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CHAPTER I
INTRODUCTION

1.x. Scope and purpose of the book

This book grew out of an undergraduate course in the University
of Manchester, in which the author attempted to expound the most
useful facts about Fourier series and integrals. It seemed to him
on planning the course that a satisfactory account must make use
of functions like the delta function of Dirac which are outside the
usual scope of function theory. Now, Laurent Schwartz in his
Théorie des distributions* has evolved a rigorous theory of these,
while Professor Temple has given a version of the theory (General-
ised functions)t which appears to be more readily intelligible to
students. With some slight further simplifications the author found
that the theory of generalised functions was accessible to under-
graduates in their final year, and that it greatly curtails the labour
of understanding Fourler transforms, as well as making available
a technique for their asymptotic estimation which seems superior
to previous techniques. This is an approach in which the theory
of Fourier series appears as a special case, the Fourier transform
of a periodic function being a ‘row of delta functions’.

"The book which grew out of the course therefore covers not only
the principal results concerning Fourier transforms and Fourier
series, but also serves as an intreduction to the theory of generalised
functions, whose general properties as well as those useful in Fourier
analysis are derived, simply but without any departure from
rigorous standards of mathematical proof.

On the other hand, the application of Fourier transforms, or of
generalised functions, to the solution of differential, integral or
other functional equations is not explicitly treated, nor is the
extension to Fourier transforms or generalised functions of more

_than one variable.

* Volumes 1 and 2 (1950-1). Paris: Hermann et Cie.
t Proc. Roy. Soc. A, 228, 17590 (1955).
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r.2. Knowledge assumed of the reader

The book is written for mathematical readers with some interest
in, and general knowledge of, methods of mathematical proof
(particularly of results concerned with limiting processes). Flow-
ever, little detailed knowledge of particular topics is assumed. The
Lebesgue theory of integration is not required; the expression
‘absolutely integrable’ is frequently used below (where in the
Lebesgue theory one would write ‘integrable’) to remind the reader
familiar only with a simpler approach to integration that the integral
of the modulus is assumed finite. The theorems that the modulus
of an integral is less than the integral of the madulus, and that
orders of integration and/or summation can be interchanged in an
expression in which convergence is retained when each term is
replaced by its modulus, are constantly used, however; and one
or two other basic integration theorems are quoted occasionally,
The O and o notations are assumed known and understood.*

The functions dealt with are functions of a real variable only
(though they have complex walues). On the other hand, some
knowledge of functions of a complex variable is desirable, as use
is made on a few occasions of the evaluation of simple definite
integrals by contour integration. Familiarity with a few other
standard integrals, like the error integral, is also assumed.

All this material is in the ordinary undergraduate course of
analysis in British universities. Accordingly, the book should be
intelligible both to undergraduates and to working mathematicians
whose study of analysis may not have gone much beyond the
undergraduate level.

Itis, perhaps, unlikely that anyone will come to the book without
any previous knowledge of Fourier series or integrals. However,
the account of these topics in chapters 2 to § is completely self-
contained, and in addition some indication is given, in the following
sections of this chapter, of some of the principal uses to which
Fourier analysis may be put.

* Those remembering these notations imperfectly are recommended to read
O as ‘a term of order at most...”, end o as ‘a texm of order less than...’. This
will remind them that ‘f=0(g)’, meaning that |f| <d|g]| for some positive 4

as’the limit is approached, includes the possibility that ‘f=o0{g)’, meaning that
| fl <€lg| (sufficiently near to the limit) for any positive & (however small).
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1.3. Fourier series: introductory remarks

A Fourier series is a representation of a periodic function f{x)
(say, of period 20)* as a linear combination of all those cosine and
sine functions which have the same period, say as

bl nrx 2 . nax
fix)=1ta,+ ¥ a,cos — + X b,sin —. (1)
n=1 [ n=1 i

Fourier series in this sense are used for analysing oscillations periodic
in time, or waveforms periodic in space, and also for representing
functions of plane or cylindrical polar co-ordinates, when x in (1)
becomes the polar angle £, and the period 2/ becomes 2.

