a unitary irreducible representation of the Poincaré
group, extended to the parity transformations, for particles of mass m and spin 1{2.

2.6.3 Particles of spin 1

The most simple Lorentz transformation which contains spin 1 is the p 1
2 ,

1
2 q representation, i.e

the one of four-vectors. For this representation |sz| can assume the values 0 and 1.
A local wave function Wµpxq transforms according to the law

Wµpxq
Λ

ÝÑ Λµ
νW

νpΛ´1xq. (2.442)

For the state with de�nite momentum

Wµ
p pxq “ e´ipxεµpr,pq, (2.443)

For the spin to be 1, in the rest frame the four-vector εµppq must have only spatial components.
This means

εµpr,pqpµ “ 0. (2.444)

Then in addition to the Klein-Gordon equation

pl `m2qWµpxq “ 0, (2.445)

Wµpxq must satisfy the constraint (2.444) which in coordinate representation translates into

BµW
µpxq “ 0. (2.446)

The Eqs. (2.445) and (2.446) are equivalent to the system

Gµνpxq “ BµWνpxq ´ BνWµpxq, (2.447)

BµG
µνpxq ´m2W νpxq “ 0. (2.448)
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In fact applying Bν to the second equation and using the antisymmetry of Gµν we �nd

m2BµW
µpxq “ 0, (2.449)

which coincides with Eq. (2.446) when m ‰ 0. On the other hand if BµW
µpxq “ 0 the Eq.

(2.448) coincides with (2.445).
The Eqs. (2.447) and (2.448) has both positive and negative energy solutions. The general

solution is of the form

Wµpxq “

3
ÿ

r“1

ż

dΩp

”

W pr,pqεµpr,pqe´ipx ` W̃ pr,pqεµ˚
pr,pqeipx

ı

, (2.450)

where εµpr,pq are independent vectors that obey to Eq. (2.444).
By construction such solution is an irreducible representation of the Poincaré group.
We can de�ne a scalar product, exactly in the same way we did for the spin 0 case,

xa|by “ ´i

ż

dσνWa
˚
µpxq

Ø

B ν W
µ
b pxq (2.451)

“ ´

ż

dΩpWa
˚
µppqWµ

b ppq, (2.452)

where

Waµppq “

3
ÿ

r“1

Wapr,pqεµpr,pq. (2.453)

Note that
3
ÿ

r“1

εµpr,pqε˚
ν pr,pq “ ´gµν `

pµpν
m2

, (2.454)

represents the density matrix for unpolarized states. The proof is straightforward in the rest
frame. The covariance �xes the form in other frames.

Let us give, for completeness, an explicit representation of the base εµpr,pq. In the rest frame
we can choose any three spatial orthonormal vectors. Let them be εεεpr,0q. For particles with
momentum p we can de�ne, according to Eq. (2.287),

εµpr,pq “ SpΛpqεpr,0q “ pΛpqµνε
νpr,0q, (2.455)

where we used the fact that εµ transform as a four-vector. Using then the explicit expression
(2.193) we have

ε0pr,pq “
p ¨ εεεpr,0q

m
, (2.456)

εεεpr,pq “ εεεpr,0q ` p
p ¨ εεεpr,0q

mpp0 `mq
. (2.457)

The canonical base is the one where εipr,0q “ δir. Choosing instead as a base the eigenstates
of sz we have

εεεp`1,0q “ ´
i

?
2

pex ` ieyq, (2.458)

εεεp0,0q “ iez, (2.459)

εεεp´1,0q “
i

?
2

pex ´ ieyq, (2.460)
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where ex, ey, ez are the versors of the axes.
In the vectorial case the Wigner matrix R is de�ned by

RpΛqr1rε
µpr1,pq “ Λµ

νε
νpr,Λ´1pq. (2.461)

2.7 The second quantization

It is an experimental fact that the number of particles may change in physical processes: An
hydrogen atom in the state 2P is composed by an electron and a proton and decays into an atom
in its fundamental state plus a photon, an electron which pass through the Coulomb �eld of
nucleus is accelerated and emit photons (Bremsstrahlung), when a positron annihilates with an
electron their mass is converted in energy in the form of two photons, in the scattering between
two high energy protons many pions are produced, . . .. Then, exist transitions between states
with di�erent number of particles. In Section 2.7.1 we will present a formalism that allows to
describe systems of many free particles, used in any many-body theory, relativistic or not, and
known as Fock method. It allows to describe many particles states with the correct statistics and
to introduce operators that change the number of particles (creation and annihilation operators).

In Section 2.7.2 we will introduce the free �eld operators, and we will interpret in terms of
�eld operators the negative energy solutions of the equations of free motion.

The relativistic equations of motion can be rederived in the Lagrangian formalism and it
can be shown that the Fock second quantization is equivalent to the canonical quantization of a
system of an in�nite number of degrees of freedom.

The Lagrangian formalism is indispensable to write theories of non-free particles: In interac-
tion.

2.7.1 Fock space

Let us consider an orthonormal complete base |iy for the single particle states. For example the
base |r,py of the positive energy states for relativistic particles introduced in Section 2.6.

If the particles are bosons, in the state |iy can coexist an arbitrary number ni of free particles.
If the particles are fermions, in the state |iy can exist at most one particle.
In both cases, assigning the occupation numbers tniu in the various states |iy determines com-

pletely the state of the system, since the state must be symmetric for the bosons and completely
antisymmetric for the fermions.

Bosons

For any state |iy the observable number of particles in such state, ni, has integer eigenvalues:
1, 2, 3, . . .

His spectrum is the one of an harmonic oscillator. As for the harmonic oscillator is possible to
de�ne a rising (creation) operator b:

i and a lowering (annihilation) operator bi of the eigenvalue
of ni. The commutation properties are

rbi, b
:

i s “ 1 rbi, bis “ rb:

i , b
:

i s “ 0, (2.462)

We then de�ne ni “ b:

ibi with

rni, bis “ ´bi rni, b
:

i s “ b:

i . (2.463)
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The lower state |0iy corresponds to zero particles in the state |iy and bi|0iy “ 0 with x0i|0iy “ 1.
The normalized state with ni particles is then

pb:

i qni

?
ni!

|0iy “ |niy. (2.464)

A state identi�ed by the set of occupation numbers tniu in the di�erent states |iy can be written
as

|ni1 , . . . , nik , . . .y “
ź

ii

pb:

i qni

?
ni!

|0y (2.465)

where |0y “
ś

i |0iy is the vacuum. It is automatically symmetric under particle exchange if

rbi, bks “ rb:

i , b
:

ks “ 0. (2.466)

The �harmonic oscillators� correspondent to di�erent modes are independent and we must also
have

rbi, b
:

ks “ δik. (2.467)

The total number of particles is

N “
ÿ

i

ni “
ÿ

i

b:

ibi, (2.468)

Moreover x0|0y “ 1.

Fermions

For the fermions the occupation number can be 0 or 1 and the state must be completely antisym-
metric under particle exchange. This can be realized by associating to each single particle state
an harmonic anti-oscillator, requiring anticommutation between operators relative to di�erent
modes

rbi, bks` “ rb:

i , b
:

ks` “ 0 rbi, b
:

ks` “ δik, (2.469)

ni “ b:

ibi N “
ÿ

i

ni bi|0iy “ 0, (2.470)

rni, bks “ ´biδik rni, b
:

ks “ b:

iδik. (2.471)

The subscript ` indicates the anticommutator. The possible states in the mode |iy are |0iy and

b:

i |0iy “ |1iy. b
:

i

2
|0iy “ 0 because the operator b:

i anticommutes with itself. Moreover

bib
:

i |0iy “ p´bib
:

i ` 1q|0iy “ |0iy. (2.472)

Observations

Given an operator O written in terms of creation and annihilation operators we will denote with
: O : the normal ordered operator for bosons or the antinormal ordered operator for fermions.
For bosons it is obtained from O displacing all creation operators to the left and all annihilation
operators to the right and for fermions is is obtained from O displacing all creation operators
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to the left and all annihilation operators to the right times p´1qn, with n the number of needed
exchanges of a creation and an annihilation operator. For example for bosons : bb: : “ b:b “ bb:´

1. Normal ordering is not linear. For example : bb: : “ : 1` b:b : “ : 1 : ` : b:b : “ 1` b:b ‰ b:b.
For fermions : bb: : “ ´b:b “ bb: ´ 1. In particular we will always have x0| : O : 0y “ 0 on the
vacuum. We usually refer to the normal order as the Wick order.

The (anti)commutation relations are invariant under unitary changes of base. Let V be a
unitary transformation from the base |1iy for the single particle states to the base |1αy

|1αy “
ÿ

i

Vαi|1iy |1iy “
ÿ

i

V :

iα|1αy, (2.473)

with V V : “ V :V “ 1. If |1iy “ b:

i |0y then |1αy “
ř

i Vαib
:

i |0y. De�ning

b:
α “

ÿ

i

Vαib
:

i bα “
ÿ

i

V ˚
αibi, (2.474)

we have

rbα, bβs˘ “ rb:
α, b

:

βs˘ “ 0, (2.475)

rbα, b
:

βs˘ “
ÿ

ij

V ˚
αiVβjrbi, b

:

js˘ “
ÿ

i

V ˚
αiVβi “ pV V :qβα “ δαβ . (2.476)

The vacuum remains unchanged.
If the index i that label the states is continuous, as for the momentum p in the base |r,py

for free particles, the (anti)commutation rules must be modi�ed replacing the δik in the Eqs.
(2.467) and (2.469) the diagonal element of the identity matrix in the chosen representation. For
the states |r,py

rbpr,pq, bpr1,p1qs˘ “ rb:pr,pq, b:pr1,p1qs˘ “ 0, (2.477)

rbpr,pq, b:pr1,p1qs˘ “ δrr1 p2πq32p0δpp ´ p1q, (2.478)

where ˘ denotes the commutator or anticommutator. This choice give the correct states nor-
malization. In fact

xr,p|r1,p1y “ x0|bpr,pqb:pr1,p1q0y “ x0|rbpr,pq, b:pr1,p1qs˘0y “ δrr1 p2πq32p0δpp ´ p1q. (2.479)

The density of occupation number is b:pr,pqbpr,pq and the total number of particles is

N “

ż

dΩp

ÿ

r

b:pr,pqbpr,pq. (2.480)

The commutation rules for N are

rN, bpr,pqs “ ´bpr,pq rN, b:pr,pqs “ b:pr,pq. (2.481)

2.7.2 Field operators

Let

|sy “

ż

dΩp

ÿ

r

φspr,pq|r,py, (2.482)
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be any single particle state. It can be written as

|sy “

ż

dΩp

ÿ

r

φspr,pqb:pr,pq|0y, (2.483)

with

xr1,p1|sy “ x0|bpr1,p1qsy “

ż

dΩp

ÿ

r

φspr,pqx0|bpr1,p1qb:pr,pq0y, (2.484)

but

x0|bpr1,p1qb:pr,pq0y “ δrr1 p2πq32p0δpp ´ p1q, (2.485)

and so

x0|bpr1,p1qsy “ φspr1,p1q. (2.486)

The operator bpr,pq extracts from a state the component with momentum p. We can construct
an operator which acts in the same way on the x space. For a particle of any spin let us consider
the positive energy solutions and build the following operator

φ`pxq “

ż

dΩp

ÿ

r

bpr,pqupr,pqe´ipx. (2.487)

The operator φ`pxq has the same number of components of the function upr,pq: 1 for spin
0, 4 for spin 1/2 and 1. In any case from Eq. (2.487) follows

x0|φ`pxqsy “

ż

dΩp

ÿ

r

φspr,pqupr,pqe´ipx “ φspxq, (2.488)

where φspxq is the wave function of the state |sy.
The operator φ`pxq de�ned in Eq. (2.487) is called �eld operator or better the positive

energy component of the �eld operator. The subscript ` indicates that it contains only positive
energies.

The operator φ`pxq is a linear superposition of solutions upr,pqe´ipx with positive energy of
the wave equation, so it is a solution with positive energy of the wave equation.

Let us give the explicit formulas for the �eld operator

spin 0 φ`pxq “

ż

dΩp bppqe´ipx, (2.489)

spin 1
2 ψ`pxq “

ż

dΩp

2
ÿ

r“1

upr,pqbpr,pqe´ipx, (2.490)

spin 1 Wµ
`pxq “

ż

dΩp

3
ÿ

r“1

εµpr,pqbpr,pqe´ipx. (2.491)

It is possible to invert these formulas using the expressions for the scalar products de�ned in the
various cases (2.317), (2.438), and (2.451)

spin 0 bppq “ i

ż

dσµ eipx
Ø

B µ φ`pxq “ i

ż

dx eipx
Ø

B 0 φ`pxq, (2.492)

spin 1
2 bpr,pq “

ż

dxu:pr,pqeipxψ`pxq, (2.493)

spin 1 bpr,pq “ ´i

ż

dx ε˚
µpr,pqeipx

Ø

B 0 W
µ
`pxq. (2.494)
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All observables can be expressed in terms of b:pr,pq and bpr,pq. Then they can be expressed in
terms of the �elds and of their �rst derivatives for spin 0 and 1 particles, and in terms of the
�elds for spin 1{2 particles.

2.7.3 Transformation properties of the �eld operators

The invariance under a symmetry group implies the existence of a unitary representation of the
group which send the Hilbert space into itself.

For a free particle the symmetry group is the Poincaré group and the representation is ir-
reducible. We want now construct the representation of the group on the many free particles
states.

Let UpΛ, aq “ TaUpΛq be a transformation of the group with Lorentz matrix Λ and translation
parameter aµ. On the single particle states we know that

UpΛ, aq|r,py “ e´ipΛpqaRpΛ,pqr1r|r1,Λpy, (2.495)

where R is a unitary matrix which represents the Wigner rotation. To construct the representa-
tion of the group in the Fock space we assume that the vacuum is invariant

UpΛ, aq|0y “ |0y, (2.496)

and we set

UpΛ, aqb:pr,pqU :pΛ, aq “ e´ipΛpqaRpΛ,pqr1rb
:pr1,Λpq. (2.497)

This representation realizes the (2.495) and transforms independently the many particles states.
For the annihilation operator we will then have

UpΛ, aqbpr,pqU :pΛ, aq “ eipΛpqaRpΛ,pq˚
rr1bpr1,Λpq. (2.498)

We de�ne the transformed of bpr,pq as follows 4

bpr,pq Ñ U :pΛ, aqbpr,pqUpΛ, aq. (2.500)

From Eq. (2.498), recalling that

U´1pΛ, aq “ UpΛ´1,´Λ´1aq, (2.501)

we �nd

U :pΛ, aqbpr,pqUpΛ, aq “ e´ipaRpΛ,Λ´1pqrr1bpr1,Λ´1pq, (2.502)

U :pΛ, aqb:pr,pqUpΛ, aq “ eipaRpΛ,Λ´1pq˚
rr1bpr1,Λ´1pq. (2.503)

(2.504)

To derive Eq. (2.502) we used

RpΛ´1,pq˚
r1r “ RpΛ´1,pq

:

rr1 , (2.505)

4Note that here we must de�ne the transformed operator using the inverse transformation respect to the one
that applies to regular observables for which the measure in the two reference frames must coincide. In fact

φspr,pq “ x0|bsy Ñ x0|U:bUsy ” x0|b1sy, (2.499)

where b1 is the transformed operator and in the last equation we used the fact that U |0y “ |0y and U |sy “ |s1y.

61



�2.7. The second quantization 2. THE PARTICLE

and

RpΛ´1,pq
:

rr1 “ RpΛ,Λ´1pqrr1 . (2.506)

Eq. (2.506) can be derived observing that R is unitary, that

|r,py “ UpΛqU :pΛq|r,py “ UpΛqRpΛ´1,pqr1r|r1,Λ´1py (2.507)

“ RpΛ,Λ´1pqr2r1RpΛ´1,pqr1r|r2,py, (2.508)

and that |r,py is a complete base at �xed p. Since the transformation (2.502) is unitary in Fock
space it leaves unchanged the commutation relations.

The generators of the unitary transformation UpΛ, aq can be explicitly constructed as hermi-
tian operators on Fock space. For in�nitesimal transformations

UpΛ, aq « 1 ´ ipµa
µ ` iθθθ ¨ J ´ iααα ¨ K. (2.509)

We recall that for in�nitesimal rotations

RpΛqrr1 « δrr1 ` iθθθ ¨ srr1 , (2.510)

bpr,Λ´1pq « bpr,p ` θθθ ^ pq « bpr,pq ` θθθ ¨

ˆ

p ^
B

Bp

˙

bpr,pq, (2.511)

and for in�nitesimal velocity transformations

RpΛqrr1 « δrr1 ´ i
ααα ^ p

p0 `m
¨ srr1 , (2.512)

bpr,Λ´1pq « bpr,p `αααp0q « bpr,pq `ααα ¨ p0
B

Bp
bpr,pq. (2.513)

Using Eqs. (2.502) and (2.509) we derive the commutation relations for the generators

rpµ, bpr,pqs “ ´pµbpr,pq, (2.514)

rJ , bpr,pqs “ ´

ˆ

s ´ ip ^
B

Bp

˙

rr1

bpr1,pq, (2.515)

rK, bpr,pqs “ ´

ˆ

p ^ s

p0 `m
` ip0

B

Bp

˙

rr1

bpr1,pq. (2.516)

Taking the hermitian conjugate and recalling that the s matrices are hermitian we �nd

rpµ, b
:pr,pqs “ pµb

:pr,pq, (2.517)

rJ , b:pr,pqs “

ˆ

s ` ip ^
B

Bp

˙

r1r

b:pr1,pq, (2.518)

rK, b:pr,pqs “

ˆ

p ^ s

p0 `m
´ ip0

B

Bp

˙

r1r

b:pr1,pq. (2.519)

It is possible to give an explicit representation for the operators pµ,J , and K in terms of the
operators b and b:

pµ “

ż

dΩp

ÿ

r

b:pr,pqpµbpr,pq, (2.520)

J “

ż

dΩp

ÿ

r

b:pr,pq

ˆ

s ´ ip ^
B

Bp

˙

rr1

bpr,pq, (2.521)

K “

ż

dΩp

ÿ

r

b:pr,pq

ˆ

p ^ s

p0 `m
` ip0

B

Bp

˙

rr1

bpr,pq, (2.522)
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so that these operators satisfy the commutation rules (2.514)-(2.516).
Let us now treat the transformation properties of the �eld operator. The Eq. (2.502) induces

the following transformation

U :pΛ, aqφ`pxqUpΛ, aq “

ż

dΩp e
´ipx

ÿ

r

upr,pqe´ipaRpΛ,Λ´1pqrr1bpr1,Λ´1pq. (2.523)

Changing variables p Ñ Λp and using Eq. (2.417) we �nd

φ1pxq ” U :pΛ, aqφ`pxqUpΛ, aq “ SpΛqφ`pΛ´1x` Λ´1aq, (2.524)

which is the correct transformation law for a local operator 5. Indicating with x1 the transformed
event we can also write

φ1
`px1q “ U :φ`px1qU “ SpΛqφ`pxq. (2.525)

This equation allows to write down immediately the action of the generators of the Poincaré
group on the �eld operators. Denoting with Jpµνq and pµ the generators in the Fock space

UpTaq “ e´iaµpµ UpΛq “ e
i
2ω

µνJpµνq , (2.526)

and with σµν the generator of the group in the representation under which φ transforms, i.e. the
generator of the SpΛq matrix, from Eq. (2.524) follows

rpµ, φ`pxqs “ ´iBµφ`pxq, (2.527)

rJpµνq, φ`pxqs “ ´ rσµν ´ ipxµBν ´ xνBµqsφ`pxq, (2.528)

as follows from Eqs. (2.423) and (2.424).

2.7.4 Locality and spin-statistics theorem

In constructing the relativistic theory it is necessary to deal with local operators commuting
at spacelike distances. In fact, since a signal can not propagate at speeds higher than that
of light, measures occurred at spatial distances must not in�uence each other. As observed in
Section 2.7.2 all observables can be written in terms of �elds and their �rst derivatives. If the
(anti)commutators between these quantities are zero for spacelike distances it will be possible to
construct a theory that satis�es causality.

From the commutators between the operators bpr,pq and b:pr,pq we can easily calculate the
commutators between the �elds and their derivatives. Let us consider �rst the scalar �eld

rφ`pxq, φ`pyqs “ 0, (2.529)

rφ`pxq, φ:
`pyqs “ F`px´ yq, (2.530)

rφ`pxq, B0φ
:
`pyqs “

B

By0
F`px´ yq, (2.531)

where Eq. (2.531) follows from Eq. (2.530).
The function F` is invariant under translations and under Lorentz transformations. It is in

fact a c-number, i.e. as an operator in the Fock space it is proportional to the identity, because
such is rbpr,pq, b:pr,pqs. From Eq. (2.530) follows that

U :pΛ, aqrφ`pxq, φ:
`pxqsUpΛ, aq “ F`px´ yqU :pΛ, aqUpΛ, aq “ F`px´ yq. (2.532)

5We recall that pΛ, aq´1x “ pTaΛq´1x “ Λ´1T´ax “ Λ´1x ` Λ´1a.
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But the �rst member is also equal to

rφ`pΛ´1px` aqq, φ:
`pΛ´1px` aqqs “ F`pΛ´1px´ yqq, (2.533)

and this proves the invariance of F` under the Poincaré group.
Explicitly we have

F`px´ yq “

ż

dΩp e
´ippx´yq. (2.534)

If x and y are at spacelike distances it is always possible to bring them to be simultaneous
(x0 “ y0) through a Lorentz transformation. To study the behavior of F` at spacelike distances
it is su�cient to study it at equal times (x0 “ y0). We then have

F`p0,x ´ yq “

ż

dΩp e
ip¨px´yq, (2.535)

B

By0
F`px0 ´ y0,x ´ yq

ˇ

ˇ

ˇ

ˇ

y0“x0

“
i

2

ż

dp

p2πq3
eip¨px´yq “

i

2
δpx ´ yq. (2.536)

The integral in Eq. (2.535) can be easily calculated in terms of Bessel functions

F`p0,x ´ yq “
m

p2πq2|x ´ y|
K0pm|x ´ y|q. (2.537)

F` is di�erent from zero at spacelike distances of the order of the Compton wavelength of the
particle (ℓ “ h{mc). So a theory constructed in terms of just the φ` is non local.

But we remember that next to the positive energy solutions exist the �negative energy�
solutions of the Klein-Gordon equation. In the Fock space context a dependence of the kind eipx

is associated to a creation operator, rather than to a destruction operator as in the expansion
for φ`. While considering the negative energy solutions is then natural to introduce a �negative
frequency� �eld

φ´pxq “

ż

dΩp e
ipxd:ppq. (2.538)

The operators d:ppq and dppq are operator independent from b:ppq and bppq, i.e. they describe
a di�erent particle, and so they commute with them.

Let us now construct the �eld

φpxq “ φ`pxq ` φ´pxq, (2.539)

or

φpxq “

ż

dΩp

“

dppqe´ipx ` d:ppqeipx
‰

, (2.540)

φ:pxq “

ż

dΩp

“

d:ppqeipx ` dppqe´ipx
‰

. (2.541)

(2.542)

The commutators now becomes

rφpxq, φpyqs “ rφ:pxq, φ:pyqs “ 0, (2.543)

rφpxq, φ:pyqs “ F`px´ yq ´ F`py ´ xq, (2.544)

rφpxq, B0φ
:pyqs “

B

By0
rF`px´ yq ´ F`py ´ xqs . (2.545)
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At equal times, at spacelike distances, we have

rφpx0,xq, φ:px0,yqs “ 0, (2.546)

rφpx0,xq, B0φ
:px0,yqs “ iδpx ´ yq. (2.547)

The theory is now local.
We note that the minus sign in the Eqs. (2.544) and (2.545) depends by the choice of

commutation relation: The locality in Eqs. (2.546) and (2.547) would have been destroyed if we
would have chosen the Fermi statistics. This is a manifestation of the so called spin-statistics
theorem.

We note that since φpxq is a superposition of solutions of the Klein-Gordon equation it itself
satis�es to such equation

pl `m2qφpxq “ 0. (2.548)

Note that since bppq ‰ dppq the scalar �eld is not hermitian. This is also called a charged
scalar �eld. The hermitian �eld is called neutral. The particle described by the creation operator
d: is called antiparticle.

Let us now treat the spin 1{2 case. For the Dirac �eld,

ψ`pxq “

ż

dΩp

ÿ

r

upr,pqbpr,pqe´ipx, (2.549)

we have

rψα
`pxq, ψ:

`

β
pyqs` “

ż

dΩp

ÿ

r

uαpr,pqu:βpr,pqe´ippx´yq

“

ż

dΩp rp�p`mqγ0sαβe´ippx´yq, (2.550)

where we used the anticommutation relations for the b, b: and we used the Eq. (2.404) for the
projector on the positive energies states.

Omitting the indexes α, β and using the anticommutation rules of the γ matrices we can then
write

rψ`pxq, ψ:
`pyqs` “

ˆ

i
B

Bx0
`mγ0 ` iγ0γγγ ¨∇∇∇

˙

F`px´ yq, (2.551)

where F` is again given by Eq. (2.535). At equal times

rψ`px0,xq, ψ:
`px0,yqs` “

i

2
δpx ´ yq ` pmγ0 ` iγ0γγγ ¨∇∇∇qF`px´ yq, (2.552)

which is non-local.
In analogy to what we did in the scalar case we introduce

ψ´pxq “

ż

dΩp

ÿ

r

vpr,pqb:pr,pqeipx, (2.553)

where d: is the creation operator for a new particle

rdpr,pq, d:pr1,p1qs` “ δrr12p0p2πq3δpp ´ p1q, (2.554)

rd, ds` “ rd:, d:s` “ rb, ds` “ rb, d:s` “ rb:, ds` “ rb:, d:s`0, (2.555)
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and

ψpxq “ ψ`pxq ` ψ´pxq “

ż

dΩp

ÿ

r

“

upr,pqbpr,pqe´ipx ` vpr,pqd:pr,pqeipx
‰

, (2.556)

ψ:pxq “

ż

dΩp

ÿ

r

“

u:pr,pqb:pr,pqeipx ` v:pr,pqdpr,pqe´ipx
‰

.(2.557)

Then

rψpxq, ψpyqs` “ rψ:pxq, ψ:pyqs` “ 0, (2.558)

rψpxq, ψ:pyqs` “

ż

dΩp

”

p�p`mqγ0e´ippx´yq ` p�p´mqγ0eippx´yq
ı

(2.559)

“

ż

dΩp

„ˆ

iγµ
B

Bxµ
`m

˙

γ0e´ippx´yq `

ˆ

iγµ
B

Byµ
´m

˙

γ0eippx´yq

ȷ

“

ˆ

iγµ
B

Bxµ
`m

˙

γ0rF`px´ yq ´ F`py ´ xqs.

At equal times, using γ0γ0 “ 1, we �nd

rψpx0,xq, ψ:px0,yqs` “ iδpx ´ yq, (2.560)

which is again local. Again we must notice that in order to have Eq. (2.560) in a local form
it was essential to choose the anticommutators. The commutator would have brought a minus
sign for the vv: term in Eq. (2.559) and to a non-local result. This is a manifestation of the
spin-statistic theorem.

Since ψ is a linear superposition of Dirac equation solutions, it itself is a solution of the Dirac
equation

pi�B ´mqψpxq “ 0. (2.561)

Let us conclude with the case of a massive vectorial �eld. The analysis is identical to the
scalar case. For a vectorial �eld we de�ne

Wµpxq “

ż

dΩp

3
ÿ

r“1

rεµpr,pqbpr,pqe´ipx ` ε˚
µpr,pqd:pr,pqeipxs, (2.562)

W :
µpxq “

ż

dΩp

3
ÿ

r“1

rε˚
µpr,pqb:pr,pqeipx ` εµpr,pqdpr,pqe´ipxs. (2.563)

The commutation rules can be easily derived recalling Eq. (2.454)

rWµpxq,W :
ν pyqs “ ´

ˆ

gµν `
1

m2

B

Bxµ
B

Bxν

˙

rF`px´ yq ´ F`py ´ xqs, (2.564)

rWµpx0,xq,W :
ν px0,yqs “ ´

i

2m2
rgµ0Bν ` g0νBµsδpx ´ yq, (2.565)

rWµpx0,xq, B0W
:
ν px0,yqs “ ´

ˆ

gµν `
BµBν

m2

˙

iδpx ´ yq. (2.566)

Also in this case the use of the Bose statistics has been essential for the locality of (2.565). Again
this is a manifestation of the spin-statistics theorem.
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The vectorial �eld Wµ will satisfy to the following system of equations

pl `m2qWµpxq “ 0, (2.567)

BµW
µ “ 0 (2.568)

The spin-statistics theorem states that, as a consequence of Lorentz invariance and of locality,
half integer spin particles must obey to Fermi statistics and integer spin particles must obey to
Bose statistics.

As we saw in the various cases, the introduction of the negative energy solutions does not
interfere with the Lorentz structure of the �elds. Since the commutation rules of the operators
b and d are identical we can write the action of the group on the whole Fock space generated by
b: and d:. In particular the generators are given by

pµ “

ż

dΩp

ÿ

r

“

b:pr,pqpµbpr,pq ` d:pr,pqpµdpr,pq
‰

, (2.569)

J “

ż

dΩp

ÿ

r

„

b:pr,pq

ˆ

s ´ ip ^
B

Bp

˙

rr1

bpr,pq ` d:pr,pq

ˆ

s ´ ip ^
B

Bp

˙

rr1

dpr,pq

ȷ

, (2.570)

K “

ż

dΩp

ÿ

r

„

b:pr,pq

ˆ

p ^ s

p0 `m
` ip0

B

Bp

˙

rr1

bpr,pq ` d:pr,pq

ˆ

p ^ s

p0 `m
` ip0

B

Bp

˙

rr1

dpr,pq

ȷ

,(2.571)

as can be inferred by Eqs. (2.520)-(2.522).
On the �eld operators Eqs. (2.527) and (2.528) now give

rpµ, φpxqs “ ´iBµφpxq, (2.572)

rJpµνq, φpxqs “ ´ rσµν ´ ipxµBν ´ xνBµqsφpxq, (2.573)

From the point of view of the Poincaré group it is evident from the construction and from
the generators (2.569)-(2.571) that the antiparticle states are identical to the particle ones: they
describe a system of free particles of mass m.

67



�2.7. The second quantization 2. THE PARTICLE

68



Appendices

69





Appendix B

Commutators

The commutator of two operators A and B is de�ned as

rA,Bs “ AB ´BA. (B.1)

The commutator satis�es to the following Lie algebra relations

rA,As “ 0, (B.2)

rA,Bs “ ´rB,As, (B.3)

rA, rB,Css ` rB, rC,Ass ` rC, rA,Bss “ 0, (B.4)

where the third one is known as the Jacobi identity.
For three operators A,B, and C we also have

rA,B ` Cs “ rA,Bs ` rA,Cs, (B.5)

rA,BCs “ BrA,Cs ` rA,BsC. (B.6)

If rA,Bs “ α P C then

rA,B2s “ BrA,Bs ` rA,BsB “ 2αB, (B.7)

rA,B3s “ BrA,B2s ` rA,BsB2 “ 3αB2, (B.8)

. . .

rA,Bns “ nαBn´1. (B.9)

Then, given a smooth function f , using its Taylor series expansion, we readily obtain

rA, fpBqs “ α
dfpBq

dB
. (B.10)

In general we can prove the following lemma:
Hadamard lemma: Given any two operators A and B we have

eABe´A “ B ` rA,Bs `
1

2!
rA, rA,Bss `

1

3!
rA, rA, rA,Bsss ` . . . (B.11)

Proof: Consider the function fpsq “ esABe´sA. We want fp1q. Taylor expand fpsq around
s “ 0

fpsq “ fp0q ` sf 1p0q `
1

2!
s2f2p0q `

1

3!
s3f3p0q ` . . . , (B.12)
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but it is easy to see that

f 1psq “ esAABe´sA ´ esABAe´sA “ esArA,Bse´sA, (B.13)

f2psq “ esArA, rA,Bsse´sA, (B.14)

f3psq “ esArA, rA, rA,Bssse´sA, (B.15)

and so on.
The following theorem is also of great importance:

Theorem: Given two hermitian operators A and B which commutes, rA,Bs “ 0, they can be
diagonalized simultaneously on the same orthonormal base of vectors of the Hilbert space.
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Appendix C

The Levi-Civita symbol

The Levi-Civita symbol ϵi1i2...in is de�ned as a total antisymmetric n rank tensor with ϵ012...n “ 1.
In two dimensions

ϵijϵik “ δjk, (C.1)

ϵijϵij “ 2, (C.2)

where in the �rst equation we contracted one index and in the second equation we contracted
both indexes.

In three dimensions

ϵijkϵilm “ δjlδkm ´ δjmδkl, (C.3)

ϵijkϵijl “ 3δkl ´ δkl “ 2δkl, (C.4)

ϵijkϵijk “ 6. (C.5)

In general

ϵi1i2...inϵj1j2...jn “ det

¨

˚

˝

δi1j1 ¨ ¨ ¨ δi1jn
...

. . .
δinj1 δinjn

˛

‹

‚

. (C.6)

Also for an nˆ n matrix A with pAqij “ aij we have

detpAq “ ϵi1i2...ina1i1a2i2 ¨ ¨ ¨ anin , (C.7)

detpAqϵj1j2...jn “ ϵi1i2...inai1j1ai2j2 ¨ ¨ ¨ ainjn . (C.8)
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Appendix D

Angular momentum

Consider the angular momentum hermitian operator pL, where the hat denotes the operator.
Then the following commutation relations hold

rpLi, pLjs “ iϵijkpLk. (D.1)

Then de�ne

xL2 “

3
ÿ

i“1

pL2
i , (D.2)

pL˘ “ pL1 ˘ ipL2. (D.3)

We can then prove the following relations

rxL2, pLis “ 0, (D.4)

rpL`, pL´s “ 2pL3, (D.5)

rpL3, pL˘s “ ˘pL˘, (D.6)

and

xL2 “ pL`
pL´ ` pL2

3 ´ pL3 “ pL´
pL` ` pL2

3 ` pL3 (D.7)

Since xL2 commutes with pL3 we can diagonalize them simultaneously so that

xL2|ψL,M y “ L2|ψL,M y, (D.8)
pL3|ψL,M y “ M |ψL,M y, (D.9)

where, since xL2 ´ pL2
3 “ pL2

1 ` pL2
2, we called L the maximum value of |M | for a given value L.

Then

pL3
pL˘|ψL,M y “ pM ˘ 1qpL˘|ψL,M y, (D.10)
pL`|ψL,Ly “ 0. (D.11)

From Eq. (D.7) follows

0 “ pL´
pL`|ψL,Ly “ pxL2 ´ pL2

3 ´ pL3q|ψL,Ly, (D.12)
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or L2 “ LpL ` 1q. Also M can assume 2L ` 1 values, namely M “ L,L ´ 1, . . . ,´L. And
2L “ 0, 1, 2, 3, . . ..

For the orbital angular momentum pL “ pr ^ pp. In the coordinate representation pr “ r and
pp “ ´i∇∇∇r. From the commutation relations for position and momentum

rpri, prjs “ 0, (D.13)

rppi, ppjs “ 0, (D.14)

rpri, ppjs “ iδij , (D.15)

follows

rpLi, prjs “ iϵijkprk, (D.16)

rpLi, ppjs “ iϵijkppk, (D.17)

and again Eq. (D.1). Using spherical coordinates

r1 “ r sin θ cosϕ, r2 “ r sin θ sinϕ, r3 “ r cos θ, (D.18)

we �nd in particular

pL3 “ ´i
B

Bϕ
. (D.19)

So we see that the eigenvalue equation

pL3ψL,M prq “ MψL,M prq, (D.20)

has solution

ψL,M “ fpr, θqeiMϕ, (D.21)

where f is an arbitrary function. If the function ψL,M has to be single valued, it must be
periodic in ϕ with period 2π. Hence we �nd that additionally for the orbital case we must have
M “ 0,˘1,˘2, . . ., i.e. L must be an integer.

If we have to add the angular momentum of two di�erent systems, pL “ yLp1q ` yLp2q, we
can either choose the set of commuting operators t {pLp1qq2, {pLp2qq2, yLp1q

3,
yLp2q

3u or the other one

t {pLp1qq2, {pLp2qq2,xL2, pL3u, since ryLp1q, yLp2qs “ 0.
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Appendix E

SU(2)

The special unitary group of degree n, SUpnq, is the group of n ˆ n unitary matrices with
determinant 1. Its dimension as a real manifold is n2 ´ 1 “ 3. Topologically it is compact and
simply connected. Algebraically it is a simple Lie group.

Consider the 2 ˆ 2 complex matrices A which are unitary A:A “ 1 and with determinant
equal to 1. The most general 2 ˆ 2 complex matrix can be written as

A “

ˆ

z1 z2
z3 z4

˙

zi “ ρie
iφi . (E.1)

Imposing unitarity is the same as imposing the three following conditions

z˚
1 z1 ` z˚

3 z3 “ 1, (E.2)

z˚
2 z2 ` z˚

4 z4 “ 1, (E.3)

z˚
1 z2 ` z˚

3 z4 “ 0. (E.4)

Imposing that the determinant is 1 amounts to setting

z1z4 ´ z2z3 “ 1. (E.5)

This four conditions can be rewritten as follows

ρ21 ` ρ23 “ 1, (E.6)

ρ22 ` ρ24 “ 1, (E.7)

ρ1ρ2e
ipφ2´φ1q ` ρ3ρ4e

ipφ4´φ3q “ 0, (E.8)

ρ1ρ4e
ipφ1`φ4q ´ ρ2ρ3e

ipφ2´φ3q “ 1. (E.9)

Taking the modulus of Eq. (E.8) gives ρ1ρ2 “ ρ3ρ4. When we use this relation in Eqs. (E.6)
and (E.7) we �nd ρ1 “ ρ4 and ρ2 “ ρ3. Then Eq. (E.8) gives φ2 ´φ1 `φ3 ´φ4 “ π which when
used in Eq. (E.9) gives

ρ21 ` ρ22 “ e´ipφ1`φ4q, (E.10)

which in turn is satis�ed by ρ21 ` ρ22 “ 1 and φ1 ` φ4 “ 0. Then we end up with matrices of the
form

A “

ˆ

ρ1e
iφ1 ˘

a

1 ´ ρ1e
iφ2

¯
a

1 ´ ρ1e
´iφ2 ρ1e

´iφ1

˙

. (E.11)
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In other words we can say that

SUp2q “

"ˆ

α ´β˚

β α˚

˙

| α, β P C, |α|2 ` |β|2 “ 1

*

. (E.12)

The Lie algebra SUp2q of the group is obtained through the exponential map as the 2 ˆ 2
complex matrices ia such that A “ eia. Then the unitarity of A implies that a be hermitian and
the condition for A to have determinant 1 implies that a be traceless. It is easy to prove that
SUpnq has dimension 2npn´ 1q{2 ` n´ 1 “ n2 ´ 1 and

SUp2q “ tiθθθ ¨ σσσ | θθθ P R3u, (E.13)

with σi the Pauli matrices

σ1 “ σx “

ˆ

0 1
1 0

˙

, (E.14)

σ2 “ σy “

ˆ

0 ´i
i 0

˙

, (E.15)

σ3 “ σz “

ˆ

1 0
0 ´1

˙

. (E.16)

If we add to the Pauli matrices the identity matrix

1 “

ˆ

1 0
0 1

˙

“ σ2
1 “ σ2

2 “ σ2
3 “ ´iσ1σ2σ3, (E.17)

we obtain a base for the vector space of hermitian 2 ˆ 2 complex matrices.
The Pauli matrices are unitary and some of their properties are as follows

detpσiq “ ´1, (E.18)

Trpσiq “ 0, (E.19)

detpa ¨ σσσq “ ´|a|2, (E.20)

rσi, σjs “ 2iϵijkσk, (E.21)

tσi, σju “ 2δij1, (E.22)

pa ¨ σσσqpb ¨ σσσq “ pa ¨ bq1 ` ipa ^ bq ¨ σσσ, (E.23)

eiapn̂¨σσσq “ 1 cos a` ipn̂ ¨ σσσq sin a. (E.24)

The Pauli matrices o�er a representation for the spin 1{2 operator s as follows

s “
σσσ

2
. (E.25)

There exists a 2 : 1 group homomorphism between SUp2q and SOp3q.
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Appendix F

Velocity transformations

A velocity transformation with βββ “ p0, 0, βq is x1 “ Λx with
¨

˚

˚

˝

x10

x11

x12

x13

˛

‹

‹

‚

“

¨

˚

˚

˝

γ 0 0 ´γβ
0 1 0 0
0 0 1 0

´γβ 0 0 γ

˛

‹

‹

‚

¨

˚

˚

˝

x0

x1

x2

x3

˛

‹

‹

‚

, (F.1)

where γ “ 1{
a

1 ´ β2. The velocity transformation can be cast into another useful form by
de�ning a parameter α called the rapidity (or hyperbolic angle) such that

eα “ γp1 ` βq “

d

1 ` β

1 ´ β
, (F.2)

and thus

e´α “ γp1 ´ βq “

d

1 ´ β

1 ` β
. (F.3)

So

γ “ coshα “
eα ` e´α

2
, (F.4)

βγ “ sinhα “
eα ´ e´α

2
, (F.5)

(F.6)

and therefore

β “ tanhα. (F.7)

We then have
¨

˚

˚

˝

x10

x11

x12

x13

˛

‹

‹

‚

“

¨

˚

˚

˝

coshα 0 0 ´ sinhα
0 1 0 0
0 0 1 0

´ sinhα 0 0 coshα

˛

‹

‹

‚

¨

˚

˚

˝

x0

x1

x2

x3

˛

‹

‹

‚

, (F.8)

79
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with
¨

˚

˚

˝

coshα 0 0 ´ sinhα
0 1 0 0
0 0 1 0

´ sinhα 0 0 coshα

˛

‹

‹

‚

“ exp

»

—

—

–

´iα

¨

˚

˚

˝

0 0 0 ´i
0 0 0 0
0 0 0 0

´i 0 0 0

˛

‹

‹

‚

fi

ffi

ffi

fl

” expp´iαK3q, (F.9)

where the simpler Lie-algebraic hyperbolic rotation generator iK3 is called a boost generator.
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Chapter 3

The Polaron

3.1 Introduction

An electron in a ionic crystal polarizes the lattice in its neighborhood. An electron moving with its
accompanying distortion of the lattice has sometimes been called a �polaron� [19, 20]. Since 1933
Landau addresses the possibility whether an electron can be self-trapped (ST) in a deformable
lattice [21, 22, 23]. This fundamental problem in solid state physics has been intensively studied
for an optical polaron in an ionic crystal [24, 25, 26, 27, 28, 29]. Bogoliubov approached the
polaron strong coupling limit with one of his canonical transformations. Feynman used his path
integral formalism and a variational principle to develop an all coupling approximation for the
polaron ground state [30]. Its extension to �nite temperatures appeared �rst by Osaka [31, 32],
and more recently by Castrigiano et al. [33, 34, 35]. Recently the polaron problem has gained new
interest as it could play a role in explaining the properties of the high Tc superconductors [36].
The polaron problem has also been studied to describe an impurity in a Bose-Einstein ultracold
quantum gas condensate of atoms [37]. In this context evidence for a transition between free and
self-trapped optical polarons is found. For the solid state optical polaron no ST state has been
found yet [26, 27, 29].

The acoustic modes of lattice vibration are known to be responsible for the appearance of the
ST state [38, 39, 19]. Contrary to the optical mode which interacts with the electron through
Coulombic force and is dispersionless, the acoustic phonons have a linear dispersion coupled to
the electron through a short range potential which is believed to play a crucial role in forming
the ST state [40]. Acoustic modes have also been widely studied [19]. Sumi and Toyozawa
generalized the optical polaron model by including a coupling to the acoustic modes [41]. Using
Feynman's variational approach, they found that the electron is ST with a very large e�ective
mass as the acoustic coupling exceeds a critical value. Emin and Holstein also reached a similar
conclusion within a scaling theory [42] in which the Gaussian trial wave function is essentially
identical to the harmonic trial action used in the Feynman's variational approach in the adiabatic
limit [43].

The ST state distinguishes itself from an extended state (ES) where the polaron has lower
mass and a bigger radius. A polaronic phase transition separates the two states with a breaking
of translational symmetry in the ST one [19]. The variational approach is unable to clearly assess
the existence of the phase transition [19]. In particular Gerlach and Löwen [19] concluded that
no phase transition exists in a large class of polarons. The three dimensional acoustic polaron is
not included in the class but Fisher et al. [43] argued that its ground state is delocalized.

In a recent work [44] we employed for the �rst time a specialized path integral Monte Carlo
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(PIMC) method [45, 46] to the continuous, highly non-local, acoustic polaron problem at low
temperature which is valid at all values of the coupling strength and solves the problem exactly
(in a Monte Carlo sense). The method di�ers from previously employed methods [47, 48, 49,
50, 51, 52, 53] and hinges on the Lévy construction and the multilevel Metropolis method with
correlated sampling. In such work the potential energy was calculated and it was shown that like
the e�ective mass it usefully signals the transition between the ES and the ST state. Properties
of ES and ST states were explicitly shown through the numerical simulation.

Aim of the chapter is to give a detailed description of the PIMC method used in that cal-
culation and some additional numerical results in order to complement the brief paper of Ref.
[44]. In particular it is presented a calculation of the properties of an acoustic polaron in three
dimensions in thermal equilibrium at a given low temperature using the path integral Monte
Carlo method. The specialized numerical method used is described in full details, thus comple-
menting Ref. [44], and it appears to be the �rst time it has been used in this context. These
results are in favor of the presence of a phase transition from a localized state to an extended
state for the electron as the phonon-electron coupling constant decreases. The phase transition
manifests itself with a jump discontinuity in the potential energy as a function of the coupling
constant and it a�ects the properties of the path of the electron in imaginary time: In the weak
coupling regime the electron is in an extended state whereas in the strong coupling regime it is
found in a self-trapped state.

The chapter is organized as follows: in section 3.2 we describe the acoustic polaron model
and Hamiltonian, in section 3.3 we describe the observables we are going to compute in the
simulation, in section 3.4 we describe the PIMC numerical scheme employed, in section 3.5 we
describe the multilevel Metropolis method for sampling the path, in section 3.6 we describe the
choice of the transition probability and the level action, in section 3.7 we describe the correlated
sampling. Section 3.8 is for the results, and section 3.9 is for �nal remarks.

3.2 The model

The acoustic polaron can be described by the following quasi-continuous model [25, 41],

Ĥ “
p̂2

2m
`
ÿ

k

ℏωkâ
:

kâk `
ÿ

k

`

iΓkâke
ikx̂ ` H.c.

˘

. (3.1)

Here x̂ and p̂ are the electron coordinate and momentum operators respectively and âk is the an-
nihilation operator of the acoustic phonon with wave vector k. The �rst term in the Hamiltonian
is the kinetic energy of the electron, the second term the energy of the phonons and the third term
the coupling energy between the electron and the phonons. The electron coordinate x is a contin-
uous variable, while the phonons wave vector k is restricted by the Debye cut-o� ko. The acoustic
phonons have a dispersion relation ωk “ uk (u being the sound velocity) and they interact with
the electron of mass m through the interaction vertex Γk “ ℏukopS{Nq1{2pk{koq1{2 according to
the deformation potential analysis of Ref. [54]. S is the coupling constant between the electron
and the phonons and N the number of unit cells in the crystal with N{V “ p4π{3qpko{2πq3 by
Debye approximation and V the crystal volume.

Using the path integral representation (see Ref. [30] section 8.3), the phonon part in the
Hamiltonian can be exactly integrated owing to its quadratic form in phonon coordinates, and one
can write the partition function for a polaron in thermal equilibrium at an absolute temperature
T (β “ 1{kBT , with kB Boltzmann constant) as follows,

Z “

ż

dx

ż´

´

ż x“xpℏβq

x“xp0q

e´ 1
ℏSrxptq, 9xptq,tsDxptq , (3.2)
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where the action S is given by [55],1

S “
m

2

ż ℏβ

0

9x2ptqdt´
1

2ℏ

ż ℏβ

0

dt

ż ℏβ

0

ds

ż

dk

p2πq3
Γ2
ke

ik¨pxptq´xpsqq´ωk|t´s|

“ Sf ` U . (3.3)

Here Sf is the free particle action, and U the inter-action and we denoted with a dot a time
derivative as usual. Using dimensionless units ℏ “ m “ uko “ kB “ V “ 1 the action becomes,

S “

ż β

0

9x2ptq

2
dt`

ż β

0

dt

ż β

0

ds Veff p|xptq ´ xpsq|, |t´ s|q , (3.4)

with the electron moving subject to an e�ective retarded potential,

Veff “ ´
S

2ID

ż

qď1

dq qe
i
b

2
γ q¨pxptq´xpsqq´q|t´s| (3.5)

“ ´
3S

2

c

γ

2

1

|xptq ´ xpsq|

ż 1

0

dq q2 sin

ˆ
c

2

γ
q|xptq ´ xpsq|

˙

e´q|t´s| , (3.6)

where q “ k{ko, ID “
ş

qď1
dq “ 4π{3, and we have introduced a non-adiabatic parameter γ

de�ned as the ratio of the average phonon energy, ℏuko to the electron band-width, pℏkoq2{2m.
This parameter is of order of 10´2 in typical ionic crystals with broad band so that the ST state
is well-de�ned [41]. In our simulation we took γ “ 0.02. Note that the integral in (3.6) can be
solved analytically and the resulting function tabulated.