The series can be written, more compactly, in the complex form

1) - éw ¢, einmal, (2)

where ¢, = ¥{a, —ib,) for all n, if a_,, signifies a, and b_,, signifies
— b, (so that 5y=0).

One great advantage of expressing a function in terms of cosines
and sines, or {even more) in terms of exponentials, is the simple
behaviour of these functions under the various operations of
analysis, notably differentiation. For example, if a linear partial
differential equation has coeficients independent of x, and solu-
tions periodic in x with period 2/ are required, the series (2) may
be used as a solution, and the ¢, determined by solving differential
equations in which derivatives with respect to x no longer occur.

For example, solutions of Laplace’s equation in plane polar
co-ordinates r, §, which are periodic in & with period 27 (thus,
representing solutions which are one-valued in an annulus with
centre the origin), may be written as §: (7)€, If we substitute
this in e

e 3 s
WMra AR @
and assume that we can differentiate term by term, we obtain

& (d%,  1d, #? .
(Hﬁ*; T A fn) e’ =o. @

* This means that f(x)=/(x+2I) for all x.

n=—c0
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If we assume that expressions of functions by such trigonometrical
series are unigue, then a series which vanishes identically must have
vanishing coefficients, which gives a differential equation for ¢,,
whose general solution is
e=A, "+ B, (5)
If boundary conditions are available on circles r=constant, for
example f=g(f) on r=aq, and say df/0r =h(0) on r=b, we may vse
these conditions to determine 4, and B, provided that g(d) and
k() can be represented as Fourier series, say
f0)= T got, W)= T b ®
ndomw

n=

Then  4,a*+B,a =g, 14, —aB b =h, (6]
whence 4, and B, may be determined.

This example is so simple that it could be treated in many different
ways (and, in fact, the conclusions just obtained agree with those
given by Laurent’s theorem), but, clearly, the procedure is directly
applicable in more complicated problems, provided always that
the boundary conditions from which the ¢, are to be determined
are given on houndaries where the argument of the Fourier series
(here 8) varies independently of the other variables.

The example makes it clear that a satisfactory Fourier-series
theory will be one in which term-by-term differentiation and
unique determination of the coefficients for a given function are
both possible. These two requirements had never been simul-
taneously satisfied by any of the Fourier-series theories until the
‘generalised function’ approach given in chapter 5 was developed.

There is a different, and perhaps even commoner, way in which
Fourier series are used, namely to represent a function which is not
periodic, but instead is defined in the first place only in a restricted
interval. The period of the Fourier series is usually taken as twice
the length of the interval, and then the series are called ‘half-range
series’; also, ‘quarter-range series’ are sometimes used. It will be
seen that these series form a restricted class of Fourier series, in
which only a proportion of the terms in the ‘full-range series’ (1)
is used.

For example, if 2 partial differential equation is to be solved in
a region part of whose boundary consists of the lines (or planes)
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x=o0 and x=/, then the argument is usually presented as follows.
The only cosines or sines which satisfy the boundary condition
f=o0 both at #=o0 and at ¥~ are sinnmw/l (for n=1,2,3,...), so
that the half-range series (or ‘Fourier sine series’)

fx)= T b,sin L’l’” (o<x<]) (8)

n=1
is appropriate when these are the boundary conditions. Alterna-
tively, if 8f/8x =0 atx=0and x =/, the half-range series (or ‘ Fourier
cosine series’)
i

f(x)=§ao+n§]‘an cos 7 (o<x<l) (9)
is appropriate. (In the complex form (2), these cases have ¢, pure~
imaginary and real, respectively.) Again, if f=o at ¥=o0 and
9f/ox =0 at x =1, then the quarter-range series

. flw)= i b,,sin(——zn—x)ﬂx {o<x<l), (10)
=l 2l
containing an even smaller selection of the terms in a Fourier series
of larger period 4/, is appropriate,