3.3 The observables

In particular the internal energy E of the polaron is given by,

E “ ´
1

Z

BZ

Bβ
“

1

Z

ż

dx

ż´

´

ż

e´S BS
Bβ

Dx “

B

BS
Bβ

F

, (3.7)

where the internal energy tends to the ground state energy in the large β ÝÑ 8 limit.
Scaling the Euclidean time t “ βt1 and s “ βs1 in Eq. (3.4), deriving S with respect to β,

and undoing the scaling, we get,

BS
Bβ

“ ´
1

β

ż β

0

9x2

2
dt´

S

2ID

ż β

0

dt

ż β

0

dsˆ

ż

qď1

dq qe
i
b

2
γ q¨pxptq´xpsqq´q|t´s| 1

β
p2 ´ q|t´ s|q , (3.8)

where the �rst term is the kinetic energy contribution to the internal energy, K, and the last
term is the potential energy contribution, P,

P “ ´
3S

2β

ż β

0

dt

ż β

0

ds

ż 1

0

dq q3
sin

´b

2
γ q|xptq ´ xpsq|

¯

b

2
γ q|xptq ´ xpsq|

e´q|t´s| ˆ

p2 ´ q|t´ s|q . (3.9)

1This is an approximation as e´βωk is neglected. The complete form is obtained by replacing e´ωk|t´s| by
e´ωk|t´s|{p1 ´ e´βωk q ` eωk|t´s|e´βωk {p1 ´ e´βωk q. But remember that β is large.
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So that,

E “ xK ` Py . (3.10)

An expression for K not involving the polaron speed, can be obtained by taking the derivative
with respect to β after having scaled both the time, as before, and the coordinate x “

?
βx1.

Undoing the scaling in the end one gets,

K “ ´
S

4βID

ż β

0

dt

ż β

0

ds

ż

qď1

dq qe
i
b

2
γ q¨pxptq´xpsqq´q|t´s|

ˆ

„

i

c

2

γ
q ¨ pxptq ´ xpsqq

ȷ

(3.11)

“ ´
3S

4β

ż β

0

dt

ż β

0

ds

ż 1

0

dq q3
„

cos

ˆ
c

2

γ
q|xptq ´ xpsq|

˙

´

sin
´b

2
γ q|xptq ´ xpsq|

¯

b

2
γ q|xptq ´ xpsq|

fi

fl e´q|t´s| . (3.12)

In the following we will explain how we calculated the potential energy P “ xPy.

3.4 Discrete path integral expressions

Generally we are interested in calculating the density matrix ρ̂ “ expp´βĤq in the electron
coordinate basis, namely,

ρpxa,xb;βq “

ż´

´

ż x“xb

x“xa

e´SDxptq . (3.13)

To calculate the path integral, we �rst choose a subset of all paths. To do this ,we divide the
independent variable, Euclidean time, into steps of width

τ “ β{M . (3.14)

This gives us a set of times, tk “ kτ spaced a distance τ apart between 0 and β with k “

0, 1, 2, . . . ,M .
At each time tk we select the special point xk “ xptkq, the kth time slice. We construct

a path by connecting all points so selected by straight lines. It is possible to de�ne a sum
over all paths constructed in this manner by taking a multiple integral over all values of xk for
k “ 1, 2, . . . ,M ´ 1 where x0 “ xa and xM “ xb are the two �xed ends. The resulting equation
is,

ρpxa,xb;βq “ lim
τÑ0

1

A

ż 8

´8

ż 8

´8

¨ ¨ ¨

ż 8

´8

e´S dx1

A
¨ ¨ ¨

dxM´1

A
, (3.15)

where the normalizing factor A “ p2πτq3{2.
The simplest discretized expression for the action can then be written as follows,

S “

M
ÿ

k“1

pxk´1 ´ xkq2

2τ
` τ2

M
ÿ

i“1

M
ÿ

j“1

V pti, tjq , (3.16)
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where V pti, tjq “ Veff p|xi ´ xj |, |i´ j|q is a symmetric two variables function, V ps, tq “ V pt, sq.
In our simulation we tabulated this function taking |xi ´ xj | “ 0, 0.1, 0.2, . . . , 10 and |i ´ j| “

0, 1, . . . ,M .
In writing Eq. (3.16) we used the following approximate expressions,

9xk “
xk ´ xk´1

τ
`Opτq , (3.17)

ż tk

tk´1

9x2ptq dt “ 9x2
kτ `Opτ2q , (3.18)

ż ti

ti´1

ż tj

tj´1

V ps, tq dsdt “ V pti, tjqτ2 `Opτ3q . (3.19)

If we take V “ 0 in Eq. (3.16) the M ´ 1 Gaussian integrals in (3.15) can be done analytically.
The result is the exact free particle density matrix,

ρf pxa,xb;βq “ p2πβq´3{2e
1
2β pxa´xbq

2

. (3.20)

Thus approximations (3.17) and (3.18) allow us to rewrite the polaron density matrix as follows,

ρpxa,xb;βq “

ż

¨ ¨ ¨

ż

dx1 ¨ ¨ ¨ dxM´1 ρf pxa,x1; τq ¨ ¨ ¨ ρf pxM´1,xM ; τq ˆ

eτ
2 ř

i

ř

j V pti,tjq . (3.21)

In the next section we will see that this expression o�ers a useful starting point for the construc-
tion of an algorithm for the sampling of the path: the Lévy construction and the analogy with
classical polymer systems or the classical isomorphism described in [45]).

The partition function is the trace of the density matrix,

Z “

ż

dx ρpx,x;βq . (3.22)

This restrict the path integral to an integral over closed paths only. In other words the paths we
need to consider in calculating Z (and hence F ) are closed by the periodic boundary condition,
xM “ x0 “ x.

To calculate the internal energy we need then to perform the followingM dimensional integral,

E “
1

Z

ż 8

´8

ż 8

´8

¨ ¨ ¨

ż 8

´8

dx0dx1 ¨ ¨ ¨ dxM´1 e
´SpP ` Kq

ˇ

ˇ

ˇ

ˇ

xM“x0

. (3.23)

To do this integral we use the Monte Carlo simulation technique described next.

3.5 Sampling the path

The total con�guration space to be integrated over is made of elements s “ rx0,x1, . . . ,xM s

where xk are the path time slices subject to the periodic boundary condition xM “ x0. In the
simulation we wish to sample these elements from the probability distribution,

πpsq “
e´S

Z
, (3.24)

where the partition function Z normalizes the function π in this space.
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The idea is to �nd an e�cient way to move the path in a random walk sampled by π, through
con�guration space.

In order to be able to make the random walk di�use fast through con�guration space, as τ
decreases, is necessary to use multislices moves [45].

In our simulation we chose to use the bisection method (a particular multilevel Monte Carlo
sampling method [45]). That' s how an l levels move is constructed. Clip out of the path m “ 2l

subsequent time slices xi,xi`1, . . . ,xi`m (choosing i randomly). In the �rst level we keep xi and
xi`m �xed and, following Lévy construction for a Brownian bridge [56], we move the bisecting
point at i`m{2 to,

xi`m{2 “
xi ` xi`m

2
` η (3.25)

where η is a normally distributed random vector with mean zero and standard deviation
a

τm{4.
As shown in next section this kind of transition rule samples the path using a transition proba-
bility distribution T9 expp´Sf q. Thus we will refer to it as free particle sampling.

Having sampled xi`m{2, we proceed to the second level bisecting the two new intervals p0, i`
m{2q and pi ` m{2, i ` mq generating points xi`m{4 and xi`3m{4 with the same algorithm. We
continue recursively, doubling the number of sampled points at each level, stopping only when
the time di�erence of the intervals is τ .

In this way we are able to partition the full con�guration s into l levels, s “ ps0, s1, . . . , slq
where: s0 “ rx0, . . . ,xi,xi`m, . . . ,xM´1s, unchanged; s1 “ rxi`m{2s, changed in level 1; s2 “

rxi`m{4,xi`3m{4s, changed in level 2; . . .; sl “ rxi`1,xi`2, . . . ,xi`m´1s changed in level l.
To construct the random walk we use the multilevel Metropolis method [57, 58, 45]. Call

ps1
1, . . . , s

1
lq the new trial positions in the sense of a Metropolis rejection method, the unprimed

ones are the corresponding old positions with s0 “ s1
0.

In order to decide if the sampling of the path should continue beyond level k, we need to
construct the probability distribution πk for level k. This, usually called the level action, is a
function of s0, s1 . . . , sk proportional to the reduced distribution function of sk conditional on
s0, s1 . . . , sk´1. The optimal choice for the level action would thus be,

π‹
kps0, s1 . . . , skq “

ż

dsk`1 . . . dsl πpsq . (3.26)

This is only a guideline. Non optimal choices will lead to slower movement through con�guration
space. One needs to require only that feasible paths (closed ones) have non zero level action,
and that the action at the last level be exact,

πlps0, s1, . . . , slq “ πpsq . (3.27)

Given the level action πkpsq the optimal choice for the transition probability Tkpskq, for sk
contingent on the levels already sampled, is given by,

T ‹
k pskq “

πkpsq

πk´1psq
. (3.28)

One can show that T ‹
k will be a normalized probability if and only if πk is chosen as in (3.26). In

general one need to require only that Tk be a probability distribution non zero for feasible paths.
In our simulation we used the free particle transition probability of the Lévy construction as a
starting point for a more e�cient correlated sampling that will be described in a later section.
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Once the partitioning and the sampling rule are chosen, the sampling proceeds past level k
with probability,

Akps1q “ min

„

1,
Tkpskqπkps1qπk´1psq

Tkps1
kqπkpsqπk´1ps1q

ȷ

. (3.29)

That is we compare Ak with a uniformly distributed random number in p0, 1q, and if Ak is larger,
we go on to sample the next level. If Ak is smaller, we make a new partitioning of the initial
path, and start again from level 1. Here π0 needed in the �rst level can be set equal to 1, since
it will cancel out of the ratio.

This acceptance probability has been constructed so that it satis�es a form of �detailed
balance� for each level k,

πkpsq

πk´1psq
Tkps1

kqAkps1q “
πkps1q

πk´1ps1q
TkpskqAkpsq . (3.30)

The moves will always be accepted if the transition probabilities and level actions are set to their
optimal values.

The total transition probability for a trial move making it through all l levels is,

P ps Ñ s1q “

l
ź

k“1

Tkps1qAkps1q . (3.31)

By multiplying Eq. (3.30) from k “ 1 to k “ l and using Eq. (3.27), one can verify that the
total move satisfy the detailed balance condition,

πpsqP ps Ñ s1q “ πps1qP ps1 Ñ sq . (3.32)

Thus if there are no barriers or conserved quantities that restrict the walk to a subset of the full
con�guration space (i.e. assuming the random walk to be ergodic) the algorithm will asymptot-
ically converge to π, independent of the particular form chosen for the transition probabilities,
Tk, and the level actions, πk [59]. We will call equilibration time the number of moves needed in
the simulation to reach convergence.

Whenever the last level is reached, one calculates the properties (K and P) on the new path
s1, resets the initial path to the new path, and start a new move. We will call Monte Carlo step
(MCS) any attempted move.

3.6 Choice of Tk and πk

In our simulation we started moving the path with the Lévy construction described in the pre-
ceding section. We will now show that this means that we are sampling an approximate T ‹ with
free particle sampling.

For the free particle case pU “ 0q one can �nd analytic expressions for the optimal level action
π‹
k and the optimal transition rule T ‹

k . For examples for the �rst level, Eq. (3.26) gives,

π‹
1pxi`m{2q 9 ρf pxi,xi`m{2; τm{2qρf pxi`m{2,xi`m; τm{2q (3.33)

9 e
1

mτ pxi´xi`m{2q
2

e
1

mτ pxi`m{2´xi`mq
2

(3.34)

9 e
2

mτ

”

xi`m{2´

´

xi`xi`m
2

¯ı2

. (3.35)
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This justify the Lévy construction and shows that it exactly samples the free particle action (i.e.
Ak “ 1 for all k's). This also imply that for the interacting system we can introduce a level inter
action, π̃k such that,

π̃k “

ż

dsk`1 . . . dsl π̃psq , (3.36)

with

π̃psq “
e´U

Z
. (3.37)

So that the acceptance probability will have the simpli�ed expression,

Akps1q “ min

„

1,
π̃kps1qπ̃k´1psq

π̃kpsqπ̃k´1ps1q

ȷ

. (3.38)

For the kth level inter action we chose the following expression,

π̃k9 exp

»

–´pτℓkq2
rM{ℓks
ÿ

i“1

rM{ℓks
ÿ

j“1

V piℓkτ, jℓkτq

fi

fl , (3.39)

where ℓk “ m{2k. In the last level ℓl “ 1 and the level inter action π̃l reduces to the exact inter
action π̃ thus satisfying Eq. (3.27).

It' s important to notice that during the simulation we never need to calculate the complete
level inter action since in the acceptance probabilities enter only ratios of level inter actions
calculated on the old and on the new path. For example if for the move we clipped out the
interval ti, . . . , ti`m with i`m ă M 2, we have,

ln
π̃kps1q

π̃kpsq
“ ´pτℓkq2

$

&

%

2k
ÿ

m“0

2k
ÿ

n“0

V pti `mℓkτ, ti ` nℓkτq`

i´1
ÿ

m“1

2k
ÿ

n“0

V pmℓkτ, ti ` nℓkτq `

M
ÿ

m“i`m`1

2k
ÿ

n“0

V pmℓkτ, ti ` nℓkτq

,

.

-

, (3.40)

which is computationally much cheaper than (3.39).

3.7 Correlated sampling

When the path reaches equilibrium (i.e. P ps Ñ s1q « πps1q) if we calculate,

σpt0{τq “

g

f

f

e

C

„

xptq ´

ˆ

xpt` t0q ` xpt´ t0q

2

˙ȷ2
G

, (3.41)

we see that these deviations are generally smaller than the free particle standard deviations used
in the Lévy construction (see Fig. 3.1),

2When i`m ě M there is a minor problem with the periodic boundary conditions and Eq. (3.40) will change.
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Figure 3.1: Shows the deviations (3.41) for a simulation with S “ 60 and S “ 52.5, τ “ 0.025,
l “ 9. The free particle standard deviations (3.42) are plotted for comparison. For S “ 60 the
path is localized while for S “ 52.5 is unlocalized i.e. closer to the free particle path.

σf pℓkq “
a

ℓkτ{2 . (3.42)

As Fig. 3.1 shows, the discrepancy gets bigger as ℓk increases.
We thus corrected the sampling rule for the correct deviations. For example for the �rst level

we used,

T1pxi`m{2q9e
´

pxi`m{2´xq
2

2σ2pm{2q , (3.43)

where x “ pxi ` xi`mq{2. Since the level action is given by,

π1pxi`m{2q9e
´

pxi`m{2´xq
2

2σ2
f

pm{2q π̃1pxi`m{2q , (3.44)

we can de�ne a function,

P19e
´

pxi`m{2´xq
2

2

„

1
σ2pm{2q

´ 1

σ2
f

pm{2q

ȷ

, (3.45)

and write the acceptance probability,

A1ps1q “ min

„

1,
P1psq

P1ps1q

π̃1ps1qπ̃0psq

π̃1psqπ̃0ps1q

ȷ

. (3.46)

Which is a generalization of Eq. (3.38).
We maintain the acceptance ratios in r0.15, 0.65s by decreasing (or increasing) the number of

levels in the multilevel algorithm as the acceptance ratios becomes too low (or too high).
In the Appendix we report some remarks on the error analysis in our MC simulations.
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3.8 Numerical Results

We simulated the acoustic polaron �xing the adiabatic coupling constant γ “ 0.02 and the
inverse temperature β “ 15. Such temperature is found to be well suited to extract close to
ground state properties of the polaron. The path was M time slices long and the time step was
τ “ β{M . For a given coupling constant S we computed the potential energy P extrapolating
(with a linear χ square �t) to the continuum time limit, τ Ñ 0, three points corresponding to
time-steps choosen in the interval τ P r1{100, 1{30s. An example of extrapolation is shown in
Fig. 3.2 for the particular case β “ 15, γ “ 0.02, and S “ 60.

-23

-22

-21

-20

-19

-18

-17

-16

0.000 0.005 0.010 0.015 0.020 0.025 0.030

P

τ

MC

linear fit

Figure 3.2: Shows the time step, τ , extrapolation for the potential energy, P “ xPy. We run
at β “ 15, γ “ 0.02, and S “ 60. The extrapolated value to the continuum limit is in this case
P “ ´16.1p5q which is in good agreement with the result of Ref. [51].

In Fig. 3.5 and Tab. 3.1 we show the results for the potential energy as a function of the
coupling strength. With the coupling constant S “ 52.5 we generated the equilibrium path which
turns out to be unlocalized (see Fig. 3.4). Changing the coupling constant to S “ 60 and taking
the unlocalized path as the initial path we sow the phase transition described in Fig. 3.3. the
path after the phase transition is localized (see Fig. 3.4).
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Figure 3.3: At S “ 60 the results for the potential energy P at each MC block (5 ˆ 103 MCS)
starting from an initial unlocalized path obtained by a previous simulation at S “ 52.5. We can
see that after about 30 blocks there is a transition from the ES state to the ST state. In the
inset is shown the autocorrelation function, de�ned in Eq. (G.8), for the potential energy, for the
two states. The correlation time, in MC blocks, is shorter in the unlocalized phase than in the
localized one. The computer time necessary to carry on a given number of Monte Carlo steps is
longer for the unlocalized phase.
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Figure 3.4: The top panel shows the polaron (closed) path xptq as a function of Euclidean time
t in units of τ at equilibrium during the simulation. The middle panel shows the projection on
the x´ y plane of the path. The bottom panel shows the three-dimensional path. We see clearly
how both path has moved from the initial path located on the origin but the path at S “ 52.5
is much less localized than the one at S “ 60.

Note that since S and τ appear in the combination Sτ2 in U (and Sτ in F) the same phase
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transition from an ES to a ST state will be observed increasing the temperature. With the same
Hamiltonian we are able to describe two very di�erent behaviors of the acoustic polaron as the
temperature changes.

In Fig. 3.5 we show the behavior of the potential energy as a function of the coupling strength.
The numerical results suggests the existence of a phase transition between two di�erent regimes
which corresponds to the so called ES and ST states for the weak and strong coupling region
respectively. We found that paths related to ES and ST are characteristically distinguishable.
Two typical paths for the ES and ST regimes involved in Fig. 3.5 is illustrated in Fig. 3.4.
The path in ES state changes smoothly in a large time scale, whereas the path in ST state do
so abruptly in a small time scale with a much smaller amplitude which is an indication that
the polaron hardly moves. The local �uctuations in the results for the potential energy has an
autocorrelation function (de�ned in Eq. (G.8)) which decay much more slowly in the ES state
than in the ST state as shown in the inset of Fig. 3.3. Concerning the critical property of the
transition between the ES and ST states our numerical results are in favor of the presence of
a discontinuity in the potential energy. In the large β limit at β “ 15 and �xing the adiabatic
coupling constant to γ “ 0.02, the ST state appear at a value of the coupling constant between
S “ 52.5 and S “ 55. With the increase of β, the values for the potential energy P “ xPy

increase in the weak coupling regime but descrease in the strong coupling region.

From second order perturbation theory (see Ref. [30] section 8.2) follows that the energy
shift Epγ, Sq is given by ´3Sγr1{2 ´ γ ` γ2 lnp1 ` 1{γqs from which one extracts the potential
energy shift by taking P pγ, Sq “ γdEpγ, Sq{dγ. From the Feynman variational approach of Ref.
[41] follows that in the weak regime the energy shift is ´3Sγr1{2 ´ γ ` γ lnp1 ` 1{γqs and in the
strong coupling regime ´S ` 3

a

S{5γ.
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Figure 3.5: Shows the behavior of the potential energy P as a function of the coupling constant
S. The points are the MC results (see Tab. 3.1), the dashed line is the second order perturbation
theory result (perturbation) valid in the weak coupling regime and the dot-dashed line is the
variational approach from Ref. [41] (variational) in the weak and strong coupling regimes.
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Table 3.1: MC results for P as a function of S at β “ 15 and γ “ 0.02 displayed in Fig. 3.5.
The runs where made of 5ˆ 105 MCS (with 5ˆ 104 MCS for the equilibration) for the ES states
and 5 ˆ 106 MCS (with 5 ˆ 105 MCS for the equilibration) for the ST states.

S P

10 -0.573(8)
20 -1.17(2)
30 -1.804(3)
40 -2.53(3)
50 -3.31(4)
53.5 -3.61(1)
55 -11.4(3)
60 -16.1(5)
70 -23.3(3)
80 -30.0(3)

3.9 Conclusions

In this chapter we presented a specialized path integral Monte Carlo method to study the low
temperature behavior of an acoustic polaron. At an inverse temperature β “ 15 (close to the
ground state of the polaron) and at a non-adiabatic parameter γ “ 0.02 typical of ionic crystals we
found numerical evidence for a phase transition between an extended state in the weak coupling
regime and a self-trapped one in the strong coupling regime at a value of the phonons-electron
coupling constant S “ 54.3p7q. The transition also appears looking at the potential energy as a
function of the coupling constant where a jump discontinuity is observed. Comparison with the
perturbation theory and the variational calculation of Ref. [41] is also presented.

The specialized path integral Monte Carlo simulation method used as an unbiased way to
study the properties of the acoustic polaron has been presented in full detail. It is based on
the Lévy construction and the multilevel Metropolis method with correlated sampling. Some
remarks on the estimation of the errors in the Monte Carlo calculation are also given in the
Appendix. This complement our previous paper [44] where fewer details on the Monte Carlo
method had been given.

This method di�ers from previously adopetd methods [47, 48, 49, 50, 51, 52, 46, 53]. Unlike
the method of Ref. [47] this path integral is in real space rather than in Fourier space, Refs.
[52, 53] put the polaron on a lattice and not on the continuum as is done here, while Refs. [51]
use PIMC single slice move whereas the multilevel PIMC used here instead is a general sampling
method which can e�ciently make multislice moves. The e�ciency ξ (see the Appendix) for the
potential energy increases respect to the single slice sampling because the coarsest movements
are sampled and rejected before the �ner movements are even constructed. In Ref. [46] the Lévy
construction was used as is done here but the Metropolis test was performed after the entire
path had been reconstructed, using an e�ective action, and not at each intermediate level of
the reconstruction. In Ref. [46] the simpler Lévy reconstruction scheme was also found to be
satisfactory for the e�cient sampling of the polaron con�guration space even at strong coupling.
Even if here it is not implemented the method of Ref. [46] we expect the method presented in this
chapter to be of comparable e�ciency to the one of these authors. In fact it is true that the Lévy
construction is computationally cheap but guiding the path as it is been reconstructed starting
already from the �rst levels as done here should have the advantage of re�ning the sampling
since the path is guided through con�guration space starting from the small displacements.

Although these results are of a numerical nature and one only probed the acoustic polaron
for one value of the non-adiabatic parameter γ the analysis support the existence of a local-
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ization phase transition as the phonons-electron coupling constant S is increased at constant
temperature or as the temperature is decreased at constant S. More so, considering the fact
that the introduction of a cut-o� parameter have shown to work successfully in renormalization
treatments.
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Appendix G

Estimating errors

Since asymptotic convergence is guaranteed, the main issue is whether con�guration space is
explored thoroughly in a reasonable amount of computer time. Let us de�ne a measure of the
convergence rate and of the e�ciency of a given random walk. This is needed to compare the
e�ciency of di�erent transition rules, to estimate how long the runs should be, and to calculate
statistical errors.

The rate of convergence is a function of the property being calculated. Let Opsq be a given
property, and let its value at step k of the random walk be Ok. Let the estimator for the mean
and variance of a random walk with N MCS be,

O “ă Ok ą“
1

N

N´1
ÿ

k“0

Ok , (G.1)

σ2pOq “ă pOk ´Oq2 ą . (G.2)

Then the estimator for the variance of the mean will be,

σ2pOq “ ă p
1

N

ÿ

k

Ok ´
1

N

ÿ

k

Oq2 ą (G.3)

“
1

N2
ă r

ÿ

k

pOk ´Oqs2 ą (G.4)

“
1

N2

#

ÿ

k

ă pOk ´Oq2 ą `2
ÿ

iăj

ă pOi ´OqpOj ´Oq ą

+

(G.5)

“
σ2pOq

N

#

1 `
2

Nσ2pOq

ÿ

iăj

ă pOi ´OqpOj ´Oq ą

+

(G.6)

“
σ2pOqkO

N
. (G.7)

The quantity kO is called the correlation time and can be calculated given the autocorrelation
function for Ak “ Ok ´O. The estimator for the autocorrelation function, ck, can be constructed
observing that in the in�nite random walk, ă AiAj ą has to be a function of |i´ j| only. Thus
the estimator can be written,

ck “
ă A0Ak ą

σ2pOq
“

1

pN ´ kqσ2pOq

N´k
ÿ

n“1

AnAn`k . (G.8)
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So that the estimator for the correlation time will be,

kO “ 1 `
2

N

N
ÿ

k“1

pN ´ kqck . (G.9)

To determine the true statistical error in a random walk, one needs to estimate this correlation
time. To do this, is very important that the total length of the random walk be much greater
than kO. Otherwise the result and the error will be unreliable. Runs in which the number of
steps N " kO are called well converged.

The correlation time gives the average number of steps needed to decorrelate the property
O. It will depend crucially on the transition rule and has a minimum value of 1 for the optimal
rule (while σpOq is independent of the sampling algorithm).

Normally the equilibration time will be at least as long as the equilibrium correlation time,
but can be longer. Generally the equilibration time depends on the choice for the initial path.
To lower this time is important to choose a physical initial path. Since the polaron system is
isotropic, we chose the initial path with all time slices set to 0⃗.

The e�ciency of a random walk procedure (for the property O) is de�ned as how quickly the
error bars decrease as a function of the computer time, ξO “ 1{σ2pOqNT “ 1{σ2pOqkOT where
T is the computer time per step. The e�ciency depends not only on the algorithm but also on
the computer and the implementation.
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Chapter 4

Mendeleev Periodic System

In this chapter we revisit Sections �67 and �73 of [60].

4.1 Electron states in the atom

In the non-relativistic approximation, 1 the stationary states of the atom are determined by
Schrödinger's equation for the system of electrons, which move in the Coulomb �eld of the
nucleus and interact electrically with one another; the spin operators of the electrons do not
appear in this equation. As we know, for a system of particles in a centrally symmetric external
�eld the total orbital angular momentum L and the parity of the state are conserved. Hence
each stationary state of the atom will be characterized by a de�nite value of the orbital angular
momentum L and by its parity. Moreover, the coordinate wave functions of the stationary states
of a system of identical particles have a certain permutational symmetry determined by the total
spin S of the electrons. Hence every stationary state of the atom is characterized also by the
total spin S of the electrons.

The energy level having given values of S and L is degenerate to a degree equal to the number
of di�erent possible directions in space of the vectors S and L. The degree of the degeneracy
from the directions of L and S is respectively 2L` 1 and 2S ` 1. Consequently, the total degree
of the degeneracy of a level with given L and S is equal to the product p2L` 1qp2S ` 1q.

There is a generally accepted notation to denote the atomic energy levels (or, as they are
called, the spectral terms of the atoms). States with di�erent values of the total orbital angular

1The electromagnetic interaction of the electrons contains relativistic e�ects, which depend on their spins.
These e�ects have the result that the energy of the atom depends not only on the absolute magnitudes of the
vectors L and S but also on their relative positions. Strictly speaking, when the relativistic interactions are taken
into account the orbital angular momentum L and the spin S of the atom are not separately conserved. Only the
total angular momentum J “ L`S is conserved; this is a universal and exact law which follows from the isotropy
of space relative to a closed system. For this reason, the exact energy levels must be characterized by the values
J of the total angular momentum. However, if the relativistic e�ects are comparatively small (as often happens),
they can be allowed for as a perturbation. Thus, as a result of the relativistic e�ects, a level with given values of
L and S is split into a number of levels with di�erent values of J . This splitting is called the �ne structure (or
the multiplet splitting) of the level. Here we will neglect relativistic e�ects so that we can consider L and S as
separately conserved quantities.
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momentum L are denoted by capital Latin letters, as follows:

L, l “ 0 1 2 3 4 5 6 7 8 9 10 ¨ ¨ ¨

l Ñ s p d f g h i k l m n ¨ ¨ ¨

L Ñ S P D F G H I K L M N ¨ ¨ ¨

where the lower case letters denote quantum numbers of single electron states and the upper
case ones denotes quantum numbers of the many electron states. Above and to the left of this
letter is placed the number 2S ` 1, called the multiplicity of the term. Below and to the right
of the letter is placed the value of the total angular momentum J (here J “ L ` S is the total
angular momentum of the system of electrons in the atom). Thus the symbol 2P1{2 denotes the
level with L “ 1, S “ 1{2, J “ 1{2.

An atom with more than one electron is a complex system of mutually interacting electrons
moving in the �eld of the nucleus. For such a system we can, strictly speaking, consider only
states of the system as a whole. Nevertheless, it is found that we can, with fair accuracy, introduce
the idea of the states of each individual electron in the atom, as being the stationary states of
the motion of each electron in some e�ective centrally symmetric �eld due to the nucleus and to
all the other electrons. These �elds are in general di�erent for di�erent electrons in the atom,
and they must all be de�ned simultaneously, since each of them depends on the states of all the
other electrons. Such a �eld is said to be self-consistent.

Since the self-consistent �eld is centrally symmetric, each state of the electron is characterized
by a de�nite value of its orbital angular momentum l. The states of an individual electron with a
given l are numbered (in order of increasing energy) by the principal quantum number n, which
takes the values n “ l` 1, l` 2, . . .; this choice of the order of numbering is made in accordance
with what is usual for the hydrogen atom. However, the sequence of levels of increasing energy
for various l in complex atoms is in general di�erent from that found in the hydrogen atom. In
the latter, the energy is independent of l, so that the states with larger values of n always have
higher energies. In complex atoms, on the other hand, the level with n “ 5, 1 “ 0, for example,
is found to lie below that with n “ 4, l “ 2.

The states of individual electrons with di�erent values of n and l are customarily denoted by
a �gure which gives the value of the principal quantum number, followed by a letter which gives
the value of l: thus 4d denotes the state with n “ 4, l “ 2. A complete description of the atom
demands that, besides the values of the total L, S, and J , the states of all the electrons should
also be enumerated. Thus the symbol 1s 2p 3P0 denotes a state of the helium atom in which
L “ 1, S “ 1, J “ 0 and the two electrons are in the 1s and 2p states. If several electrons are
in states with the same l and n, this is usually shown for brevity by means of an index: thus
3p2 denotes two electrons in the 3p state. The distribution of the electrons in the atom among
states with di�erent l and n is called the electron con�guration.

For given values of n and l, the electron can have di�erent values of the projections of the
orbital angular momentum pmq and of the spin pσq on the z-axis. For a given l, the number
m takes 2l ` 1 values; the number σ is restricted to only two values, ˘ 1

2 . Hence there are
altogether 2p2l` 1q di�erent states with the same n and l; these states are said to be equivalent.
According to Pauli's principle there can be only one electron in each such state. Thus at most
2p2l`1q electrons in an atom can simultaneously have the same n and l. An assembly of electrons
occupying all the states with the given n and l is called a closed shell of the type concerned.

The di�erence in energy between atomic levels having di�erent L and S but the same electron
con�guration is due to the electrostatic interaction of the electrons. These energy di�erences are
usually small, and several times less than the distances between the levels of di�erent con�gu-
rations. The following empirical principle (Hund's rule; F. Hund 1925) is known concerning the
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relative position of levels with the same con�guration but di�erent L and S: The term with the
greatest possible value of S (for the given electron con�guration) and the greatest possible value
of L (for this S) has the lowest energy. 2 We shall show how the possible atomic terms can be
found for a given electron con�guration. If the electrons are not equivalent, the possible value of
L and S are determined immediately from the rule for the addition of angular momenta. Thus,
for instance, with the con�gurations np, n1p (n, n1 being di�erent) the total angular momentum
L can take the values 2, 1, 0, and the total spin S “ 0, 1; combining these, we obtain the terms
1,3S, 1,3P , 1,3D. If we are concerned with equivalent electrons, however, restrictions imposed by
Pauli's principle make their appearance.

When Hund's rule is applied to determine the ground term of an atom from a known electron
con�guration, only the un�lled shell need be considered, since the moments of electrons in closed
shells cancel out. For example, let there be four d electrons outside the closed shells in an atom.
The magnetic quantum number of the d electron can take �ve values: 0,˘1,˘2. Hence all four
electrons can have the same spin component σ “ 1

2 , and the maximum possible total spin is
S “ 2. We must then assign to the electrons di�erent values of m so as to give the maximum
value of ML,“

ř

m “ 2. This means that the maximum value of L for S “ 2 is also 2, and the
term is 5D.

4.2 Periodic Table

The elucidation of the nature of the periodic variation of properties, observed in the series of
elements when they are placed in order of increasing atomic number (D. I. Mendeleev 1869) [61],
requires an examination of the peculiarities in the successive completion of the electron shells of
atoms. The theory of the periodic system is due to N. Bohr (1922).

When we pass from one atom to the next, the charge is increased by unity and one electron
is added to the envelope. At �rst sight we might expect the binding energy of each of the
successively added electrons to vary monotonically as the atomic number increases. The actual
variation, however, is entirely di�erent.

In the normal state of the hydrogen atom there is only one electron, in the ls state. In the
atom of the next element, helium, another 1s electron is added; the binding energy of the 1s
electrons in the helium atom is, however, considerably greater than in the hydrogen atom. This
is a natural consequence of the di�erence between the �eld in which the electron moves in the
hydrogen atom and the �eld encountered by an electron added to the He` ion. At large distances
these �elds are approximately the same, but near the nucleus with charge Z “ 2 the �eld of the
He` ion is stronger than that of the hydrogen nucleus with Z “ 1. In the lithium atom pZ “ 3q,
the third electron enters the 2s state, since no more than two electrons can be in ls states at
the same time. For a given Z the 2s energy level 3 lies above the 1s level; as the nuclear charge
increases, both levels become lower. In the transition from Z “ 2 to Z “ 3, however, the former

2The requirement that S should be as large as possible can be explained as follows. Let us consider, for
example, a system of two electrons. Here we can have S “ 0 or S “ 1; the spin 1 corresponds to an antisymmetrical
coordinate wave function ψpr1, r2q. For r1 “ r2, this function vanishes; in other words, in the state with S “ 1
the probability of �nding the two electrons close together is small. This means that their electrostatic repulsion
is comparatively small, and hence the energy is less. Similarly, for a system of several electrons, the �most
antisymmetrical� coordinate wave function corresponds to the greatest spin.

3In an hydrogen-like atom Bohr's formula for the energy levels is as follows:

E “ ´
mZ2e4

2ℏ2p1 ` m{Mq

1

n2
, (4.1)

where Ze is the charge of the nucleus, M its mass, m the mass of the electron, and n is the principal quantum
number. We notice that the dependence on the mass of the nucleus is only very slight.
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e�ect is predominant, and so the binding energy of the third electron in the lithium atom is
considerably less than those of the electrons in the helium atom. Next, in the atoms from Be
(Z “ 4) to Ne(Z “ 10), �rst one more 2s electron and then six 2p electrons are successively
added. The binding energies of these electrons increase on the average, owing to the increasing
nuclear charge. The next electron added, on going to the sodium atom (Z “ 11), enters the 3s
state, and the binding energy again diminishes markedly, since the e�ect of going to a higher
shell predominates over that of the increase of the nuclear charge. This picture of the �lling
up of the electron envelope is characteristic of the whole sequence of elements. All the electron
states can be divided into successively occupied groups such that, as the states of each group
are occupied in a series of elements, the binding energy increases on the average, but when the
states of the next group begin to be occupied the binding energy decreases noticeably. Figure
4.1 shows those ionization potentials of elements that are known from spectroscopic data; they
give the binding energies of the electrons added as we pass from each element to the next.

The di�erent states are distributed as follows into successively occupied groups:

1s 2 electrons

2s 2p 8 electrons

3s 3p 8 electrons

4s 3d 4p 18 electrons

5s 4d 5p 18 electrons

6s 4f 5d 6p 32 electrons

7s 6d 5f ¨ ¨ ¨

The �rst group is occupied in H and He; the occupation of the second and third groups
corresponds to the �rst two (short) periods of the periodic system, containing 8 elements each.
Next follow two long periods of 18 elements each, and a long period containing the rare-earth
elements and 32 elements in all. The �nal group of states is not completely occupied in the
natural (and arti�cial transuranic) elements.

To understand the variation of the properties of the elements as the states of each group
are occupied, the following property of d and f states, which distinguishes them from s and p
states, is important. The curves of the e�ective potential energy of the centrally symmetric �eld
(composed of the electrostatic �eld and the centrifugal �eld) for an electron in a heavy atom
have a rapid and almost vertical drop to a deep minimum near the origin; they then begin to
rise, and approach zero asymptotically. 4 For s and p states, the rising parts of these curves are
very close together. This means that the electron is at approximately the same distance from
the nucleus in these states. The curves for the d states, and particularly for the f states, on
the other hand, pass considerably further to the left; the classically accessible region which they
delimit ends considerably closer in than that for the s and p states with the same total electron
energy. In other words, an electron in the d and f states is mainly much closer to the nucleus
than in the s and p states.

Many properties of atoms (including the chemical properties of elements) depend principally
on the outer regions of the electron envelopes. The above characteristic of the d and f states

4The Schrödinger's equation in a centrally symmetric �eld being:

ℏ2

2µ

„

´
1

r2
B

Br

ˆ

r2
Bψ

Br

˙

`
l2

r2
ψ

ȷ

` Uprqψ “ Eψ, (4.2)

with µ is the reduced mass of the two-body problem, ψ “ RprqYl,mpθ, ϕqχσ , the spherical harmonics satisfy

l2Yl,m “ lpl` 1qYl,m, here l is the orbital angular momentum operator, and χσ is a spin 1
2
spinor. In a Coulomb

�eld Uprq “ ´α{r where α “ Ze2 and µ “ mM{pm ` Mq with m the electron mass and M the nucleus mass.
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Figure 4.1: Ionization potentials of elementsthat are known from spectroscopic data.
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is very important in this connection, Thus, for instance, when the 4f states are being �lled (in
the rare-earth elements; see below), the added electrons are located considerably closer to the
nucleus than those in the states previously occupied. As a result, these electrons have practically
no e�ect on the chemical properties, and all the rare-earth elements are chemically very similar.

The elements containing complete d and f shells (or not containing these shells at all) are
called elements of the principal groups; those in which the �lling up of these states is actu-
ally in progress are called elements of the intermediate groups. These groups of elements are
conveniently considered separately.
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Chapter 5

RedOx Chemical Reactions

RedOx (reduction-oxidation or oxidation-reduction) is a type of chemical reaction in which the
oxidation states of the reactants change. Oxidation is the loss of electrons or an increase in the
oxidation state, while reduction is the gain of electrons or a decrease in the oxidation state. The
oxidation and reduction processes occur simultaneously in the chemical reaction.

Oxidation is a process in which a substance loses electrons. Reduction is a process in which
a substance gains electrons. The processes of oxidation and reduction occur simultaneously
and cannot occur independently. In redox processes, the reductant transfers electrons to the
oxidant. Thus, in the reaction, the reductant or reducing agent loses electrons and is oxidized,
and the oxidant or oxidizing agent gains electrons and is reduced. The pair of an oxidizing and
reducing agent that is involved in a particular reaction is called a redox pair. A redox couple is
a reducing species and its corresponding oxidizing form. The oxidation alone and the reduction
alone are each called a half-reaction because two half-reactions always occur together to form
a whole reaction. In electrochemical reactions the oxidation and reduction processes do occur
simultaneously but are separated in space.

Electronegativity, symbolized as χ, is the tendency for an atom of a given chemical element
to attract shared electrons (or electron density) when forming a chemical bond. An atom's
electronegativity is a�ected by both its atomic number and the distance at which its valence
electrons reside from the charged nucleus. The higher the associated electronegativity, the more
an atom or a substituent group attracts electrons. Electronegativity serves as a simple way
to quantitatively estimate the bond energy, and the sign and magnitude of a bond's chemical
polarity, which characterizes a bond along the continuous scale from covalent to ionic bonding.
The loosely de�ned term electropositivity is the opposite of electronegativity: it characterizes an
element's tendency to donate valence electrons.

On the most basic level, electronegativity is determined by factors like the nuclear charge
(the more protons an atom has, the more �pull� it will have on electrons) and the number and
location of other electrons in the atomic shells (the more electrons an atom has, the farther
from the nucleus the valence electrons will be, and as a result, the less positive charge they
will experience � both because of their increased distance from the nucleus and because the
other electrons in the lower energy core orbitals will act to shield the valence electrons from the
positively charged nucleus).

The term �electronegativity� was introduced by Jöns Jacob Berzelius in 1811, though the
concept was known before that and was studied by many chemists including Avogadro. In spite
of its long history, an accurate scale of electronegativity was not developed until 1932, when Linus
Pauling proposed an electronegativity scale which depends on bond energies, as a development
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of valence bond theory. [62] It has been shown to correlate with a number of other chemical
properties. Electronegativity cannot be directly measured and must be calculated from other
atomic or molecular properties. Several methods of calculation have been proposed, and although
there may be small di�erences in the numerical values of the electronegativity, all methods show
the same periodic trends between elements.

The most commonly used method of calculation is that originally proposed by Linus Pauling.
This gives a dimensionless quantity, commonly referred to as the Pauling scale, on a relative
scale running from 0.79 to 3.98 (hydrogen “ 2.20). When other methods of calculation are used,
it is conventional (although not obligatory) to quote the results on a scale that covers the same
range of numerical values: this is known as an electronegativity in Pauling units.

As it is usually calculated, electronegativity is not a property of an atom alone, but rather
a property of an atom in a molecule. [7] Even so, the electronegativity of an atom is strongly
correlated with the �rst ionization energy. The electronegativity is slightly negatively correlated
(for smaller electronegativity values) and rather strongly positively correlated (for most and larger
electronegativity values) with the electron a�nity. It is to be expected that the electronegativity
of an element will vary with its chemical environment, [63] but it is usually considered to be a
transferable property, that is to say that similar values will be valid in a variety of situations.

Caesium is the least electronegative element (0.79); �uorine is the most (3.98).
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Chapter 6

The Electron Gas

A gas of electrons would be thermodynamically unstable if not made electrically neutral by
introducing a uniform background of opposite charge which gives rise to a harmonic con�ning
potential to the gas which would otherwise explode to in�nity. After all we all live in a neu-
tral world. This simplest model of an electron gas is called the Jellium in the quantum regime
where the Fermi statistics play a role through the Pauli exclusion principle and a One Compo-
nent Plasma (OCP) in the opposite classical regime where the statistics reduces to the one of
Boltzmann. More complicated albeit more realistic models of an electron gas are obtained by
a more detailed description of the neutralizing background. This can for example be described
by a system of positive charges (ions) which again make the whole system of charges globally
neutral. Therefore one can think of a Two Component Plasma (TCP) or more generally of a
multicomponent one. Another important complication consists in describing the charges as not
ideally pointwise but with �nite dimension. The simplest system of this kind is the primitive
model which consists of uniformly charged hard spheres of n di�erent species. The spheres be-
longing to specie µ “ 1, 2, . . . , n have a diameter σµ and carry a total charge zµe, where e is
the elementary charge. The spheres are globally neutral,

ř

µ xµzµ “ 0, where xµ is the molar
fraction of species µ, and move in a continuum medium of dielectric constant ϵ. One could for
example study the restricted case σµ “ σ and |zµ| “ z for all µ.

These have been historically the �rst models examined. And for these models there exist few
exact analytic results, various approximate analytic or numerical results from integral equations
theories (like the Percus-Yevick, the Mean-Spherical-Approximation, the Hyper-Netted-Chain,
and many others), and various exact numerical results from Monte Carlo methods. [64, 65, 66, 67]

Here we will just mention some of the few exact analytic results. Beginning from the exact
solution of the one dimensional OCP of Edwards and Lenard [68] and the TCP of Salzberg and
Prager where the chemical bond is analytically seen through the clustering responsible for the
molecule formation [69]. An interesting exact analytic solution for the two dimensional OCP at a
particular value of the coupling constant Γ “ βe2 “ 2 with β “ 1{kBT , kB Boltzmann constant
and T absolute temperature, is available on various surface of constant curvature: The plane
[70], the cylinder [71], the sphere [72], the pseudosphere [73]. And on non-constant curvature
surfaces like the Flamm's paraboloid [74] . . .. These solutions make use of the properties of the
Vandermonde determinant. At the same coupling constant a Cauchy identity allows the solution
of the TCP.

In the quantum regime we do not know about any analytic exact solution. But the Jellium
has been studied with Monte Carlo methods both in its ground state, at zero temperature, or at
�nite temperature, through path integral. In this chapter we review some recent and less recent
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results in these directions on a �at space by David Ceperley and collaborators or on a curved
space [75, 76].

The primitive model in the quantum regime and in two dimensions opens the new exotic �eld
of anyons and fractional statistics [77, 78]. 1

6.1 The model

The Jellium model of Wigner [66, 79, 80, 81] is an assembly of N` spin up pointwise electrons
and N´ spin down pointwise electrons of charge e moving in a positive inert background that
ensures charge neutrality. The total number of electrons is N “ N` ` N´ and the average
particle number density is n “ N{Ω, where Ω is the volume of the electron �uid. In the volume
Ω there is a uniform neutralizing background with a charge density ρb “ ´en. So that the total
charge of the system is zero. The �uid polarization is then ξ “ |N` ´ N´|{N : ξ “ 0 in the
unpolarized (paramagnetic) case and ξ “ 1 in the fully polarized (ferromagnetic) case.

Setting lengths in units of a “ p4πn{3q´1{3 and energies in Rydberg's units, Ry “ ℏ2{2ma20,
where m is the electron mass and a0 “ ℏ2{me2 is the Bohr radius, the Hamiltonian of Jellium is

H “ ´
1

r2s

N
ÿ

i“1

∇∇∇2
ri

` V pRq , (6.1)

V “
1

rs

˜

2
ÿ

iăj

1

|ri ´ rj |
`

N
ÿ

i“1

r2i ` v0

¸

, (6.2)

1Actually in order to allow for fractional statistics in two dimensions it is su�cient that the particles be
impenetrable which may be already assured even by pointwise electrons since the Coulomb repulsion diverges at
contact.
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where R “ pr1, r2, . . . , rN q with ri the coordinate of the ith electron, rs “ a{a0, and v0 a
constant containing the self energy of the background.

The kinetic energy scales as 1{r2s and the potential energy (particle-particle, particle-background,
and background-background interaction) scales as 1{rs, so for small rs (high electronic densities),
the kinetic energy dominates and the electrons behave like an ideal gas. In the limit of large rs,
the potential energy dominates and the electrons crystallize into a Wigner crystal [82]. No liquid
phase is realizable within this model since the pair-potential has no attractive parts even though
a superconducting state [83] may still be possible (see chapter 8.9 of Ref. [84] and Ref. [85]).

The Jellium has been solved either by integral equation theories in its ground state [86] or
by computer experiments in its ground state [87] and at �nite temperature [88].

Some details on the linear response theory for the Jellium can be found in appendixes 4 and 5
of Ref. [66]. Some details on the sum rules for the dielectric function can be found in appendix 6
of Ref. [66]. Some details on the moments of density �uctuation spectrum in the plasma can be
found in appendix 7 of Ref. [66]. And some details on the Lindhard theory of dynamic screening
can be found in appendix 8 of Ref. [66].

6.1.1 Lindhard theory of static screening in Jellium ground state

Suppose we switch on an appropriately screened test charge potential δV , actually the so called
Hartree potential, in a free electron gas. The Hartree potential δV prq created at a distance r
from a static point charge of magnitude e at the origin, should be evaluated self-consistently
from the Poisson equation,

∇2δV prq “ ´4πe2rδprq ` δnprqs , (6.3)

where δnprq is the change in electronic density induced by the foreign charge. The electron
density nprq may be written as

nprq “ 2
ÿ

k

|ψkprq|2 , (6.4)

where ψkprq are single-electron orbitals, the sum over k is restricted to occupied orbitals (|k| ď

kF , where kF is the Fermi wave vector) and the factor 2 comes from the sum over spin orienta-
tions. We must now calculate how the orbitals in the presence of the foreign charge, di�er from
plane waves exppik ¨ rq. We use for this purpose the Schrödinger equation,

∇2ψkprq ` rk2 ´
2m

ℏ2
δV prqsψkprq “ 0 , (6.5)

having imposed that the orbitals reduce to plane waves with energy ℏ2k2{p2mq at large distance
2.

With the aforementioned boundary condition the Schrödinger equation may be converted
into an integral equation,

ψkprq “
1

?
Ω
eik¨r `

2m

ℏ2

ż

Gkpr ´ r1qδV pr1qψkpr1qdr1 , (6.6)

with Gkprq “ ´ exppik ¨ rq{p4πrq and Ω the volume of the system.