These series can be approached in a slightly different but more
useful manner as follows. To satisfy boundary conditions f{o) =0
and f{l)=o, an odd periodic function f{x) of period 2! (that is, a
function satisfying f{ —x)= —f(x) and f{x + 21)=f(x), which by the
substitutions x=o0 and x= —/ imply the stated boundary con-
ditions) is introduced. Its Fourier series (1) then contains only odd
terms and reduces to (8). Similarly, the boundary conditions
9f/ox =0 at =0 and x =/ can be satisfied by using an even periodic
function. Finally, the boundary conditions f=o at x=o and
0f/0x=o0 at &= can be satisfied by using an odd periodic function,
of period 47, which is also an even function of x—I; note that only
those sine terms of period 4/ which satisfy the latter condition
appear in (10). In each case, naturally, it is the value of the periodic
function in the range o<x < that represents the solution to the
problem.

A simple example is now given to show the advantage of replacing
boundary conditions wherever possible by conditions of periodicity
and parity, even in a case where Fourier series are not used. If a
string is stretched between two fixed points x=~o0 and x=1! and
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plucked (that is, released from rest in a given distorted shape),
we can imagine an infinite stretched string whose transverse dis-
placement y=j(x) is periodic with period 2/ and odd and agrees
with the given shape for o <x <! (see fig. 1). If this infinite string
were released from rest in this position, the displacement y would
remain odd and periodic, and so continue to satisfy the boundary
condition y=0 at x=0 and x=/. Hence the simple solution of the
initial-value problem for the infinite string, namely

y=Hfx+a)+flx-ci, (x1)

can be used to give the solution, avoiding the need to consider
multiple reflexions from the ends. Similar advantages accrue if
other problems of this kind are treated in this way.

fx)

Fig. 1. Illustrating the construction of an odd periodic function f(x)
teking given values in o <x <l

Accordingly, it is best to consider every Fourier series as the
Fourler series of a periodic function, even in cases where one is
iriterested in the first place only in values over a half- or quarter-
period. This is especially advisable in constructing any general
theory of Fourier series, since the sum of such a series, if it exists,
is certainly periodic!

We may conclude this section by listing the principal aims of
a theory of Fourier series. First, one must obtain conditions under
which a trigonometrical series like (1) or (2) converges (in the sense
which one is using). For example, a sufficient condition for abso-
lute uniform convergence is that ¢,=O(|%n]7"¢) as |n|->oc0 for
somee>o. In§s.x, however, it will be shown that a necessary and
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sufficient condition for convergence in the sense of generalised-
function theory is that ¢, =O(|n [¥) as | #| = co for some N.

Next, if an equation such as (2) is given, one may ask how the
¢, may be expressed in terms of the function f{z). For example,
when the series is absolutely and uniformly convergent, one may
multiply both sides by e=4"# and integrate term by term from
~1Ito ], giving e .
tumgy | Jyemias, (x2)

since all the terms of the series vanish except that for which n=m.
The corresponding problem in the theory of generalised functions
is solved in § 5.2.

Note that equation (12} implies

1 1
ap=t | fiyeos ™ dx, Bo=1| fiw)sinTEdw. (13)
m 7] 1 7). 1
Note also that if f(x) is even then
7
a3 [ f)eos ™ e, b=, (1)
0

which are the equations for a Fourier cosine series, while if f(x)

is odd then 2 -

a,=0, bm=7f Jixysin 5 d, (x5)
)

which are the equations for a Fourier sine series.

Next, one may choose an arbitrary periodic function f(x), and
ask under what conditions equation (2) will hold with the ¢, given
by (12), or by the equivalent expression in the theory one is using.
Elaborate tests must be satisfied in the ordinary convergence theory
for this to be so, but it will be proved in § 5.3 that the equation holds
for all periodic generalised functions.

Finally, one may ask the questions already mentioned con~
cerning term-by-term differentiability and uniqueness. These are
the properties which are most notably lacking in the ‘convergence’
and ‘summability’ theories, respectively;* but both results are
almost trivial in the generalised-function theory.