2This approach (which lead to the Random Phase Approximation, RPA) is approximate insofar as the po-
tential entering the Schrödinger equation has been taken as the Hartree potential, thus neglecting exchange and
correlation between an incoming electron and the electronic screening cloud.
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Within linear response theory we can replace ψkprq by Ω´1{2 exppik ¨ rq inside the integral.
This yields

δnprq “ ´
mk2F
2π3ℏ2

ż

j1p2kF |r ´ r1|q
δV pr1q

|r ´ r1|2
dr1 , (6.7)

with j1pxq being the �rst-order spherical Bessel function rsinpxq ´x cospxqs{x2. Using this result
in the Poisson equation we get

∇2δV prq “ ´4πe2δprq `
2mk2F e

2

π2ℏ2

ż

j1p2kF |r ´ r1|q
δV pr1q

|r ´ r1|2
dr1 , (6.8)

which is easily soluble in Fourier transform. Writing δV pkq “ 4πe2{rk2εpkqs we �nd,

εpkq “ 1 `
2mkF e

2

πk2ℏ2

„

1 `
kF
k

ˆ

k2

4k2F
´ 1

˙

ln

ˇ

ˇ

ˇ

ˇ

k ´ 2kF
k ` 2kF

ˇ

ˇ

ˇ

ˇ

ȷ

, (6.9)

which is the static dielectric function in RPA.
For k Ñ 0 this expression gives εpkq Ñ 1` k2TF {k2 with kTF “ 3ω2

p{v2F (ωp being the plasma
frequency and vF the Fermi velocity) i.e. the result of the Thomas-Fermi theory. However εpkq

has a singularity at k “ ˘2kF , where its derivative diverges logarithmically 3. This singularity
in δV pkq determines, after Fourier transform, the behavior of δV prq at large r. δV prq turns
out to be an oscillating function 4 rather than a monotonically decreasing function as in the
Thomas-Fermi theory. Indeed,

δV prq “

ż

dk

p2πq3

4πe2

k2εpkq
eik¨r “

e2

iπr

ż 8

´8

dk
eikr

kεpkq
, (6.10)

and the integrand has non-analytic behavior at q “ ˘2kF ,
„

1

kεpkq

ȷ

kÑ˘2kF

“ ´Apk ´ p˘q2kf q ln |k ´ p˘q2kF | ` regular terms , (6.11)

with A “ pk2TF {4k2F q{pk2TF ` 8k2F q. Hence,

δV prq|rÑ8 “ ´
Ae2

iπr

ż 8

´8

dk eikrrpk ´ 2kF q ln |k ´ 2kF |

`pk ` 2kF q ln |k ` 2kF |s “ ´2Ae2
cosp2kF rq

r3
. (6.12)

This result is based on a theorem on Fourier transforms 5, stating that the asymptotic behavior of
δV prq is determined by the low-k behavior as well as the singularities of δV pkq. Obviously, in the
present case the asymptotic contribution from the singularities is dominant over the exponential
decay of Thomas-Fermi type. The result implies that the screened ion-ion interaction in a metal
has oscillatory character and ranges over several shells of neighbors.

3The discontinuity in the momentum distribution across the Fermi surface introduces a singularity in elastic
scattering processes with momentum transfer equal to 2kF .

4J. Friedel, N. Cimento Suppl. 7, 287 (1958).
5M. Lighthill, �Introduction to Fourier Analysis and Generalized Functions� (University Press, Cambridge

1958)
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6.1.2 Ewald sums

Periodic boundary conditions are necessary for extrapolating results of the �nite system to the
thermodynamic limit. Suppose the bare pair-potential, in in�nite space, is vprq,

vprq “

ż

dk

p2πq3
e´ik¨r ṽpkq , ṽpkq “

ż

dr eik¨rvprq . (6.13)

The best pair-potential of the �nite system is given by

vIprq “
ÿ

L

vp|r ` L|q ´ ṽp0q{Ω . (6.14)

where the L sum is over the Bravais lattice of the simulation cell L “ pmxL,myL,mzLq where
mx,my,mz range over all positive and negative integers and Ω “ L3. We have also added a
uniform background of the same density but opposite charge. Converting this to k-space and
using the Poisson sum formula we get

vIprq “
1

Ω

1
ÿ

k

ṽpkqe´ik¨r , (6.15)

where the prime indicates that we omit the k “ 0 term; it cancels out with the background. The
k sum is over reciprocal lattice vectors of the simulation box kn “ p2πnx{L, 2πny{L, 2πnz{Lq

where nx, ny, nz range over all positive and negative integers.
Because both sums, Eq. (6.14) and Eq. (6.15), are so poorly convergent [89] we follow the

scheme put forward by Natoli et al. [90] for approximating the image potential by a sum in
k-space and a sum in r-space,

vaprq “
ÿ

L

vsp|r ` L|q `
ÿ

|k|ďkc

vlpkqeik¨r ´ ṽp0q{Ω , (6.16)

where vsprq is chosen to vanish smoothly as r approaches rc, where rc is less than half of the
distance across the simulation box in any direction. If either rc or kc go to in�nity then va Ñ vI .
Natoli et al. show that in order to minimize the error in the potential, it is appropriate to
minimize χ2 “

ş

Ω
rvIprq ´ vaprqs2 dr{Ω. And choose for vsprq an expansion in a �xed number

of radial functions. This same technique has also been applied to treat the pseudo-potential
described in section 6.2.3.

Now let us work with N particles of charge e in a periodic box and let us compute the total
potential energy of the unit cell. Particles i and j are assumed to interact with a potential
e2vprijq “ e2vp|ri ´ rj |q. The potential energy for the N particle system is

V “
ÿ

iăj

e2vIprijq `
ÿ

i

e2vM , (6.17)

where vM “ 1
2 limrÑ0rvIprq ´ vprqs is the interaction of a particle with its own images; it is a

Madelung constant [66] for particle i interacting with the perfect lattice of the simulation cell.
If this term were not present, particle i would only see N ´ 1 particles in the surrounding cells
instead of N .

6.2 Jellium in its ground state

The ground state properties of Jellium has been for the �rst time found by Ceperley and Alder [87]
through a di�usion Monte Carlo method [91]. Since then better wave-functions and optimization
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methods have been developed, better schemes to minimize �nite-size e�ect have been devised,
and vastly improved computational facilities are available. Today, new modern techniques are
available to optimize Slater-Jastrow wave-functions [92] with back�ow and three-body correla-
tions [93] and Helmann and Feynman (HF) measures [94] to calculate the RDF, particularly the
on-top value, which su�ers from poor statistical sampling in its conventional histogram imple-
mentation. Other useful tools are the twist-averaged boundary conditions [95] and RPA-based
corrections [96] to minimize �nite-size e�ects.

6.2.1 Monte Carlo simulation (Di�usion)

Consider the Schrödinger equation for the many-body wave-function, ϕpR, tq (the wave-function
can be assumed to be real, since both the real and imaginary parts of the wave-function separately
satisfy the Schrödinger equation), in imaginary time, with a constant shift ET in the zero of the
energy. This is a di�usion equation in a 3N -dimensional space [97]. If ET is adjusted to be the
ground-state energy, E0, the asymptotic solution is a steady state solution, corresponding to the
ground-state eigenfunction ϕ0pRq (provided ϕpR, 0q is not orthogonal to ϕ0).

Solving this equation by a random-walk process with branching is ine�cient, because the
branching rate, which is proportional to the total potential V pRq, can diverge to `8. This leads
to large �uctuations in the weights of the di�users and to slow convergence when calculating
averages. However, the �uctuations, and hence the statistical uncertainties, can be greatly
reduced [98] by the technique of importance sampling [99].

One simply multiplies the Schrödinger equation by a known trial wave-function ΨpRq that ap-
proximate the unknown ground-state wave-function, and rewrites it in terms of a new probability
distribution

fpR, tq “ ϕpR, tqΨpRq , (6.18)

whose normalization is given in Eq. (I.1). This leads to the following di�usion equation

´
BfpR, tq

Bt
“ ´λ∇∇∇2fpR, tq ` rELpRq ´ ET sfpR, tq ` λ∇∇∇ ¨ rfpR, tqFpRqs . (6.19)

Here λ “ ℏ2{p2mq, t is the imaginary time measured in units of ℏ, ELpRq “ rHΨpRqs{ΨpRq is
the local energy of the trial wave-function, and

FpRq “ ∇∇∇ lnΨ2pRq . (6.20)

The three terms on the right hand side of Eq. (6.19) correspond, from left to right, to di�usion,
branching, and drifting, respectively.

At su�ciently long times the solution to Eq. (6.19) is

fpR, tq « N0ΨpRqϕ0pRq expr´pE0 ´ ET qts , (6.21)

where N0 “
ş

ϕ0pRqϕpR, 0q dR. If ET is adjusted to be E0, the asymptotic solution is a stationary
solution and the average xELpRqyf of the local energy over the stationary distribution gives the
ground-state energy E0. If we set the branching to zero ELpRq “ ET then this average would
be equal to the expectation value

ş

ΨpRqHΨpRq dR, since the stationary solution to Eq. (6.19)
would then be f “ fvmc “ Ψ2. In other words, without branching we would obtain the variational
energy of Ψ, rather than E0, as in a Variational Monte Carlo (VMC) calculation.

The time evolution of fpR, tq is given by

fpR
1

, t` τq “

ż

dRGpR
1

, R; τqfpR, tq , (6.22)
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where the Green's function GpR
1

, R; τq “ ΨpR1qxR1| expr´τpH ´ET qs|RyΨ´1pRq is a transition
probability for moving the set of coordinates from R to R

1

in a time τ . Thus G is a solution of
the same di�erential equation, Eq. (6.19), but with the initial condition GpR

1

, R; 0q “ δpR
1

´Rq.
For short times τ an approximate solution for G is

GpR
1

, R; τq “ p4πλτq´3N{2e´|R1
´R´λτFpRq|

2
{4λτe´τtrELpRq`ELpR1

qs{2´ET u `Opτ2q . (6.23)

To compute the ground-state energy and other expectation values, the N -particle distribution
function fpR, tq is represented, in di�usion Monte Carlo, by an average over a time series of
generations of walkers each of which consists of a �xed number of nw walkers. A walker is a
pair pRα, ωαq, α “ 1, 2, . . . , nw, with Rα a 3N -dimensional particle con�guration with statistical
weight ωα. At time t, the walkers represent a random realization of the N -particle distribution,
fpR, tq “

řnw

α“1 ω
t
αδpR ´ Rt

αq. The ensemble is initialized with a VMC sample from fpR, 0q “

Ψ2pRq, with ω0
α “ 1{nw for all α. Note that if the trial wave-function were the exact ground-state

then there would be no branching and it would be su�cient nw “ 1. A given walker pRt, ωtq is
advanced in time (di�usion and drift) as Rt`τ “ Rt ` χ` λτ∇∇∇ lnΨ2pRtq where χ is a normally
distributed random 3N -dimensional vector with variance 2λτ and zero mean [100]. In order to
satisfy detailed balance we accept the move with a probability ApR,R1; τq “ minr1,W pR,R1qs,
where W pR,R1q “ rGpR,R1; τqΨ2pR1qs{rGpR1, R; τqΨ2pRqs. This step would be unnecessary if
G were the exact Green's function, since W would be unity. Finally, the weight ωt

α is replaced
by ωt`τ

α “ ωt
α∆ω

t
α (branching), with ∆ωt

α “ expt´τ rpELpRt
αq ` ELpRt`τ

α qq{2 ´ ET su.
However, for the di�usion interpretation to be valid, f must always be positive, since it is

a probability distribution. But we know that the many-fermions wave-function ϕpR, tq, being
antisymmetric under exchange of a pair of particles of the parallel spins, must have nodes, i.e.
points R where it vanishes. In the �xed-nodes approximation one restricts the di�usion process
to walkers that do not change the sign of the trial wave-function. One can easily demonstrate
that the resulting energy, xELpRqyf , will be an upper bound to the exact ground-state energy;
the best possible upper bound with the given boundary condition [101].

A detailed description of the algorithm used for the DMC calculation can be found in Ref.
[102].

6.2.2 Expectation values in DMC

In a DMC calculation there are various di�erent possibilities to measure the expectation value of
a physical observable, as for example the RDF. If xOyf is the measure and x. . .yf the statistical
average over the probability distribution f we will, in the following, use the word estimator to
indicate the function O itself, unlike the more common use of the word to indicate the usual
Monte Carlo estimator

řN
i“1 Oi{N of the average, where tOiu is the set obtained evaluating O

over a �nite number N of points distributed according to f . Whereas the average from di�erent
estimators must give the same result, the variance, the square of the statistical error, can be
di�erent for di�erent estimators.

The local estimator and the extrapolated measure

To obtain ground-state expectation values of quantities O that do not commute with the Hamil-
tonian we introduce the local estimator OLpRq “ rOΨpRqs{ΨpRq and then compute the average
over the DMC walk, the so called mixed measure, Omix

“ xOLpRqyf “
ş

ϕ0pRqOΨpRq dR{
ş

ϕ0pRqΨpRq dR. This is inevitably biased by the choice of the trial wave-function. A way to
remedy to this bias is the use of the forward walking method [103, 104] or the reptation quantum
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Monte Carlo method [105] to reach pure estimates. Otherwise this bias can be made of leading
order δ2, with δ “ ϕ0 ´ Ψ, introducing the extrapolated measure

Oext
“ 2Omix

´ Ovar
, (6.24)

where Ovar
“ xOLyfvmc is the variational measure. If the mixed measure equals the variational

measure then the trial wave-function has maximum overlap with the ground-state.

The Hellmann and Feynman measure

Toulouse et al. [94, 106] observed that the zero-variance property of the energy [107] can be
extended to an arbitrary observable, O, by expressing it as an energy derivative through the use
of the Hellmann-Feynman theorem.

In a DMC calculation the Hellmann-Feynman theorem takes a form di�erent from the one
in a VMC calculation. Namely we start with the eigenvalue expression pHλ ´ EλqΨλ “ 0 for
the ground-state of the perturbed Hamiltonian Hλ “ H ` λO, take the derivative with respect
to λ, multiply on the right by the ground-state at λ “ 0, ϕ0, and integrate over the particle
coordinates to get

ż

dRϕ0pHλ ´ Eλq
BΨλ

Bλ
“

ż

dRϕ0

ˆ

BEλ

Bλ
´

BHλ

Bλ

˙

Ψλ . (6.25)

Then we notice that due to the Hermiticity of the Hamiltonian, at λ “ 0 the left hand side
vanishes, so that we get [108]

ş

dRϕ0OΨλ

ş

dRϕ0Ψλ

ˇ

ˇ

ˇ

ˇ

λ“0

“
BEλ

Bλ

ˇ

ˇ

ˇ

ˇ

λ“0

. (6.26)

This relation holds only in the λ Ñ 0 limit unlike the more common form [60] which holds for
any λ. Also it resembles Eq. (3) of Ref. [109].

Given Eλ “
ş

dRϕ0pRqHλΨλpRq{
ş

dRϕ0pRqΨλpRq the �Helmann and Feynman� (HF) mea-
sure in a DMC calculation is

OHF
“
dEλ

dλ

ˇ

ˇ

ˇ

ˇ

λ“0

« xOLpRqyf ` x∆Oα
LpRqyf ` x∆Oβ

LpRqyf . (6.27)

The α correction is [108]

∆Oα
LpRq “

„

HΨ1

Ψ1
´ ELpRq

ȷ

Ψ1pRq

ΨpRq
. (6.28)

This expression coincides with Eq. (18) of Ref. [94]. In a VMC calculation this term, usually,
does not contribute to the average, with respect to fvmc “ Ψ2, due to the Hermiticity of the
Hamiltonian. This is of course not true in a DMC calculation. We will then de�ne a Hellmann
and Feynman variational (HFv) estimator as OHFv “ OLpRq ` ∆Oα

LpRq. The β correction is
[108]

∆Oβ
LpRq “ rELpRq ´ E0s

Ψ1pRq

ΨpRq
, (6.29)

where E0 “ Eλ“0. Which di�ers from Eq. (19) of Ref. [94] by a factor of one half. This term
is necessary in a DMC calculation not to bias the measure. The extrapolated Hellmann and
Feynman measure will then be

OHF-ext
“ 2OHF

´ xOHFvyfvmc . (6.30)
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Both corrections α and β to the local estimator depends on the auxiliary function, Ψ1 “

BΨλ{Bλ|λ“0. Of course if we had chosen Ψλ“0, on the left hand side of Eq. (6.27), as the
exact ground state wave-function, ϕ0, instead of the trial wave-function, then both corrections
would have vanished. When the trial wave-function is su�ciently close to the exact ground state
function a good approximation to the auxiliary function can be obtained from �rst order pertur-
bation theory for λ ! 1. So the Hellmann and Feynman measure is a�ected by the new source
of bias due to the choice of the auxiliary function independent from the bias due to the choice
of the trial wave-function.

It is convenient to rewrite Eqs. (6.28) and (6.29) in terms of the logarithmic derivative
QpRq “ Ψ1pRq{ΨpRq as follows

∆Oα
LpRq “ ´

1

r2s

N
ÿ

k“1

r∇∇∇2
rk
QpRq ` 2vkpRq ¨∇∇∇rk

QpRqs , (6.31)

∆Oβ
LpRq “ rELpRq ´ EsQpRq , (6.32)

where vkpRq “ ∇∇∇rk
lnΨpRq is the drift velocity of the trial wave-function. For each observable

a speci�c form of Q has to be chosen.

6.2.3 Trial wave-function

We chose the trial wave-function of the Bijl-Dingle-Jastrow [110, 111, 112] or product form

ΨpRq9DpRq exp

˜

´
ÿ

iăj

uprijq

¸

. (6.33)

The function DpRq is the exact wave-function of the non-interacting fermions (the Slater
determinant) and serves to give the trial wave-function the desired antisymmetry

DpRq “
1

a

N`!
detpφ`

n,mq
1

a

N´!
detpφ´

n,mq , (6.34)

where for the �uid phase φσ
n,m “ eikn¨rmδσm,σ{

?
Ω with kn a reciprocal lattice vector of the

simulation box such that |kn| ď kσF , σ the z-component of the spin (˘1{2), rm the coordinates
of particle m, and σm its spin z-component. For the unpolarized �uid there are two separate
determinants for the spin-up and the spin-down states because the Hamiltonian is spin indepen-
dent. For the polarized �uid there is a single determinant. For the general case of N` spin-up
particles the polarization will be ξ “ |N` ´ N´|{N and the Fermi wave-vector for the spin-up
(spin-down) particles will be k˘

F “ p1 ˘ ξq1{3kF with kF “ p3π2nq1{3 “ p9π{4q1{3{pa0rsq the
Fermi wave-vector of the paramagnetic �uid. On the computer we �ll closed shells so that Nσ

is always odd. We only store kn for each pair pkn,´knq and use sines and cosines instead of
exppikn ¨ riq and expp´ikn ¨ rjq.

The second factor (the Jastrow factor) includes in an approximate way the e�ects of particle
correlations, through the �pseudo-potential�, uprq, which is repulsive.

In the crystal phase, the orbitals are Gaussians centered around body-centered-cubic lattice
sites with a width chosen variationally.

The pseudo-potential

Here we will consider a system where the particles interact with a bare potential

vµprq “
erfpµrq

r
, (6.35)
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whose Fourier transform is

ṽµpkq “
4π

k2
e´k2

{4µ2

, (6.36)

so that for µ Ñ 8 we recover the Jellium and in the opposite limit µ Ñ 0 we recover the
non-interacting electron gas.

Neglecting the cross term between the Jastrow and the Slater determinant in Eq. (I.6) (third
term) and the Madelung constant, the variational energy per particle can be approximated as
follows,

eV “
xELpRqyf

N
“

ş

ΨpRqHΨpRq dR

N
« eF `

1

2Ω

1
ÿ

k

re2ṽµpkq ´ 2λk2ũpkqsrSpkq ´ 1s `

1

NΩ2

1
ÿ

k,k1

λk ¨ k1ũpkqũpk1qxρk`k1ρ´kρ´k1 yf ` . . . , (6.37)

where eF “ p3{5qλ
ř

σ NσpkσF q2{N is the non-interacting fermions energy per particle, ũpkq is
the Fourier transform of the pseudo-potential uprq, ṽµpkq “ 4π expp´k2{4µ2q{k2 is the Fourier
transform of the bare pair-potential, Spkq is the static structure factor for a given uprq (see
Sec. 6.2.4), ρk “

řN
i“1 exppik ¨ riq is the Fourier transform of the total number density ρprq “

ř

i δpr ´ riq, and the trailing dots stand for the additional terms coming from the exclusion of
the j “ k term in the last term of Eq. (I.6). Next we make the Random Phase Approximation
[30] and we keep only the terms with k ` k1 “ 0 in the last term. This gives

eV « eF `
1

2Ω

1
ÿ

k

!

re2ṽµpkq ´ 2λk2ũpkqsrSpkq ´ 1s ´ 2nλrkũpkqs2Spkq

)

` . . . . (6.38)

In the limit k Ñ 0 we have to cancel the Coulomb singularity and we get ũ2pkq “ me2ṽµpkq{pℏ2nk2q »

rp4πe2{k2q{pℏωpqs2 (where ωp “
a

4πne2{m is the plasmon frequency) or in adimensional units

ũpkq “

c

rs
3

4π

k2
, small k . (6.39)

This determines the correct behavior of ũpkq as k Ñ 0 or the long range behavior of uprq

uprq “

c

rs
3

1

r
, large r . (6.40)

Now to construct the approximate pseudo-potential, we start from the expression

ϵ “ eF `
1

2Ω

1
ÿ

k

re2ṽµpkq ´ Aλk2ũpkqsrSpkq ´ 1s , (6.41)

and use the following perturbation approximation, for how Spkq depends on ũpkq [113, 114],

1

Spkq
“

1

Sxpkq
` Bnũpkq , (6.42)

where A and B are constant to be determined and Sxpkq the structure factor for the non-
interacting fermions (see Eq. (K.5)), which is Sx “

ř

σ S
x
σ,σ with

Sx
σ,σpkq “

$

&

%

nσ
n

yσ
2

p3 ´ y2σq yσ ă 1
nσ
n

else
(6.43)
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where nσ “ Nσ{Ω and yσ “ k{p2kσF q.
Minimizing ϵ with respect to upkq, we obtain [115]

Bnũpkq “ ´
1

Sxpkq
`

„

1

Sxpkq
`

Bne2ṽµpkq

λAk2
ȷ1{2

, (6.44)

This form is optimal at both long and short distances but not necessarily in between. In partic-
ular, for any value of ξ, the small k behavior of ũpkq is

a

2rs{3ABp4π{k2q which means that

uprq “

c

2rs
3AB

1

r
, large r . (6.45)

The large k behavior of ũpkq is prs{Aqṽµpkq{k2, for any value of ξ, which in r space translates
into

duprq

dr

ˇ

ˇ

ˇ

ˇ

r“0

“

#

´
rs
2A µ Ñ 8

0 µ �nite
(6.46)

In order to satisfy the cusp condition for particles of antiparallel spins (any reasonable pseudo-
potential has to obey to the cusp conditions (see Ref. [92] Section IVF) which prevent the local
energy from diverging whenever any two electrons (µ “ 8) come together) we need to choose
A “ 1, then the correct behavior at large r (6.39) is obtained �xing B “ 2 6. We will call this
Jastrow J1 in the following.

It turns out that, at small µ, but not for the Coulomb case, a better choice is given by [116]

2nũpkq “ ´
1

Sxpkq
`

«

ˆ

1

Sxpkq

˙2

`
2ne2ṽµpkq

λk2

ff1{2

, (6.47)

which still has the correct long (6.45) and short (6.46) range behaviors. We will call this Jastrow
J2 in the following. This is expected since, di�erently from J1, J2 satis�es the additional exact
requirement limµÑ0 uprq “ 0, as immediately follows from the de�nition (6.47). Then at small
µ (and any rs), the trial wave-function is expected to be very close to the stationary solution of
the di�usion problem.

The back�ow and three-body correlations

As shown in Appendix I, the trial wave-function of Eq. (6.33) can be further improved by adding
three-body (3B) and back�ow (BF) correlations [117, 93] as follows

ΨpRq “ D̃pRq exp

«

´
ÿ

iăj

ũprijq ´

N
ÿ

l“1

Gplq ¨ Gplq

ff

. (6.48)

Here

D̃pRq “
1

a

N`!
detpφ̃`

n,mq
1

a

N´!
detpφ̃´

n,mq , (6.49)

6Note that the probability distribution in a variational calculation is (from Eq. (6.33))
Ψ2pRq9D2pRq expr´2UpRqs with UpRq “

ř

iăj uprijq. Then if one formally writes D2pRq “ expr´2W pRqs,

Ψ2 becomes the probability distribution for a classical �uid with potential W ` U at an inverse temperature
β “ 2. Then one sees that with the choice B “ 2, Eq (6.42) coincides with the well known Random Phase
Approximation in the theory of classical �uids (see Ref. [67] Section 6.5) whereW is the potential of the reference
�uid and U the perturbation.
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with φ̃σ
n,m “ eikn¨xmδσm,σ{

?
Ω and xm quasi-particle coordinates de�ned as

xi “ ri `

N
ÿ

j‰i

ηprijqpri ´ rjq . (6.50)

The displacement of the quasi-particle coordinates xi from the real coordinate ri incorporates
e�ects of hydrodynamic back�ow [118], and changes the nodes of the trial wave-function. The
back�ow correlation function ηprq, is parametrized as [93]

ηprq “ λB
1 ` sBr

rB ` wBr ` r4
, (6.51)

which has the long-range behavior „ 1{r3.
Three-body correlations are included through the vector functions

Gpiq “

N
ÿ

j‰i

ξprijqpri ´ rjq . (6.52)

We call ξprq the three-body correlation function which is parametrized as [119]

ξprq “ a exp
␣

´rpr ´ bqcs2
(

. (6.53)

To cancel the two-body term arising from Gplq ¨ Gplq, we use ũprq “ uprq ´ 2ξ2prqr2

The back�ow and three-body correlation functions are then chosen to decay to zero with a
zero �rst derivative at the edge of the simulation box.

6.2.4 The radial distribution function

The radial distribution function (RDF) is proportional to the probability of �nding another
particle of the �uid inside a spherical shell of radius r and thickness dr centered on any one
particle on which you sit. This observable gives us informations about the structure of the �uid.
We will see here how it can be measured in a DMC calculation. In appendix K we give some
details on the determination of the RDF for the ideal gas and in appendix L we give some details
on exact relationships that must be satis�ed by the RDF of the interacting �uid, the sum rules.

De�nition of the radial distribution function

The spin-resolved RDF is de�ned as [120, 65]

gσ,σ1 pr, r
1

q “

A

ř

i,j‰i δσ,σiδσ1,σjδpr ´ riqδpr
1

´ rjq

E

nσprqnσ1 pr1
q

, (6.54)

nσprq “

C

N
ÿ

i“1

δσ,σiδpr ´ riq

G

, (6.55)

where here, and in the following, x. . .y will denote the expectation value respect to the ground-
state. Two exact conditions follow immediately from the de�nition: i. the zero-moment sum
rule

ÿ

σ,σ1

ż

drdr1 nσprqnσpr1qrgσ,σ1 pr, r
1

q ´ 1s “ ´N , (6.56)
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also known as the charge (monopole) sum rule in the sequence of multipolar sum rules in the
framework of charged �uids [81], ii. gσ,σpr, rq “ 0 due to the Pauli exclusion principle.

For the homogeneous and isotropic �uid nσprq “ Nσ{Ω where Nσ is the number of particles
of spin σ and gσ,σ1 depends only on the distance r “ |r ´ r

1

|, so that

gσ,σ1 prq “
1

4πr2
Ω

NσNσ1

C

ÿ

i,j‰i

δσ,σiδσ1,σjδpr ´ rijq

G

. (6.57)

The total (spin-summed) radial distribution function will be

gprq “
1

n2

ÿ

σ,σ1

nσnσ1gσ,σ1 prq

“

ˆ

1 ` ξ

2

˙2

g`,`prq `

ˆ

1 ´ ξ

2

˙2

g´,´prq `
1 ´ ξ2

2
g`,´prq . (6.58)

From the structure to the thermodynamics

As it is well known the knowledge of the RDF gives access to the thermodynamic properties of
the system. The mean potential energy per particle can be directly obtained from gprq and the
bare pair-potential vµprq as follows

ep “
ÿ

σ,σ1

nσnσ1

2n

ż

dr e2vµprqrgσ,σ1 prq ´ 1s , (6.59)

where we have explicitly taken into account of the background contribution. Suppose that epprsq

is known as a function of the coupling strength rs. The virial theorem for a system with Coulomb
interactions (v8prq “ 1{r) gives Np2ek ` epq “ 3PΩ with P “ ´dpNe0q{dΩ the pressure and
e0 “ ek ` ep the mean total ground-state energy per particle. We then �nd

epprsq “ 2e0prsq ` rs
de0prsq

drs
“

1

rs

d

drs
rr2se0prsqs , (6.60)

which integrates to

e0prsq “ eF `
1

r2s

ż rs

0

dr1
s r

1
seppr1

sq . (6.61)

We can rewrite the ground-state energy per particle of the ideal Fermi gas, in reduced units,
as

eF “

ˆ

9π

4

˙2{3
3

10
ϕ5pξq

1

r2s
, (6.62)

where ϕnpξq “ p1 ´ ξqn{3 ` p1 ` ξqn{3. And for the exchange potential energy per particle in the
Coulomb case

exp “ ´

ˆ

2

3π5

˙1{3
9π

8
ϕ4pξq

1

rs
, (6.63)

which follows from Eq. (6.59) and Eqs. (K.2)-(K.3). The expression for �nite µ can be found in
Ref. [121] (see their Eqs. (15)-(16)).
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De�nition of the static structure factor

If we introduce the microscopic spin dependent number density

ρσprq “

N
ÿ

i“1

δσ,σi
δpr ´ riq , (6.64)

and its Fourier transform ρk,σ, then the spin-resolved static structure factors are de�ned as
Sσ,σ1 pkq “ xρk,σρ´k,σ1 y{N , which, for the homogeneous and isotropic �uid, can be rewritten as

Sσ,σ1 pkq “
nσ
n
δσ,σ1 `

nσnσ1

n

ż

rgσ,σ1 prq ´ 1se´ik¨r dr `
nσnσ1

n
p2πq3δpkq , (6.65)

From now on we will ignore the delta function at k “ 0. The total (spin-summed) static structure
factor is S “

ř

σ,σ1 Sσ,σ1 . Due to the charge sum rule (6.56) we must have limkÑ0 Spkq “ 0. In
Sec. L.2 we will show that the small k behavior of Spkq has to start from the term of order k2.

6.2.5 Results for the radial distribution function and structure factor

The radial distribution function and structure factor have been calculated through DMC by Ortiz
and Ballone [122]. In Fig. 6.1 we show their results for the radial distribution function and in
Fig. 6.2 their results for the structure factor.

6.2.6 Results for the internal energy

The behavior of the internal energy of the Jellium in its ground state has been determined
through DMC by Ceperley and Alder [87]. Their result is shown in Fig. 6.3. Three phases
of the �uid appeared, for rs ă 75 the stable phase is the one of the unpolarized Jellium, for
75 ă rs ă 100 the one of the polarized �uid, and for rs ą 100 the one of the Wigner crystal. The
Wigner formula of Eq. (K.11) turns out to be a rather good approximation. They used systems
from N “ 38 to N “ 246 electrons.

6.3 Jellium at �nite temperature

For the Jellium at �nite temperature it is convenient to introduce the electron degeneracy pa-
rameter Θ “ T {TF , where TF is the Fermi temperature

TF “ TD
p2πq2

2rp2 ´ ξqα3s2{3
, (6.66)

here ξ is the polarization of the �uid that can be either ξ “ 0, for the unpolarized case, and
ξ “ 1, for the fully polarized case, α3 “ 4π{3, and

TD “
n2{3ℏ2

mkB
, (6.67)

is the degeneracy temperature, for temperatures higher than TD quantum e�ects are less relevant.
The state of the �uid will then depend also upon the Coulomb coupling parameter, Γ “

e2{rsa0kBT [88].
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Figure 6.1: Radial distribution function gprq computed by DMC method (mixed estimator) for
the unpolarized ξ “ 0 case and the fully polarized ξ “ 1 case. rs “ 1 (dotted line), rs “ 3
(dash-dotted line), rs “ 5 (dashed line), and rs “ 10 (full line). r is in units of a Bohr radius.
(Figure reproduced here by courtesy of the authors of Ref. [122])
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Figure 6.2: Structure factor Spkq computed by the DMC method (mixed estimator). The rs
considered and the symbols are the same as those of Fig. 6.1. (Figure reproduced here by
courtesy of the authors of Ref. [122])
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Figure 6.3: The energy of the four phases studied relative to that of the lowest boson state
times r2s in Rydbergs as a function of rs in Bohr radii. The boson system undergoes Wigner
crystallization at rs “ 160 ˘ 10. The fermion system has two phase transitions, crystallization
at rs “ 100 ˘ 20 and depolarization at rs “ 75 ˘ 5. (Figure reproduced here by courtesy of the
authors of Ref. [87])
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6.3.1 Monte Carlo simulation (Path Integral)

The density matrix of a many-fermion system at temperature kBT “ β´1 can be written as an
integral over all paths tRtu

ρF pRβ , R0;βq “
1

N !

ÿ

P
p´1qP

¿

PR0ÑRβ

dRt expp´SrRtsq. (6.68)

the path Rptq begins at PR0 and ends at Rβ and P is a permutation of particles labels. For
nonrelativistic particles interacting with a potential V pRq the action of the path, SrRts, is given
by (see appendix M)

SrRts “

ż β

0

dt

«

r2s
4

ˇ

ˇ

ˇ

ˇ

dRptq

dt

ˇ

ˇ

ˇ

ˇ

2

` V pRtq

ff

. (6.69)

Thermodynamic properties, such as the energy, are related to the diagonal part of the density
matrix, so that the path returns to its starting place or to a permutation P after a time β.

To perform Monte Carlo calculations of the integrand, one makes imaginary time discrete, so
that one has a �nite (and hopefully small) number of time slices and thus a classical system of
N particles in M time slices; an equivalent NM particle classical system of �polymers� [45].

Note that in addition to sampling the path, the permutation is also sampled. This is equiv-
alent to allowing the ring polymers to connect in di�erent ways. This macroscopic �percolation�
of the polymers is directly related to super�uidity as Feynman [123, 124, 125] �rst showed. Any
permutation can be broken into cycles. Super�uid behavior can occur at low temperature when
the probability of exchange cycles on the order of the system size is non-negligible. The super-
�uid fraction can be computed in a path integral Monte Carlo calculation as described in Ref.
[85]. The same method could be used to calculate the superconducting fraction in Jellium at
low temperature. However, the straightforward application of those techniques to Fermi systems
means that odd permutations subtract from the integrand. This is the �fermion sign problem�
[101] which will be discussed in the next section.

Thermodynamic properties are averages over the thermal N´fermion density matrix which
is de�ned as a thermal occupation of the exact eigenstates ϕipRq

ρF pR,R1;βq “
ÿ

i

ϕ˚
i pRqe´βEiϕipR

1q. (6.70)

The partition function is the trace of the density matrix

Zpβq “ e´βF “

ż

dR ρF pR,R;βq “
ÿ

i

e´βEi . (6.71)

Other thermodynamic averages are obtained as

xOy “ Zpβq´1

ż

dRdR1 xR|O|R1yρpR1, R;βq. (6.72)

Note that for any density matrix the diagonal part is always positive

ρpR,R;βq ě 0, (6.73)

so that Z´1ρpR,R;βq is a proper probability distribution. It is the diagonal part which we need
for many observables, so that probabilistic ways of calculating those observables are, in principle,
possible.
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Path integrals are constructed using the product property of density matrices

ρpR2, R0;β1 ` β2q “

ż

dR1 ρpR2, R1;β2qρpR1, R0;β1q, (6.74)

which holds for any sort of density matrix. If the product property is usedM times we can relate
the density matrix at a temperature β´1 to the density matrix at a temperature Mβ´1. The
sequence of intermediate points tR1, R2, . . . , RM´1u is the path, and the time step is τ “ β{M .
As the time step gets su�ciently small the Trotter theorem tells us that we can assume that
the kinetic T and potential V operator commute so that: e´τH “ e´τT e´τV and the primitive
approximation for the Boltzmannon density matrix is found [45]. The Feynman-Kac formula
for the Boltzmannon density matrix results from taking the limit M Ñ 8. The price we have
to pay for having an explicit expression for the density matrix is additional integrations; all
together 3NpM ´ 1q. Without techniques for multidimensional integration, nothing would have
been gained by expanding the density matrix into a path. Fortunately, simulation methods can
accurately treat such integrands. It is feasible to make M rather large, say in the hundreds or
thousands, and thereby systematically reduce the time-step error.

In addition to the internal energy and the static structure of the Jellium one could also
measure its dynamic structure, the �superconducting fraction�, the speci�c heat, and the pressure
[45].

The direct path integral method

In the direct fermion method one sums over permutations just as bosonic systems. Odd permu-
tations then contribute with a negative weight. The direct method has a major problem because
of the cancellation of positive and negative permutations. This was �rst noted by Feynman and
Hibbs [55] who after describing the path integral theory for boson super�uid 4He, noted: �The
[path integral] expression for Fermi particles, such as 3He, is also easily written down. However
in the case of liquid 3He, the e�ect of the potential is very hard to evaluate quantitatively in
an accurate manner. The reason for this is that the contribution of a cycle to the sum over
permutations is either positive or negative depending whether the cycle has an odd or an even
number of atoms in its length L. At very low temperature, the contributions of cycles such as
L “ 51 and L “ 52 are very nearly equal but opposite in sign, and therefore they very nearly
cancel. It is necessary to compute the di�erence between such terms, and this requires very
careful calculation of each term separately. It is very di�cult to sum an alternating series of
large terms which are decreasing slowly in magnitude when a precise analytic formula for each
term is not available.

Progress could be made in this problem if it were possible to arrange the mathematics describ-
ing a Fermi system in a way that corresponds to a sum of positive terms. Some such schemes have
been tried, but the resulting terms appear to be much too hard to evaluate even qualitatively.

[. . .]
The [explanation] of the superconducting state was �rst answered in a convincing way by

Bardeen, Cooper, and Schrie�er. The path integral approach played no part in their analysis
and in fact has never proved useful for degenerate Fermi systems. [D. M. Ceperley italics]�

When we measure a property O in a Monte Carlo calculation [101, 126]

xOy “

ş

ΠO
ş

Π
, (6.75)

where π is a function with both positive and negative pieces and the integrals are not only over
coordinates but a sum over permutations is also tacitly assumed.
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One introduces the distribution function for the importance sampling P

xOy “

ş

P rΠO{P s
ş

P rΠ{P s
, (6.76)

and calculates

xOy “

ř

i ωiOi
ř

i ωi
, (6.77)

where ωi “ Πi{Pi and the sums are overM points distributed according to P . Then the variance
of the measure is

σ2
O “

C

ˆř

i ωiOi
ř

i ωi
´ xOy

˙2
G

P

“
1

p
ř

i ωiq
2

C«

ÿ

i

ωipOi ´ xOyq

ff2G

P

«
1

p
ř

i ωiq
2

C

ÿ

i

ω2
i pOi ´ xOyq2

G

P

“
1

M
`ş

Π
˘2

@

ω2pO ´ xOyq2
D

P

“
1

M
`ş

Π
˘2

ż

Π2pO ´ xOyq2

P
, (6.78)

where we assumed that the sampled points were uncorrelated. Choosing P “ q2{
ş

q2 and solving
δσ2

O{δq “ 0 we �nd as the optimal distribution

P˚9|ΠpO ´ xOyq| . (6.79)

The usually one chooses P “ |Π|{
ş

|Π|. For bosons there are no problems since Π is every-
where positive, but for fermions one �nds

σ2
F “ σ2

B{ξ , (6.80)

where the e�ciency is

ξ “

„

ş

Π
ş

|Π|

ȷ2

“

„

M` ´M´

M

ȷ2

“

„

ΘF

ΘB

ȷ2

“ e´2βpΩF ´ΩBq . (6.81)

The average time that the simulation spend in the positive region of P is M`{M and M´{M is
the average time spent in the negative region. The e�ciency for the fermionic case is proportional
to the square of the average sign: the positive sampled points in excess over the negative ones.
From the expressions for the grand-thermodynamic potentials for the ideal Bose, ΩB , and Fermi,
ΩF , gas we �nd for example

ξ “

#

e´Nρ3Λ3
{p

?
2gq z Ñ 0

e´Nρ2gpb5{2p1q´f5{2p1qq{Λ3

z Ñ 1
, (6.82)
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where b5{2p1q´f5{2p1q « 0.4743. We then see that for any z the e�ciency becomes exponentially
small in the number of particles. Moreover for a �xed N we �nd ξ “ e´2βpFF ´FBq, with FB

the Helmholtz free energy of the Bose gas and FF the one of the Fermi gas, and in the high
temperature limit we �nd [127]

ξ « e´2ρNp2πλβq
3{2

{g. (6.83)

Whereas in the low temperature limit

FF “ F 0
F ´

1

4λ

N

β2

ˆ

π

3ρ

˙2{3

, (6.84)

FB “ ´
N

β

b5{2p1q

b3{2p1q

ˆ

T

Tc

˙3{2

, (6.85)

where Tc » TD2π{p2.612gq2{3 is the Bose-Einstein condensation temperature, F 0
F “ NϵF ` Ω0

F

with ϵF “ µ the Fermi energy and Ω0
F “ ´gV ϵ

5{2
F {p15π2λ3{2q, and N “ gV p2mϵF q3{2{6π2ℏ3. So

that in the limit β Ñ 8 we �nd

ξ “ e´2βF 0
F , (6.86)

with F 0
F “ gp1{6 ´ 1{15qV ϵ

5{2
F {pπ2λ3{2q ą 0, which shows how the e�ciency of a direct Monte

Carlo calculation on fermions becomes exponentially small as β and N increases. Exactly where
the physics becomes more interesting.

Restricted Path Integral Monte Carlo

The Fermion density matrix is de�ned [101, 126] by the Bloch equation which describes its
evolution in imaginary time

B

Bβ
ρF pR,R0;βq “ ´HρF pR,R0;βq, (6.87)

ρF pR,R0; 0q “ AδpR ´R0q, (6.88)

where β “ 1{kBT with T the absolute temperature and A is the operator of antisymmetrization.
The reach of R0, γpR0, tq, is the set of points tRtu for which

ρF pRt1 , R0; t
1q ą 0 0 ď t1 ď t, (6.89)

where t is the imaginary thermal time. Note that

ρF pR0, R0; tq ą 0, (6.90)

and clearly

ρF pR,R0; tq|RPBγpR0,tq “ 0. (6.91)

We want to show that (6.91) uniquely determines the solution. Suppose δpR, tq satis�es the
Bloch equation

ˆ

H `
B

Bt

˙

δpR, tq “ 0, (6.92)
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the reach γ

R
0

0

t

Figure 6.4: Illustration of the reach γpR0, tq of the fermion density matrix.

in a space-time domain α “ tt1 ď t ď t1, R P Ωtu. And the two conditions

δpR, t1q “ 0, (6.93)

δpR, tq|RPBΩt
“ 0 t1 ď t ď t2, (6.94)

are also satis�ed. Consider
ż t2

t1

dt

ż

Ωt

dR e2V0tδpR, tq

ˆ

H `
B

Bt

˙

δpR, tq “ 0, (6.95)

where V0 is a lower bound for V pRq.
We have

B

Bt

“

e2V0tδ2pR, tq
‰

“ 2V0e
2V0tδ2pR, tq ` 2e2V0tδpR, tq

B

Bt
δpR, tq. (6.96)

Since
ż t2

t1

dt

ż

Ωt

dR
B

Bt

ˆ

e2V0t

2
δ2pR, tq

˙

“

ż t2

t1

dt
B

Bt

ˆ

e2V0t

2

ż

Ωt

dR δ2pR, tq

˙

“
e2V0t2

2

ż

Ωt2

dR δ2pR, t2q,(6.97)

where in the last equality we used Eq. (6.93). Then from Eq. (6.95) follows

e2V0t

2

ż

Ωt2

dR δ2pR, t2q ´ e2V0t

ż t2

t1

dt

ż

Ωt

dR
“

V0δ
2pR, tq ´ δpR, tqHδpR, tq

‰

“ 0. (6.98)

Then using Eq. (6.94) we �nd

e2V0t

2

ż

Ωt2

dR δ2pR, t2q ` e2V0t

ż t2

t1

dt

ż

Ωt

dR
”

pV pRq ´ V0qδ2pR, tq ` λ p∇∇∇δpR, tqq
2
ı

“ 0. (6.99)
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Each term in Eq. (6.99) is non-negative so it must be

δpR, tq “ 0 in α. (6.100)

Let ρ1 and ρ2 be two solutions of the restricted path problem and let δ “ ρ1 ´ ρ2. Then
δpR, tq|RPBγpR0,tq “ 0 for t1 ď t ď t2. By taking t2 to in�nity and t1 to zero we conclude that
the fermion density matrix is the unique solution.

Eq (6.99) also shows that the reach γ has the tiling property [101]. Suppose it did not. Then
there would exist a space-time domain with the density matrix non-zero inside and from which
it is only possible to reach R0 or any of its images PR0, with P any permutation of the particles,
crossing the nodes of the density matrix. But such a domain cannot extend to t “ 0 because
in the classical limit there are no nodes. Then this density matrix satis�es for some t1 ą 0 the
boundary conditions (6.93) and (6.94) and as a consequence it must vanish completely inside the
domain contradicting the initial hypothesis.

We now derive the restricted path identity. Suppose ρF is the density matrix corresponding
to some set of quantum numbers which is obtained by using the projection operator A on the
distinguishable particle density matrix. Then it is a solution to the Bloch equation (6.87) with
boundary condition (6.88). Thus we have proved the Restricted Path Integral identity

ρF pRβ , R0;βq “

ż

dR1 ρF pR1, R0; 0q

¿

R1ÑRβPγpR0q

dRt e
´SrRts, (6.101)

where the subscript means that we restrict the path integration to paths starting at R1, ending at
Rβ and node-avoiding. The weight of the walk is ρF pR1, R0; 0q. It is clear that the contribution
of all the paths for a single element of the density matrix will be of the same sign; positive if
ρF pR1, R0; 0q ą 0, negative otherwise.

Important in this argument is that the random walk is a continuous process so we can say
de�nitely that if sign of the density matrix changed, it had to have crossed the nodes at some
point.

The restricted path identity is one solution to Feynman's task of rearranging terms to keep
only positive contributing paths for diagonal expectation values.

The problem we now face is that the unknown density matrix appears both on the left-
hand side and on the right-hand side of Eq. (6.101) since it is used to de�ne the criterion of
node-avoiding paths. To apply the formula directly, we would somehow have to self-consistently
determine the density matrix. In practice what we need to do is make an ansatz, which we call
ρT , for the nodes of the density matrix needed for the restriction. The trial density matrix, ρT ,
is used to de�ne trial nodal cells: γT pR0q.

Then if we know the reach of the fermion density matrix we can use the Monte Carlo method
to solve the fermion problem restricting the path integral (RPIMC) to the space-time domain
where the density matrix has a de�nite sign (this can be done, for example, using a trial density
matrix whose nodes approximate well the ones of the true density matrix) and then using the
antisymmetrization operator to extend it to the whole con�guration space. This will require the
complicated task of sampling the permutation space of the N´particles [45]. Recently it has
been devised an intelligent method to perform this sampling through a new algorithm called the
worm algorithm [128]. In order to sample the path in coordinate space one generally uses various
generalizations of the Metropolis rejection algorithm [129] and the bisection method [45] in order
to accomplish multislice moves which becomes necessary as τ decreases.

The pair-product approximation was used [88] (see appendix N) to write the many-body
density matrix as a product of high-temperature two-body density matrices [45]. The pair
Coulomb density matrix was determined using the results of Pollock [130] even if these could
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be improved using the results of Vieillefosse [131, 132]. This procedure comes with an error
that scales as „ τ3{r2s where τ “ β{M is the time step, with M the number of imaginary time
discretizations. A more dominate form of time step error originates from paths which cross the
nodal constraint in a time less than τ . To help alleviate this e�ect, Brown et al. [88] use an
image action to discourage paths from getting too close to nodes. Additional sources of error are
the �nite size one and the sampling error of the Monte Carlo algorithm itself. For the highest
density points, statistical errors are an order of magnitude higher than time step errors.

The results at a given temperature T where obtained starting from the density matrix in the
classical limit, at small thermal times, and using repetitively the squaring method

ρF pR1, R2;βq “

ż

dR1 ρF pR1, R
1;β{2qρF pR1, R2;β{2q. (6.102)

Time doubling is an improvement also because if we have accurate nodes down to a temperature
T , we can do accurate simulations down to T {2. Eq. (6.102) is clearly symmetric in R1 and R2.
The time doubling cannot be repeated without reintroducing the sign problem.

Brown et al. [88] use N “ 33 electrons for the fully spin polarized system and N “ 66
electrons for the unpolarized system.