* For these classical theories see, for example, G. H. Hardy and W. W. Rogo-
sinski, Fourier Series (2nd edition, 1950), Cambridge University Press.
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1.4. Fourier transforms: introductory remarks

The Fourier integral may be regarded as the formal limit of the
Fourier series as the period tends to infinity. Thus, if f{x) is any
function of x in the whole range (—00, o), one can form a periodic
function f(x) of period 2/ which agrees with f{x) in the range
(—1,1). The Fourier series (2) of fi(x), with the expressions (12) for
the ¢, can be written in the form

® A 1
Ha)= T emaig{Z) L) where gy)=| emeufixide.
——s 2lj 2l 1
(16)
A formal limit as /00, where in the series #/2/ is written y, and
the difference between successive values of y is written dy, is

fey=[ " enmvgly)dy, where g)= [ ernmfnas,
- —w
()
since in the limit the periodic function fy(x) becomes f(x) everywhere.

Under these circumstances the function g(y} is often called the
Fourier transform (F.1.) of f{x). Then the first of equations (x7)
may be regarded as stating that f{y) is the £.T. of g —=x).

The reader should be warned, however, that no general agree-
ment has been reached on where the 27°s in the definition of Fourier
transforms should be put. They can be taken out of the exponentials
in equations (17), and a 1/27 factor inserted before the first integral
but not the second (or vice versa), or else a factor 1/y/(27) can in
this case be inserted before each (to maintain as much symmetry
as possible). All the different notations which have been used have
some advantages. Here we follow Temple, and many modern
authors, in including the 277 in the exponent, so that the exponential
multiplying g(y) represents an oscillation with y as frequency (or
wave number, according as & represents time or space), rather than
as ‘radian frequency’ or ‘radian wave number’. However, the
results in this book are easily changed into one of the other notations
by a slight change of variable.

A vast literature* has been devoted to the determination of con-

* See, for example, E. C. Titchmarsh, Introduction to the theory of Fourier
integrals (1937), Oxford University Press.
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ditions on f{#) sufficient for equations (17) to be true with a given
interpretation of the integrals. Even for a fixed interpretation,
many alternative sets of sufficient conditions are necessary if one
wishes to apply the equations at all widely, because relaxation of
one condition to admit some desired function requires usually the
strengthening of some other condition, which in turn excludes some
other function, All these difficulties disappear when generalised
functions are used, since every generalised function f{x) has a
Fourier transform g{y) which is also a generalised function, and
the F.7. of g(~x) is f{). In the latter theory it is found convenient
to proceed in an order different from that adopted in this chapter,
and to treat the properties of Fourier series as a special case of the
properties of Fourier transforms.

The Fourier integral is used to analyse non-periodic functions
of x in the range (~0, o), as linear combinations of exponential
functions. Such an analysis is useful for much the same reasons
as with Fourier series. For example, it is effective in treating linear
partial differential equations with coefficients independent of x,
subject to boundary conditions given on boundaries where x
wvaries from —o0to oo independently of the other variables. To apply
these boundary conditions, it is necessary to be able to express
any functjons occurring in them as Fourier inteprals. Here, a
difficulty used to be that quite simple functions (for example, a
constant Iy have no Fourier transform in ordinary function theory.
This difficulty disappears in the theory of generalised functions, in
which, for example, the F.T. of 1 is the delta function of Dirac.

‘Half-range’ Fourier integrals are also used, along much the
same lines as with Fourier series. Thus, if f{x) is to be determined
in the range (o, 00) subject to a condition f{o) =0, one may seek an
odd function f{x) in the full range( —0o, o), which coincides with
f(x)in (0,00). Its F.1. g(¥), by (17), may be written as

()= - 2iJ':f(x) sinzmxydx, (18)

which is also an odd function, so that the expression for f(x) in
terms of g(y) becomes

fiy=2i [ gls)sinamaydy. )

The integrals in (18) and (19) are called Fourier sine integrals.
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Similarly, if f{x) is to be determined in (o, o0) subject to a con-
dition 8f/éx=0 when x=o0, one may seek an even function f(x)
in the full range (— oo, 0) which coincides with f{x) in (0, c0). Its
F.T. may be written as

gy = zf:f(x) cos 2y d, (=0)

which is also an even function, and the expression for f{x) in terms
of g(¥) becomes "
Sy =2 els) eonameycs. ()

The integrals in (z0) and (21} are called Fourier cosine integrals.

As with Fourier series, no special theory is needed for Fourier
sine integrals and Fourier cosine integrals. They should be regarded
simply as what is obtained by taking Fourier transforms of odd and
even functions respectively.

In many cases, especially when it is not possible to evaluate a
Fourier transform explicitly in terms of tabulated functions, it is
useful to have a technique for evaluating the asymptotic behaviour
of the F.T. g(y) as [y |>o0, in terms of the behaviour of f(x) near
its singularities. It is difficult to find a comprehensive account of
this technique in the literature, and since the theory becomes
particularly simple when generalised functions are used, a sub-
stantial fraction of this book has been devoted to expounding it.
"This theory can also be applied without change (§ 5.5) to the problem
of determining the asymptotic behaviour as {#]|—>co of the coeffi-
cients ¢, in the Fourier series for a given function.

1.5. Generalised functions: introductory remarks

The first ‘generalised function” to be introduced was Dirac’s
“delta function’ é(x), which has the property

f " 8(s) Fl) dn=Flo) (22)

for any suitably continuous function F{x). No function in the
ordinary sense has the property (22), but one can imagine a sequence
of functions (see, for example, fig. 2) which have progressively
taller and thinner peaks at x=o, with the area under the curve
remaining equal to 1, while the value of the function tends to o at



INTRODUCTION I1

—é

100

-10 —03 0 05 190
Fig. 2. Functions in the sequence (chapter 2, example 6) used to define 8(x);
the number n (for n=4, 2o, 100) is attached to the graph of the nth function.

every point, except & = o where it tends to infinity. In the limit, this
sequence would have the property (22).

Again, one might ‘differentiate’ (x) to obtain a function 8"(x)
with the property

f BRCHLEE f :7 ) F'(x)de=~F(0)  (23)
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60

20

—20~
100

—40-]

o]

Fig. 3. Functions in the sequence used to define 8(x), being the
derivatives of those graphed in fig. 2.

for any continuously differentiable function F(x). Behaviour like
(23) can again be realised in the limit of a sequence of functions (for
example, the derivatives of those in the sequence used to represent
&(x); these are graphed in fig. 3).

Physically, 8(x) can be regarded as that distribution of charge
along the x-axis which one speaks of as a unit point charge at the
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otigin. Similarly, é'(x) corresponds to a dipole of unit electric
moment, since as a special case of (23) we have

f " wp()de=—x. (29)

Thus, these generalised functions correspond to familiar physical
idealisations.

The definition by means of a sequence is in fact that to be
adopted in chapter 2, following Temple (who in this point follows
Mikusinski). Alternative definitions are not considered here; the
reader is referred for a historical account of the subject to Temple,
J. Lond. Math. Soc. 28, 134-48 (1953).

In defining generalised functions by means of sequences, one
must define under what circumstances two sequences constitute
the same generalised function. For this purpose one multiplies
each member of a sequence by a ‘test function’ F(x), as in (22) or
(23), integrates from —oo to o, and takes the limit. If the same
result emerges for each sequence whatever ‘test function’ is used,
the sequences are said to define the same generalised function.

" Different classes of test functions, and of functions admitted for
membership of the sequences, can be used in different versions of
the theory, but there is only one satisfactory choice when Fourier
transforms are to be used. We will not tolerate any restrictions on
the differentiability of generalised functions; therefore, as an
equation like (23) indicates, both the functions admitted as members
of sequences, and the test functions, must have derivatives of all
orders. But the classes must be such that the Fourler transform of
a member of either class is also a member of that class. The widest
class satisfying both these conditions is that introduced in defini-
tion 1 (at the beginning of the next chapter). Therefore, we allow
both the members of the sequences and the test functions to be
arbitrary members of this class. We call members of this class ‘good
functions’, as a graphic term, which it seems desirable to introduce
in preference to ‘test functions’ since it is not only the test functions
which are to be restricted to membership of this class.