6.3.2 Results for the radial distribution function and structure factor

In the classical Debye-Hückel limit one has [67, 133]

gDHprq “ exp

„

´
Γ

r
expp´kDrsa0rq

ȷ

, (6.103)

were kD “
a

4πβne2. And for the structure factor, after linearizing Eq. (6.103) for r " 1{kDrsa0,

SDHpkq “
k2

k2 ` 3Γ
. (6.104)

A serious weakness of the linearized approximation is the fact that it allows gprq to become
negative at small r. This failing is recti�ed in the non-linear version (6.103).

In the ground state the radial distribution function and structure factor have been calculated
by Ortiz and Ballone [122].

In Fig. 6.5 we present the RPIMC results of Brown et al. [88].

6.3.3 Results for the internal energy

Given the total internal energy per particle of the �uid etot, the exchange and correlation energy
per particle is

excpT q “ etotpT q ´ e0pT q. (6.105)

where e0pT q is the kinetic energy of a free Fermi gas at temperature T . And

excpT q “ expT q ` ecpT q. (6.106)

where expT q is the Hartree-Fock exchange energy for a Fermi gas at temperature T (see Eq. (7)
of Ref. [134]).
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Figure 6.5: Pair correlation functions (on the left) for rs “ 1.0 and rs “ 10.0 in the unpolarized
state. Also shown is the small r part of the classical Debye-Hückel limit at Θ “ 8.0; see Eq.
(6.103). The Debye-Hückel limit is not yet reached at Θ “ 8.0 for the lower density rs “ 10.0.
Static structure factors (on the right) for rs “ 1.0 and rs “ 10.0 in the unpolarized state. Also
shown is the small k part of the classical Debye-Hückel limit at Θ “ 8.0; see Eq. (6.104). (Figure
reproduced here by courtesy of the authors of Ref. [88])
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For �xed polarizations ξ “ 0, the unpolarized case, and for ξ “ 1, the fully polarized case,
one has

e0 “ p2 ´ ξq
r3s

3πβ5{2

1

Ry5{2
Ip3{2, κq, (6.107)

ex “ ´p2 ´ ξq
r3s

6π2β2

1

Ry2

ż 8

0

dx

1 ` ex´κ

ż 8

0

dy

1 ` ey´κ

ż 1

´1

dz
a

x{y `
a

y{x´ 2z
, (6.108)

where

Ipν, κq “

ż 8

0

xν

1 ` ex´κ
dx, (6.109)

and κ is determined from

Ip1{2, κq “
2

3
Θ´3{2. (6.110)

For the expressions at an intermediate polarization 0 ă ξ ă 1 see the appendix H. It is still
missing an analysis of the �nite temperature Jellium at intermediate polarizations. This would
be important for a clearer determination of the Jellium phase diagram.

In Fig. 6.6 we present the RPIMC results of Brown et al. [88].
In Ref. [136] a comparison is given between these calculations to previous estimations of

the Jellium correlation energy. Such parameterizations generally fall into two categories: those
which extend down from the classical regime and those which assume some interpolation between
the T “ 0 and high-T regimes. From the former group, in Fig. 6.7, Brown et al. plot ec
coming from Debye-Hückel (DH) theory which solves for the Poisson-Boltzmann equations for
the classical one-component plasma and the quantum corrections of Hansen et al. [133, 137] of
the Coulomb system both with Wigner-Kirkwood corrections (H+WK) and without (H). Clearly
these methods do not perform well in the quantum regime below the Fermi temperature since
they lack quantum exchange.

The Random Phase Approximation (RPA) [138, 139] is a reasonable approximation in the low-
density, high-temperature limit (where it reduces to DH) and the low-temperature, high-density
limit, since these are both weakly interacting regimes. Its failure, however, is most apparent
in its estimation of the equilibrium, radial distribution function gprq which becomes negative
for stronger coupling. Extensions of the RPA into intermediate densities and temperatures
have largely focused on constructing local-�eld corrections (LFC) through interpolation since
diagrammatic resummation techniques often become intractable in strongly-coupled regimes.
Singwi et al. [86] introduced one such strategy. Tanaka and Ichimaru [140] (TI) extended this
method to �nite temperatures and provided the shown parameterization of the Jellium correlation
energy. This method appear to perform marginally better than the RPA at all temperatures,
though it still fails to produce a positive-de�nite gprq at values of rs ą 2. A third, more recent
approach introduced by Perrot and Dharma-wardana (PDW) [141] relies on a classical mapping
where the distribution functions of a classical system at temperature Tcf , solved for through
the hypernetted-chain equation, reproduce those for the quantum system at temperature T.
In a previous work, PDW showed such a temperature Tq existed for the classical system to
reproduce the correlation energy of the quantum system at T “ 0 [142]. To extend this work to

�nite temperature quantum systems, they use the simple interpolation formula Tcf “

b

T 2 ` T 2
q .

This interpolation is clearly valid in the low-T limit where Fermi liquid theory gives the quadratic
dependence of the energy on T . Further in the high-T regime, T dominates over Tq as the system
becomes increasingly classical. The PDW line in Fig. 6.7 clearly matches well with the RPIMC
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Figure 6.6: Excess energies Exc “ exc (on the left) for rs “ 4.0 and rs “ 40.0 for the polarized
state (E0 “ e0). For both densities the high temperature results fall smoothly on top of previous
Monte Carlo energies for the classical electron gas [135] (solid line). Di�erences from the classical
Coulomb gas occur for Θ ă 2.0 for rs “ 4.0 and Θ ă 4.0 for rs “ 40.0. Simulations with the
Fermion sign (squares) con�rm the �xed-node results at Θ “ 1.0 and 8.0. The zero-temperature
limit (dotted line) smoothly extrapolates to the ground state QMC results of Ceperley-Alder
[87] (dashed line). Correlation energy EcpT q “ ecpT q (on the right) of the 3D Jellium at several
temperatures and densities for the unpolarized (top) and fully spin-polarized (bottom) states.
Exact (signful) calculations (squares) con�rm the �xed-node results where possible (Θ “ 8.0 for
ξ “ 0 and Θ “ 4.0, 8.0 for ξ “ 1). (Figure reproduced here by courtesy of the authors of Ref.
[88])
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results in these two limits. It is not surprising, however, that in the intermediate temperature
regime, where correlation e�ects are greatest, the quadratic interpolation fails. A contemporary,
but similar approach by Dutta and Dufty [143] uses the same classical mapping as PDW which
relies on matching the T “ 0 pair correlation function instead of the correlation energy. While
we expect this to give more accurate results near T “ 0, we would still expect a breakdown of
the assumed Fermi liquid behavior near the Fermi temperature. Future Jellium work will include
creating a new parameterization of the correlation energy which uses the RPIMC data directly.
In doing so, simulations at higher densities and both lower and higher temperatures may be
necessary in order to complete the interpolation between the ground state and classical limits.

Figure 6.7: Correlation energy EcpT q “ ecpT q of the Jellium at rs “ 4.0 for the unpolarized
ξ “ 0 state from the RPIMC calculations (RPIMC) and several previous parameterizations as a
function of Θ. The latter include Debye-Hückel (DH), Hansen (H), Hansen+Wigner-Kirkwood
(H+WK), Random Phase Approximation (RPA), Tanaka and Ichimaru (TI), and Perrot and
Dharma-wardana (PDW). Also included is the ground state Θ “ 0.0 result for comparison.
(Figure reproduced here by courtesy of the authors of Ref. [136])

6.3.4 Phase diagram

The worm-dense regime for both the fully spin-polarized ξ “ 1 and unpolarized ξ “ 0 systems has
been studied through RPIMC by Brown et al. [88]. This study complements the previous Monte
Carlo studies on the classical one-component plasma [135] and the inclusion of �rst order quantum
mechanical e�ects by Jancovici [144] and Hansen and Vieillefosse [137]. However, the accuracy
of these results quickly deteriorates as the temperature is lowered and quantum correlations play
a greater role [145]. This breakdown is most apparent in the warm-dense regime where both Γ
and Θ are close to unity as shown in Fig. 6.8.
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In the RPIMC of Brown et al. [88] the trial density matrix was taken as the free electron
density matrix

ρT pR,R1; τq “ p4πτ{r2sq´3N{2A exp

„

´
pR ´R1q2

4τ{r2s

ȷ

, (6.111)

where τ “ β{M with M the number of imaginary time discretizations. This approximation
should be best at high temperature and low density when correlation e�ects are weak. The
free-particle nodal approximation performs well for the densities studied by Brown et al. [88].
Further investigation is needed at even smaller values of rs and lower temperatures in order to
determine precisely where this approximation begins to fail. Such studies will necessarily require
algorithmic improvements, however, because of di�culty in sampling paths at low density and
low temperature.

Figure 6.8: Temperature-density phase diagram showing the points considered in Ref. [88].
Several values of the Coulomb coupling parameter Γ (dashed lines) and the electron degeneracy
parameter Θ (dotted lines) are also shown. (Figure reproduced here by courtesy of the authors
of Ref. [88])

6.4 Some physical realizations and phenomenology

The Jellium model is a system of pointwise electrons of charge e and number density n in the three
dimensional Euclidean space �lled with an uniform neutralizing background of charge density
´en. The zero temperature, ground-sate, properties of the statistical mechanical system thus
depends just on the electronic density n, or the Wigner-Seitz radius rs “ p3{4πnq1{3{a0 where
a0 is Bohr radius, or the Coulomb coupling parameter Γ.

The model can be used for example as a �rst approximation to describe free electrons in
metallic elements [146] (2 À rs À 4) or the interior of a white dwarf [147] (rs » 0.01). More
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generally it is an essential ingredient for the study of ionic liquids (see Ref. [67] Chapter 10
and 11): molten-salts, liquid-metals, and ionic-solutions. In molten alkali halides the masses of
the cation and the anion are comparable whereas in liquid metals the anions are replaced by
electrons from the valence or conduction bands. The very small mass of the electron leads to
a pronounced disymmetry between the two species present in the metal. In particular, whereas
the behavior of the cations can be discussed in the framework of classical statistical mechanics,
the electron form a degenerate Fermi gas for which a quantum-mechanical treatment is required.
Restricting to the class of simple metals in which the electronic valence states are well separated
in energy from the tightly-bound core states; their properties are reasonably well described by
the nearly-free-electron model. Metals that are classi�ed in this sense include the alkali metals,
magnesium, zinc, mercury, gallium, and alluminium. Other liquid metals (noble and transition
metals, alkaline earths, lanthanides, and actinides) have more complicated electronic structures,
and the theory of such systems is correspondingly less well advanced. Molten-salt solutions are
mixtures of liquid metals and molten salts. Ionic-solutions are liquids consisting of a solvent
formed by neutral, polar molecules, and a solute that dissociates into positive and negative ions.
They vary widely in complexity: in the classic electrolyte solutions, the cations and anions are
comparable in size and absolute charge, whereas macromolecular ionic solutions contain both
macroions (charged polymers chains or coils, micelles, charged colloidal particles, etc.) and
microscopic counterions.

Experimentally, Wigner crystallization was �rst unambiguously observed to occur in a quasi-
classical, quasi-two-dimensional �uid of electrons �oating on top of liquid 4He substrate [148].
Such quasi-two-dimensional electron systems are currently realized in the laboratory in various
semiconductors structures, but is has proven di�cult to reach the very low temperatures needed
for Wigner crystallization of electrons in the quantal regime without losing their collective be-
havior through the unavoidable presence of impurities. Furthermore, the application of a strong
magnetic �eld to a quasi-two-dimensional electron �uid in semiconductor structures provides
a very e�ective way to squeeze out the translational kinetic energy without going to very low
densities. The Wigner crystallization in the exactly-two-dimensional Jellium has been found by
DMC calculations to be past rs “ 37 ˘ 5 [149].

Whereas the �nite temperature properties of Jellium depends additionally on the electron
degeneracy parameter Θ. Apart from its purely speculative interest, the temperature dependence
of the Jellium properties are certainly of great astrophysical relevance. Examples are dense
plasmas in the interior of giant planets [150] and brown dwarfs atmospheres. Other uses could be
in highly compressed laboratory plasmas, such as laser plasmas [151], inertial con�nement fusion
plasmas [152], and pressure-induced modi�cations of solids, such as insulator-metal transitions
[153]. These examples justify the growing interest recently emerged in matter under extreme
conditions in the warm-dense regime [154].

It would be desirable to perform a full quantum Monte Carlo simulation for the Restricted
Primitive Model (RPM), an electrically neutral �uid of particles of opposite charge made ther-
modynamically stable by preventing the particles collapse through the inclusion of a hard core
of a certain radius centered on each particle. Some attempts have been made for large mass
asymmetries between the positive and negative charges requiring a mixed MC (classical) - DMC
(quantum) treatment [155, 156] where one treats the slow ions through the Born-Oppenheimer
approximation and the fast ones at zero temperature. Other alternatives could be a mixed MC
- PIMC or more generally a full PIMC one.

Follows an excerpt from the last March and Tosi book [157].
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6.4.1 Molten halides and some alloys of metallic elements

Unlike monatomic �uid like liquid argon already for liquid sodium it is necessary to view it as
formed of positive ions and conduction electrons. More obviously, one has to start from an ionic
picture in describing a sodium chloride melt or liquid lithium iodide.

The crystal structures of halide compounds arise from electronic charge transfer and local
compensation of positive and negative ionic charges through chemical order. Nature achieves
charge compensation in two qualitatively distinct ways. The �rst involves halogen sharing and
high coordination for the metal ions, as for example in alkali, alkaline-earth and lanthanide metal
halides. In the second type charge compensation takes place within well de�ned molecular units,
either monomeric ones as for example in HgC12 and SbC13 or dimeric ones as in A1Br3.

Neutron di�raction studies of metal halide melts have shown that melting usually preserves
the type of chemical order found in the crystal. For example, the melting of MgC12 or YC13 can
be viewed as a transition from an ionic crystal to an ionic liquid (ionic-to-ionic, in short) and
that of SbC13 or A1Br3 as a molecular-to-molecular transition. However, A1Br3 and FeC13 are
known instances of ionic-to-molecular melting. Intermediate-range order (IRO), extending over
distances of 5 to 10 Å say, has been revealed in both network-type and molecular-type melts.
This type of order is well known in glassy materials.

Alkali halide vapours

Even for alkali halides, the vapour at coexistence with the hot melt is made of molecular
monomers and dimers. The same basic ionic model can account for cohesion in these molecules
as in the solid and dense liquid states, provided that distortions of the electron shells of the ions
from electrical and overlap e�ects are accounted for.

Coulomb ordering in monohalides and dihalides

Alkali halides

The nature of Coulomb ordering in a molten salt like NaCl is such that the distribution of the
screening charge density around any given ion oscillates in space, rather than being a monotonic
function of distance as in the Debye-Hückel theory. Nevertheless, a meaningful de�nition of
screening length in a dense ionic �uid can be based on the Debye-Hückel concept of the potential
drop across the dipole layer formed by an ion and by the screening charge distribution.

Noble-metal halides

The monovalent Cu` and Ag` ions, with an outer shell of ten d-electrons, have small ionic
radius and large electronic polarisability in comparison with the corresponding alkali ions. These
properties lead to some hybridisation and covalent binding in copper and silver halides, tending
to favor low coordination of �rst neighbors and promoting remarkable transport behaviors.

The ionic conductivity of solid CuBr and CuI increases rapidly with temperature, already
reaching values of « 0.1 Ω´1cm´1 before attaining, through two structural phase transitions, fast-
ion (superionic) behavior of the Cu` ions before melting. A phase transition is also exhibited by
AgI at 147 ˝C and is accompanied by a jump in ionic conductivity to a values of « 1 Ω´1cm´1,
typical of ionic melts. The Ag` ions in the a phase are disordered over many interstitial sites.
Solid CuC1, AgC1 and AgBr also show premelting phenomena, with the ionic conductivity rising
to values of 0.1 ´ 0.5 Ω´1cm´1.

These materials melt at relatively low temperature with a relatively low entropy change, while
the ionic conductivity of the melt is comparable to that of molten alkali halides. Excess entropy
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has been released in the crystal before melting through the massive disordering of the metal
ions. Di�raction data are available for all melts of this family: overall, their liquid structure can
be described in term of a random close-packing of halogens, accommodating the metal ions in
tetrahedral-like coordinations.

Fluorite-type superionic conductors

Fluorite-type materials such as SrC12 undergo a di�use transition to a high-conductivity state
before melting. The ionic conductivity and the entropy increase rapidly but continuously with
temperature across the transition, whereas the heat capacity shows a peak. A high dynamic
concentration of anionic Frenkel defects (interstitial-vacancy pairs) is gradually created across
the transition, as revealed by neutron di�raction and di�use quasi-elastic scattering studies on a
variety of materials including SrC12, CaF2, PbF2 and UO2. In other materials, such as BaC12
and SrBr2, a superionic state is attained through a structural phase transition to the �uorite
structure.

The liquid structure of BaC12 and SrC12 has been determined by neutron di�raction using
isotopic substitution. In both melts, within the frame of the divalent cations, the halogen ion
component is more weakly ordered. The liquid structure thus shows a remnant of the fast-ion
conducting state that the solid attains through an extensive disordering of the anions.

The observed short-range ordering in molten SrC12 and BaC12 suggests that freezing may
be viewed as a process in which the cationic component is independently crystallising and at the
same time modulating the anions into the lattice periodicity. The anionic component in the hot
crystal near melting may thus be described as a modulated �lattice liquid�. In turn, the di�use
transition from the superionic to the �normal� state on cooling the SrC12 crystal may be viewed
as a continuous process of anionic freezing inside the periodic force �eld of the metal-ion lattice.

Tetrahedral-network structure in ZnCl2

The pair structure is also experimentally known for a number of other dihalide melts. The evolu-
tion of the liquid structure with increasing covalency versus ionicity of the bonding brings it from
a cation-dominated structure to one in which the anions provide a �deformable frame� accom-
modating the doubly-charged cations. The C1´-C1´ structural correlations are not especially
a�ected: the C1-C1 bond length stays in the range 3.6 to 3.8 Å.

The state of pronounced IRO in molten ZnC12 arises from strongly stable local tetrahedral
structures through the formation of a network of chlorines. The partial distribution functions
can be interpreted as describing a disordered close-packed arrangement of chlorine ions which
provides tetrahedral sites for the Zinc ions. Such a structural arrangement is very similar to that
of the glassy state of ZnC12: the Zn-C1 bond length is practically the same in the two states
and the average coordination number of Zn is reported as 3.8 in the glass and « 4 in the melt.

6.4.2 Structure of trivalent-metal halides

Two main trends emerge from liquid structure studies on trichlorides: (i) the trend from cation-
dominated Coulomb ordering to loose octahedral-network structures across the series of lan-
thanide compounds including YC13, and (ii) the stabilization of molecular structures with strong
intermolecular correlations leading to IRO. The overall structural evolution is governed by the
increasing weight of covalency versus ionicity.
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Octahedral-network formation in lanthanide chlorides

X-ray di�raction data on the series of molten rare-earth trichlorides show similar structural
characters. The dMCl bond length lies in the range 2.7-2.9 Å while the second-neighbor bond
lengths are dMM « 5 Å and dClCl « 4 Å, indicating a Coulomb ordering primarily ruled by
the repulsion between the cations as discussed earlier for SrC12. Ionic conductivity and Raman
scattering data suggest that the coordination of the metal ions is becoming more stable through
the series, leading to a liquid structure which resembles a loose network of Cl-sharing octahedra.

Ionic-to-molecular melting in AlCl3 and FeCl3

YCl3 is structurally isomorphous to A1C13 in the crystal phase. The octahedral coordination
of the Y, Al and Fe ions in the crystal is apparent, which is basically preserved in YC13 on
melting. The upper cluster illustrates the cooperative mechanism of metal-ion displacements by
which the A12C16 and Fe2Cl6 molecules can form on melting, each dimer being in the shape of
two tetrahedra sharing an edge. In A1Br3 such an arrangement of A1 ions in tetrahedral sites
already exists in the crystal. The melting of A1C13 and FeCl3 also involves expansion of the
chlorine packing.

Liquid haloaluminates

In A1Cl3 and A1Br3, while the pure melt is a molecular liquid, molten-salt behavior emerges
on mixing with alkali halides. Complex anions are formed with the alkalis playing the role of
counterions. Thus, starting from neutral A12C16 dimers in the A1C13 liquid, the (A12C17)´

anion in the shape of two tetrahedra sharing a corner has been identi�ed in mixtures with alkali
chlorides. This anion is ultimately replaced by (A1C14)´ anions at 1 : 1 stoichiometry.

The �uoroaluminates behave quite di�erently. The Na3A1F4 compound, known as cryolite,
presents special interest because of its role in the industrial HaI1-Héroult process for the elec-
trodeposition of A1 metal from alumina. The Raman spectra of molten (A1F3)c. (NaF)l´c and
other Al-alkali �uoride mixtures give evidence for a gradual conversion of (A1F4)´ into (A1Fs)2´

and (A1F6)´ as the solution becomes more basic with c decreasing below 0.5.

Molecular-to-molecular melting in GaCl3 and SbCl3

For other trihalides, such as GaCl3 and SbCl3 molecular units can be recognized as constituents
in the crystal structure. Crystalline GaC13 can be viewed as composed of Ga2C16 dimers. The
crystal structure of SbC13 is instead built by packing chains of monomers in the shape of trigonal
pyramids with metal ions at the apices. The stable molecular units in the vapour phase are the
Ga2C16 dimer and the SbCl3 monomer.

The liquid structure of SbCl3 at 80 ˝C has been studied by a combination of X-ray and
neutron di�raction. It can be described as arising from separate monomeric units with strong
intermolecular correlations. Each metal ion has three additional chlorine neighbors from other
molecules: such a strongly distorted octahedral arrangement could result from stacking the
monomers in chains like umbrellas, the dipole axes of molecules within a chain being strongly
correlated over at least one or two molecular diameters.

The neutron di�raction patterns measured for molten A1Br3, GaBr3 and GaI3 show three
peaks at approximately 1.0, 1.9 and 3.4 Å´1. The corresponding pair distribution functions
exhibit a very well de�ned coordination shell of �rst neighbors, with coordination number 4.0˘0.2
for A1Br3 and GaBr3 and 3.75˘ 0.2 for GaI3. The intermolecular correlations between halogens
are quite signi�cant, the corresponding coordination number being in the range typical of a
random close-packing in the liquid state.
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6.4.3 Chemical short-range order in liquid alloys

Fully ionized salts with a large band gap, like the alkali halides, remain ionic across melting.
At the opposite extreme, melting of covalent semiconductors such as Ge and InSb involves a
collapse of the covalent structure, which is directly revealed by an increase of coordination from
4 to values in the range 6-8 and by a sharp increase in electrical conductivity to an essentially
metallic type. Between these extremes a number of systems have been identi�ed which show a
variety of intermediate electronic behavior in the liquid phase.

The CsAu compound

The stoichiometric CsAu compound crystallizes in the CsCl-type structure and is a strongly
polar semiconductor with an optical band gap of 2.6 eV at room temperature. Its electrical
conductivity drops on melting to a value which is comparable to molten salts. Electromigration
experiments give evidence that Cs migrates to the cathode and Au to the anode, one Cs` and
one Au´ being transported per elementary charge to the electrodes.

A neutron di�raction study of the liquid structure of the Cs-Au alloy shows a structure in
the neutron structure factor at k = 1.2 Å´1, which is interpreted as the �Coulomb prepeak�
characteristic of chemical order. After Fourier transform of these data, the Cs-Au �rst neighbor
distance at 3.6 Å can be followed up to 80% Cs, while the Cs-Cs distance at 5.3 Å characteristic
of the pure Cs metal start emerging at 70% Cs.

Other alkali-based alloys with chemical short-range order

Interspecies ordering as shown by the Cs-Au system has been reported for a number of other
alkali-based alloys, the alloying partners being elements of group III, IV or V. The formation of
chemical short-range order at certain compositions is signalled by anomalies in electronic prop-
erties such as the electrical resistivity and the magnetic susceptibility, which re�ect a minimum
in the electron density of states at the Fermi level if not the opening of a gap due to full charge
transfer. Three di�erent kinds of compound formation can be identi�ed: (i) compound forma-
tion near the electronic octet composition A4B as in Li-Pb or Li-Sn; (ii) compound formation
near the equimolar composition AB, as in K-Pb or Rb-Pb; and (iii) compound formation near
both these compositions, as in Li-Si, Li-Ge or Na-Sn. The data show increasing stability of the
octet composition through the sequence Si, Ge, Sn and Pb, and decreasing stability through the
sequence from Li to Cs.