The development of the theory of generalised functions in
chapter 2 follows closely the lines suggested by Temple, but with
the omission of a clause in the definition of a generalised function

\
L.
ﬁm“‘iﬁ‘«E-ﬂE\.L%?\ HIVERS
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which requires the integral of its product with a test function tobea
‘continuous linear functional’ of the test function in a certain sense.
To keep this restriction would introduce considerable complica-
tions into the proofs in the earlier stages of the theory, and it appears
possible to proceed satisfactorily without it. Only at one point
(theorem 24 in chapter 5) has it been necessary to prove a result,
which is actually a special case of Schwartz's general theorem that
a linear functional must (in fact) be continuous in this sense, and the
short hold-up here seems amply compensated for by the increased
simplicity of the general theory. Another small difference from
Temple’s papers is that the author has not found the concept of
the indefinite integral of a generalised function valuable, and has
accordingly omitted it.

Although the delta function was the first generalised function
to be introduced, the methods of attaching values to integrals and
series which are introduced in the theory had much earlier fore-
runners, like Cauchy’s ‘principal value’ and Hadamard’s ‘finite
part’ of an improper integral, and the theories of ‘summability’
of series. The connexions with these topics are briefly mentioned
in chapters 3 and 5.
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CHAPTER 2

THE THEORY OF GENERALISED FUNCTIONS
AND THEIR FOURIER TRANSFORMS

2.1. Good functions and fairly good functions

DerINITION 1. A good function is one which is everywhere differ-
entiable any number of times and such that it and all its derivatives
are O(| x| ™) as | x| o0 for all N.

ExAMPLE 1. %" is a good function.

DeriNITION 2. A fairly good function is one which is everywhere
differentiable any number of times and such that it and all its deri-
vatives are O(| z [V} as | x| —co for some N.

ExamMpLE 2. Any polynomial is a fairly good function.

TreoreM 1. The derivative of a good function is a good function.
The sum of two good functions is a good function. The product of a
Jairly good function and a good function is a good function.

The proof is left to the reader.

THEOREM 2. If f(x) is a good functz"on, then the Fourier transform
(.1.) of f(x), namely
e0)=["_feyera, @
15 a good function.

ProoF. Differentiation p times and integration by parts V times
shows that

[£7()| = f de{( 27} f{#)) e=2miov

(zmy

which proves the theorem.

de=0(ly[*"), (2

)

THEOREM 3. If f(x) 25 a good function with r.z, g(y), then the r.1.
of 1'(x) is 2miyg(y), and the r.1. of flax+b) is | a |~ e2ribvia gl y/a).
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The proof is left to the reader, who should note the special cases
a=1,a=—1andb=o,

TrroreM 4 (Fourier’s inversion theorem for good functions).
If () is the 7.7. of a good function f(x), then f(y) is the r.z. of g( —x).

Proor. Any of thestandard proofs of Fourier’s inversion theorem
applies without any difficulty to good functions. A simple version
is to prove by elementary manipulation that the F.T. of ¢~ g( - )
differs from f(y) by

i f: (g)w emm=tRle f(1)—f(y)} di

&3 ¥
<omsx )| [ (2] iy —tlar=0d), )
and then let e-o0,
TreoreM 5 (Parseval’s theorem for good functions). If fi(x)
and f,(x) are good functions, and g.(y) and g,(y) are their ¥.1.’s, then

[ aeo-[" A-nsee @

Proor. Both sides can be written as the absolutely convergent
double integral

ffmjiwgz(y)fz(x) e~2mlay dxdy, (s)

by theorem 4.

Nork. ‘This theorem will also be used (in theorem 11 below) in
a case when fj(x) is 2 good function and f,(x) is any function abso-
Iutely integrable from —co to oc. The proof stands word for word
in this case, since the double integral remains absolutely convergent.