A neutron di�raction measurement of the Bhatia-Thornton 7 concentration-structure factor
in Li4Pb has shown chemical order extending over a range of about 20 Å in the corresponding
gccprq distribution function. With regard to alkali-group IV alloys in the second and third
classes mentioned above, such as K-Pb or Na-Sn, it has proposed a model for order at equimolar
composition which invokes formation of essentially tetrahedral Pb4 or Sn4 polyanions. Such
tetrahedral �Zintl ions� are seen in the crystal structure of the equiatomic compound. In such
a tetrahedral cluster the p-type electron states of Pb, say, would be split into bonding and
antibonding states and the former could be �lled by electron transfer from the alkali atoms.

The presence of polyanions in Zintl alloys also has dynamical consequences. A striking case
is NaSn, in which the Sn4 polyanions are observed to undergo jump reorientations and thereby
to enhance the di�usivity of the Na cations by a paddle-wheel mechanism. These two types of
disorder appear simultaneously as the melting point is approached.

7A. B. Bhatia and D. E. Thornton, Phys. Rev. B 2, 3004 (1970)
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6.4.4 Liquid metals

Some properties of simple liquid metals having conduction electrons in s and p states, that
speci�cally re�ect their nature as two-component liquids of ions and electrons are: (i) the e�ective
interaction between pairs of ions as determined by screening of their bare Coulomb repulsions
by the conduction electrons; (ii) the structural correlation functions involving the conduction
electrons and supplementing the nuclear structure factor Spkq in a full description of the liquid-
metal structure; and (iii) the theory of electrical resistivity and viscosity of liquid metals. For a
general account of liquid metals the book of March [158] may be consulted. in the limit when
the e�ects of the ionic cores become negligible, we shall call the plasma particles �Jellium�.
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Appendix H

Ideal gas energy and exchange
energy as a function of polarization

For the general case of N` spin-up particles the Fermi wave-vector for the spin-up (spin-down)
particles will be

k˘
F “ p1 ˘ ξq1{3kF , (H.1)

with

kF “ p3π2nq1{3 “ p9π{4q1{3{a0rs, (H.2)

the Fermi wave-vector of the unpolarized �uid.
The Fermi energy will be

kBTF “
ÿ

σ

pℏkσF q2

2m
(H.3)

“
ℏ2

“

p1 ` ξq2{3 ` p1 ´ ξq2{3
‰

k2F
2m

. (H.4)

The degeneracy parameter will then be

Θ “
2m

ℏ2

ˆ

1

3π2n

˙2{3
˜

kBT
“

p1 ` ξq2{3 ` p1 ´ ξq2{3
‰

¸

. (H.5)

Then �nding κ` and κ´ from the following equations

Ip1{2, κ`q “
2

3
Θ´3{2 p1 ` ξq

“

p1 ` ξq2{3 ` p1 ´ ξq2{3
‰3{2

, (H.6)

Ip1{2, κ´q “
2

3
Θ´3{2 p1 ´ ξq

“

p1 ` ξq2{3 ` p1 ´ ξq2{3
‰3{2

, (H.7)

we can determine the kinetic energy per particle of the partially polarized, 0 ă ξ ă 1, ideal Fermi
gas

e0 “
2r3s

3πβ5{2

1

Ry5{2

„

Ip3{2, κ`q

p1 ` ξq
`
Ip3{2, κ´q

p1 ´ ξq

ȷ

. (H.8)

147
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POLARIZATION

The exchange energy on the other hand will be

ex “ ´
r3s

3π2β2

1

Ry2

«

1

p1 ` ξq

ż 8

0

dx

1 ` ex´κ`

ż 8

0

dy

1 ` ey´κ`

ż 1

´1

dz
a

x{y `
a

y{x´ 2z

`
1

p1 ´ ξq

ż 8

0

dx

1 ` ex´κ´

ż 8

0

dy

1 ` ey´κ´

ż 1

´1

dz
a

x{y `
a

y{x´ 2z

ff

,(H.9)
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Appendix I

Jastrow, back�ow, and three-body

In terms of the stochastic process governed by fpR, tq one can write, using Kac theorem [159, 160]

ż

dR fpR, τq “

B

exp

„

´

ż τ

0

dtELpRtq

ȷF

DRW

, (I.1)

where x. . .yDRW means averaging with respect to the di�using and drifting random walk. Choos-
ing a complete set of orthonormal wave-functions Ψi we can write for the true time dependent
many-body wave-function

ϕpR, τq “
ÿ

i

ΨipRq

ż

dR1ΨipR
1qϕpR1, τq « ΨpRq

ż

dR fpR, τq

“ ΨpRq

B

exp

„

´

ż τ

0

dtELpRtq

ȷF

DRW

, (I.2)

where Ψ is the wave-function, of the set, of maximum overlap with the true ground-state, the
trial wave-function. Assuming that at time zero we are already close to the stationary solution,
for su�ciently small τ we can approximate

B

exp

„

´

ż τ

0

dtELpRtq

ȷF

DRW

« e´τELpRτ
q . (I.3)

By antisymmetrising we get the Fermion wave-function

ϕF pR, τq « A
”

e´τELpRqΨpRq

ı

, (I.4)

where given a function fpRq we de�ne the operator (a symmetry of the Hamiltonian)

ArfpRqs “
1

NP

ÿ

P
p´1qPfpPRq , (I.5)

here NP “ N`!N´! is the total number of allowed permutations P.
This is called the local energy method to improve a trial wave-function. Suppose we start

from a simple unsymmetrical product of single particle plane waves of N` spin-up particles with
k ă k`

F occupied and N´ spin-up particles with k ă k´
F occupied, for the zeroth order trial

wave-function. Equation (I.4) will give us a �rst order wave-function of the Slater-Jastrow type
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I. JASTROW, BACKFLOW, AND THREE-BODY

(see equation (6.33)). If we start from an unsymmetrical Hartree-Jastrow trial wave-function the
local energy with the Jastrow factor has the form

EL “ V ´ λ
ÿ

i

»

–´k2i ´ 2iki ¨∇∇∇i

ÿ

jăk

uprjkq ´∇∇∇2
i

ÿ

jăk

uprjkq `

ˇ

ˇ

ˇ

ˇ

ˇ

∇∇∇i

ÿ

jăk

uprjkq

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl , (I.6)

where V “ V pRq is the total potential energy and rij “ |rij | “ |ri ´ rj |. Then the antisym-
metrized second order wave-function has the form in Eq. (6.48), which includes back�ow (see
the third term), which is the correction inside the determinant and which a�ects the nodes, and
three-body boson-like correlations (see last term) which do not a�ect the nodes.
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Appendix J

The Random Phase Approximation

In this Appendix we will work on an unpolarized system.
Within the linear density response theory [67] 1 one introduces the space-time Fourier trans-

form, χpk, ωq, of the linear density response function. Which is related through the �uctuation
dissipation theorem, Spk, ωq “ ´p2ℏ{nqΘpωqImχpk, ωq, to the space-time Fourier transform,
Spk, ωq (dynamic structure factor), of the van Hove correlation function [161], xρpr, tqρp0, 0qy{n,
where ρpr, tq “ exppiHt{ℏqρprq expp´iHt{ℏq.

In the Random Phase Approximation (RPA) we have [64]

1

χRPApk, ωq
“

1

χ0pk, ωq
´ e2ṽµpkq , (J.1)

where χ0 is the response function of the non-interacting Fermions (ideal Fermi gas), known as the
Lindhard susceptibility [162]. This corresponds to taking the �proper polarizability� (the response
to the Hartree potential) equal to the response of the ideal Fermi gas [163]. With the help of the
�uctuation dissipation theorem, S0pk, ωq “ ´p2ℏ{nqΘpωqImχ0pk, ωq gives the di�erential cross-
section for inelastic scattering from the ideal Fermi gas (at energy transfer ω ě 0). Scattering is
due to the excitation of single particle-hole pairs

S0pk, ωq “ 2π
ÿ

q,σ

n0qr1 ´ n0q`ksδ

„

ω ´
1

ℏ
peq`k ´ eqq

ȷ

, (J.2)

where ek “ ℏ2k2{p2mq and n0k “ Θp|k| ´ kF q is the momentum distribution of the ideal Fermi
gas. We thus �nd

S0pk, ωq “

$

’

’

&

’

’

%

ℏπνF ω
kvF

0 ď ω ď ´ω2pkq

ℏπνF kF

2k

„

1 ´

´

ω
kvF

´ k
2kF

¯2
ȷ

|ω2pkq| ď ω ď ω1pkq

0 ω ě ω1pkq

(J.3)

with νF “ mkF {pnπ2ℏ2q the density of states for particles at the Fermi level, vF “ ℏkF {m
the velocity of a free particle on the Fermi surface, ω1pkq “ ℏpkkF ` k2{2q{m, and ω2pkq “

ℏp´kkF ` k2{2q{m. Naturally we also have Sxpkq “
ş

S0pk, ωqdω{p2πq.

1Note that, unlike in the classical case, in quantum statistical physics even the linear response to a static
perturbation requires the use of imaginary time correlation functions [81].
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J. THE RANDOM PHASE APPROXIMATION

The RPA static structure factor is then recovered through

SRPApkq “ ´
ℏ
n

ż 8

0

dω

π
Imχpk, ωq . (J.4)

where

Imχ “
Imχ0

p1 ´ e2ṽµReχ0q2 ` pe2ṽµImχ0q2
, (J.5)

and

Imχ0 “ ´
n

2ℏ
S0 , ω ą 0 , (J.6)

Reχ0 “ ´nνF

"

1

2
`

1 ´ px´ yq2

8y
ln

ˇ

ˇ

ˇ

ˇ

x´ 1 ´ y

x` 1 ´ y

ˇ

ˇ

ˇ

ˇ

`
1 ´ px` yq2

8y
ln

ˇ

ˇ

ˇ

ˇ

x` 1 ` y

x´ 1 ` y

ˇ

ˇ

ˇ

ˇ

*

, (J.7)

where x “ ω{kvF and y “ k{2kF . In deriving Eq. (J.7) we used the fact that Imχ0pk, ωq is an
odd function of ω and the Kramers-Kronig relations.
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Appendix K

Analytic expressions for the
non-interacting fermions ground
state

Usually gσ,σ1 is conventionally divided into the (known) exchange and the (unknown) correlation
terms

gσ,σ1 “ gxσ,σ1 ` gcσ,σ1 , (K.1)

where the exchange term corresponds to the uniform system of non-interacting fermions.

K.1 Radial distribution function

We thus have (from the de�nition of the RDF (6.54) and using Slater determinants for the
wave-function)

gx`,´prq “ 1 , (K.2)

gxσ,σprq “ 1 ´

„

3j1pkσF rq

kσF r

ȷ2

, (K.3)

where j1pxq “ rsinpxq ´x cospxqs{x2 is the spherical Bessel function of the �rst kind and pkσF q3 “

6π2nσ is the Fermi wave-number for particles of spin σ.

K.2 Static structure factor

Again we will have the splitting Sσ,σ1 “ Sx
σ,σ1 `Sc

σ,σ1 into the exchange and the correlation parts.
So that for the non-interacting fermions we get

Sx
`,´pkq “ 0 , (K.4)

Sx
σ,σpkq “

nσ
n

´
n2σ
n
Θp2kσF ´ kq

3π2

pkσF q3

ˆ

1 ´
k

2kσF

˙2ˆ

2 `
k

2kσF

˙

“
nσ
n

#

1 k ą 2kσF
3
4

k
kσ
F

´ 1
16

´

k
kσ
F

¯3

k ă 2kσF
, (K.5)
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where Θpxq is the Heaviside step function.

K.3 Internal energy

The Hartree-Fock approximation [164, 165, 166] for the ground state of a system of interacting
fermions assumes that the many-body wave function is a Slater determinant built from single-
particle states, which are to be determined self-consistently by minimization of the expectation
value of the Hamiltonian. Whereas for an inhomogeneous many-electron system (e.g. an atom
or a molecule) the solution of the Hartree-Fock self-consistent problem can usually be obtained
only in a numerical form involving further approximations, the exact Hartree-Fock solution is
immediate in the case of a homogeneous �uid: in this case the self-consistent single-particle states
are necessarily plane waves, from translational invariance. Hence, the Hartree-Fock wave function
for the ground-state of a homogeneous �uid is the same as the ground-state wave function of the
ideal Fermi gas.

Including explicitly the spin indices we get

EHF
g “

ÿ

k,σ

n0k,σ

„

ϵk `
1

2
ΣHF pkq

ȷ

, (K.6)

where n0k,σ is the ideal Fermi distribution, ϵk “ ℏ2k2{2m and for an unpolarized system

ΣHFpkq “ v0 `
1

N

ÿ

q

vqn
0
k`q,σ (K.7)

“ ´
e2kF
π

„

1 `
k2F ´ k2

2kkF
ln

ˇ

ˇ

ˇ

ˇ

k ` kF
k ´ kF

ˇ

ˇ

ˇ

ˇ

ȷ

, (K.8)

here v0 “ vq“0 and vq “ 4πe2{q2. So that

eHFg “ EHF
g {N “

ˆ

3

5α2r2s
´

3

2παrs

˙

Ry “

ˆ

2.21

r2s
´

0.916

rs

˙

Ry, (K.9)

with α “ p9π{4q´1{3. As already remarked, the gain in potential energy found in Hartree-Fock
derives from the fact that the exclusion principle is built into the many-body wave function
and keeps apart pairs of electrons with parallel spins, thus lowering their Coulomb repulsive
interaction energy on average. Notice that the ratio between potential and kinetic energy is
proportional to rs: this dimensionless length gives a measure of the coupling strength, which
increases with decreasing density. The main problem with the Hartee-Fock approximation is
that, by including exchange between electrons with parallel spins but neglecting correlations
due to the Coulomb repulsions (which are most e�ective for electrons with antiparallel spins),
it includes neither dielectric screening nor the collective plasma excitation. As shown in section
6.2.4 the Hartree-Fock ground-state can be determined from the exchange part of the radial
distribution function (see Eqs. (K.2)-(K.3)).

When one proceeds to evaluate the ground-state energy of Jellium by perturbation theory
beyond �rst order (i.e. beyond Hartree-Fock), one meets divergences arising from the long-range
character of the Coulomb interactions. On summing to in�nite order the most strongly divergent
terms of the perturbative expansion (corresponding to the RPA theory), screening introduces a
cut-o� as the lower end of integrals over wave vector space and cures the divergences [167].
Such a calculation, supplemented by the inclusion of a contribution from second-order exchange
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processes, yields the low rs expansion

egprsq “

„

2.21

r2s
´

0.916

rs
` 0.0622 ln rs ´ 0.096 ` . . .

ȷ

Ry, (K.10)

plus terms going like rs, rs ln rs, etc. The results of such a truncated expansion is reasonably
accurate only up to rs “ 1, whereas the values of rs that are relevant in the physics of normal
metals extend up to rs “ 6.

In the thirties Wigner [82, 168] had already noticed that an optimal value epot “ ´p1.8{rsqRy
is obtained for the potential energy if the electrons are placed on the sites of a crystalline
lattice having body-centered-cubic (bcc) structure. The gain by a factor « 2 over the potential
energy in Hartree-Fock is clearly related to the fact that in the crystal all pairs of electrons
keep apart irrispectively of their relative spin orientation. Using the crystalline result at large
rs in combination with an estimate of the correlation energy at low rs, Wigner proposed the
interpolation formula

eWg “

„

2.21

r2s
´

0.916

rs
´

0.88

7.8 ` rs

ȷ

Ry, (K.11)

as approximately valid at metallic densities.
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Appendix L

Radial distribution functions sum
rules in the ground state

Both the behavior of the RDF at small r and at large r has to satisfy to general exact relations
or sum rules.

L.1 Cusp conditions

When two electrons (µ “ 8) get closer and closer together, the behavior of gσ,σ1 prq is governed
by the exact cusp conditions [169, 170, 171]

d

dr
gσ,σprq

ˇ

ˇ

ˇ

ˇ

rÑ0

“ 0 , (L.1)

d3

dr3
gσ,σprq

ˇ

ˇ

ˇ

ˇ

rÑ0

“
3

2a0

d2

dr2
gσ,σprq

ˇ

ˇ

ˇ

ˇ

rÑ0

, (L.2)

d

dr
g`,´prq

ˇ

ˇ

ˇ

ˇ

rÑ0

“
1

a0
g`,´p0q , (L.3)

where in the adimensional units a0 Ñ 1{rs. For �nite µ we only have the condition gσ,σp0q “ 0
due to Pauli exclusion principle.

L.2 The Random Phase Approximation (RPA) and the long
range behavior of the RDF

The small k behavior of the RPA, summarized in Appendix J, is exact [64]. One �nds

SRPApkq “
ℏk2

2mωp
, k ! kF , (L.4)

where ωp “
a

4πne2{m is the plasmon frequency [84]. This is also known as the second-moment
sum rule for the exact RDF and can be rewritten as n

ş

dr r2rgprq ´ 1s “ ´6pℏ{2mωpq. We
can then say that gprq ´ 1 has to decay faster than r´5 at large r. The fourth-moment (or
compressibility) sum rule links the thermodynamic compressibility, χ “ rndpn2de0{dnq{dns´1,

157



�L.2. The Random Phase Approximation (RPA) and the long range behavior of the RDFL. RADIAL DISTRIBUTION FUNCTIONS SUM RULES IN THE GROUND STATE

[163] to the fourth-moment of the RDF. For the equivalent classical system it is well known that
the correlation functions have to decay faster than any inverse power of the distance [172, 81, 173]
(in accord with the Debye-Hükel theory). To the best of our knowledge we do not know, yet, the
exact decay for the zero temperature quantum case.
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Appendix M

The primitive action

Suppose the Hamiltonian is split into two pieces H “ T `V, where calt and V are the kinetic and
potential operators. Recall the exact Baker-Campbell-Hausdor� formula to expand expp´τHq

into the product expp´τT q expp´τVq. As τ Ñ 0 the commutator terms which are of order higher
than τ2 become smaller than the other terms and thus can be neglected. This is known as the
primitive approximation

e´τpT `Vq « e´τT e´τV . (M.1)

hence we can approximate the exact density matrix by product of the density matrices for T
and V alone. One might worry that this would lead to an error as M Ñ 8, with small errors
building up to a �nite error. According to the Trotter [174] formula, one does not have to worry

e´βpT `Vq “ lim
MÑ8

“

e´τT e´τV‰M . (M.2)

The Trotter formula holds if the three operators T , V, and T ` V are self-adjoint and make
sense separately, for example, if their spectrum is bounded below [175]. This is the case for the
Hamiltonian describing Jellium.

Let us now write the primitive approximation in position space

ρpR0, R2; τq «

ż

dR1xR0|e´τT |R1yxR1|e´τV |R2y, (M.3)

and evaluate the kinetic and potential density matrices. Since the potential operator is diagonal
in the position representation, its matrix elements are trivial

xR1|e´τV |R2y “ e´τV pR1qδpR2 ´R1q. (M.4)

The kinetic matrix can be evaluated using the eigenfunction expansion of T . Consider,
for example, the case of distinguishable particles in a cube of side L with periodic boundary
conditions. Then the exact eigenfunctions and eigenvalues of T are L´3N{2eiKnR and λK2

n, with
Kn “ 2πn{L and n a 3N -dimensional integer vector. We are using here dimensional units.
Then

xR0|e´τT |R1y “
ÿ

n

L´3Ne´τλK2
ne´iKnpR0´R1q (M.5)

“ p4πλτq´3N{2 exp

„

´
pR0 ´R1q2

4λτ

ȷ

, (M.6)
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where λ “ ℏ2{2m. Eq. (M.6) is obtained by approximating the sum by an integral. This is
appropriate only if the thermal wavelength of one step is much less than the size of the box,
λτ ! L2. In some special situations this condition could be violated, in which case one should
use Eq. (M.5) or add periodic �images� to Eq. (M.6). The exact kinetic density matrix in
periodic boundary conditions is a theta function,

ś3N
i“1 θ3pzi, qq, where z “ πpRi

0 ´Ri
1q{L, Ri is

the ith component of the 3N dimensional vector R, and q “ e´λτp2π{Lq
2

(see chapter 16 of Ref.
[176]). Errors from ignoring the boundary conditions are Opqq, exponentially small at large M .

A link m is a pair of time slices pRm´1, Rmq separated by a time step τ “ β{M . The action
Sm of a link is de�ned as minus the logarithm of the exact density matrix. Then the exact
path-integral expression becomes

ρpR0, RM ;βq “

ż

dR1 . . . dRM´1 exp

«

´

M
ÿ

m“1

Sm

ff

, (M.7)

It is convenient to separate out the kinetic action from the rest of the action. The exact kinetic
action for link m will be denoted Km

Km “
3N

2
lnp4πλτq `

pRm´1 ´Rmq2

4λτ
, (M.8)

The inter-action is then de�ned as what is left

Um “ UpRm´1, Rm; τq “ Sm ´Km. (M.9)

In the primitive approximation the inter-action is

Um
1 “

τ

2
rV pRm´1q ` V pRmqs, (M.10)

where we have symmetrized Um
1 with respect to Rm´1 and Rm, since one knows that the exact

density matrix is symmetric and thus the symmetrized form is more accurate.
A capital letter U refers to the total link inter-action. One should not think of the exact U

as being strictly the potential action. That is true for the primitive action but, in general, is
only correct in the small-τ limit. The exact U also contains kinetic contributions of higher order
in τ . If a subscript is present on the inter-action, it indicates the order of approximation; the
primitive approximation is only correct to order τ . No subscript implies the exact inter-action.

The residual energy of an approximate density matrix is de�ned as

EApR,R1; tq “
1

ρApR,R1; tq

„

H `
B

Bt

ȷ

ρApR,R1; tq. (M.11)

The residual energy for an exact density matrix vanishes; it is a local measure of the error of an
approximate density matrix. The Hamiltonian H is a function of R; thus the residual energy is
not symmetric in R and R1.

It is useful to write the residual energy as a function of the inter-action. We �nd

EApR,R1; tq “ V pRq ´
BUA

Bt
´

pR ´R1q ¨ ∇UA

t
` λ∇2UA ´ λ p∇UAq

2
. (M.12)

The terms on the right hand side are ordered in powers of τ , keeping in mind that UpRq is of
order τ , and |R ´ R1| is of order τ1{2. One obtains the primitive action by setting the residual
energy to zero and dropping the last three terms on the right hand side.

The residual energy of the primitive approximation is

E1pR,R1; tq “
1

2

“

V pRq ´ V pR1q
‰

´
1

2
pR ´R1q ¨ ∇V `

λt

2
∇2V ´

λt2

4
p∇V q

2
. (M.13)

With a leading error of „ λτ2.
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Appendix N

The pair-product action

An often useful method to determine the many-body action is to use the exact action for two
electrons [177]. To justify this approach, �rst assume that the potential energy can be broken
into a pairwise sum of terms

V pRq “
ÿ

iăj

vp|ri ´ rj |q, (N.1)

with |ri ´ rj | “ rij . Next, apply the Feynman-Kac formula for the inter-action

e´UpR0,RF ;τq “

B

exp

„

´

ż τ

0

dt V pRptqq

ȷF

RW

, (N.2)

where the notation x. . .yRW means the average over all Gaussian random walks from R0 to RF

in a �time� τ . So that

e´UpR0,RF ;τq “

C

exp

«

´

ż τ

0

dt
ÿ

iăj

vprijptqq

ffG

RW

(N.3)

“

C

ź

iăj

exp

„

´

ż τ

0

dt vprijptqq

ȷ

G

RW

(N.4)

«
ź

iăj

B

exp

„

´

ż τ

0

dt vprijptqq

ȷF

RW

(N.5)

“
ź

iăj

exp
“

´u2prij , r
1
ij ; τq

‰

(N.6)

“ exp

«

´
ÿ

iăj

u2prij , r
1
ij ; τq

ff

“ e´U2pR0,RF ;τq, (N.7)

where U2 is the pair-product action and u2 is the exact action for a pair of electrons. At low
temperatures the pair action approaches the solution of the two particle wave equation. The
result is the pair-product or Jastrow ground-state wave function, which is the ubiquitous choice
for a correlated wave function because it does such a good job of describing most ground-state
correlations.
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The residual energy (see Eq. (M.11)) for the pair-product action is less singular than for
other forms. We have that

u2prij , r
1
ij ; τq “ ´ ln

B

exp

ˆ

´

ż τ

0

dt vprijptqq

˙F

RW

, (N.8)

is of order τ2 since the two body problem can be factorized into a center-of-mass term and a
term that is a function of the relative coordinates. Moreover we must have

Bu2
Bτ

“ vprijpτqq, (N.9)

so that

BU2

Bτ
“ V pRpτqq, (N.10)

which tells that only the last three terms on the right hand side of Eq. (M.12) contribute to the
residual energy. We also have

∇U2 “
ÿ

i

ÿ

i‰j

∇iu2prij , r
1
ij ; τq, (N.11)

where the indices run over the particles. So the leading error of the pair-product action is „ λτ3.
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