2.2. Generalised functions. The delta function and its
derivatives
DerFINITION 3. A sequence f,{x) of good functions is called vegular
if, for any good function F(x) whatever, the limit

fim f " ) Fdx )
axists. M

Exampre 3. The sequence f,(x) = e~=*"*js regular. (The limit in

this case is f " P dx‘)
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DEFINITION 4. Two regular sequences of good functions are called
_equivalent tf, for any good function F{x) whatever, the limit (6} is
the same for each sequence.

ExampLE 4. The sequence e~ is equivalent to the sequence
e—zimt

DEFINITION 5. A generalised function f(x) s defined as a regular
sequence f,(x) of good functions, but two generalised functions are said
to be equal if the corresponding regular seq are equivalent, Thus,
each generalised function is really the class of all regular sequences
equizalént to a given regular sequence. The integral

[ECLOEE @

of the product of a generalised function f{x) and a good function F(x)
is defined as -

lim j £ B . ®)

This is permissible because the limit is the same for all equivalent
sequences f,,(x).

ExampLE 5. The sequence e=*¥7* and all equivalent sequences
define a generalised function J(x) such that

f : () () de= j :o Fls) de. (©

This generalised function I(x) will be denoted more simply by 1.

ExampiLE 6. The sequences equivalent to e~ (n/m)t define a
generalised function &(x) such that

f " 8(x) F(#) dv= (o) (10)
Proor. If F(x)is any good function,
J' " e (afm)t F(w) de - Flo) i
- || e imp e - Fepes]
Smax]F’(x){J'j e (n/m)} | x| de

=(mnytmax | F'(x) >0 as n->co.
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DerINITION 6. If two generalised functions f(x) and (x) are
defined by sequences f,(x) and h,(x), then their sum f(x)+ h(x) is defined
by the sequence f,(x)+h,(x). Also, the derivative f'(x) s defined by
the sequence f,(x). Also, flax+b) is defined by the sequence f,(ax+b).
Also, ¢(x)fx), where ¢(x) is a fairly good function, is defined by the
sequence $(x) f,(x). Also, the p.1. g(y) of f(x) is defined by the sequence
8u(y), where g4(y) is the R.1. of fy(#).

Proor oF CONSISTENCY. In each item of this definition we must
verify (i) that the sequence named is a sequence of good functions,
but this follows at once from theorems 1 and 2; (ii) that the sequence
named is a regular sequence; and (iif) that different choices of
equivalent regular sequences to define the generalised functions
f and £ lead to equivalent séquences defining the new generalised
function. Now, as regards the first item, for any good function F(x)

tim |7 (A + () P s
~lim J'f £.() Flx) doe -+ tim ff ho(e) Flx)d, (1)

and so the limit on the left exists, verifying (ii). Also, the limits on
the. right are independent of which of the different equivalent
sequences of good functions f, and 4, are used to define f and h.
Hence all resulting sequences f, + /, are equivalent, verifying (iii).

Again; i fm () Fle) e — lim f i L) F(x)dx,  (12)

and, since F'(x) is a good function (by theorem 1), the limit on the
right exists and is the same (by definitions 3 and 4) for all equivalent
regular sequences f,(x). Hence all the sequences f,(x) are equi-
valent and regular, as was to be proved. Precisely the same argu-
" ment applies to

limi J ) ]’,L(ax—kb)F(x)dx:ﬁ fim ff f,l(x)F(”T“”> dx,
(13)
tim [ (000 L) Pyt i [ 1,6) (309 P o
. . (x4)
wd lim [* 0 ()60)=1m [ @R G3)
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where in (15) G() is the r.T. of F(x) and theorem 5 has been used.
This completes the proof that addition, differentiation, linear sub-
stitution, multiplication by a fairly good function and Fousier
transformation can each be applied to any generalised function,
and that the result in each case is still a generalised function.®

ExampLe 7. The F.T. of 8(x) is 1.

Proor. The F.T. of e (n/m)t is easily found to be e~"%n,
which is obviously one of the sequences defining the generalised
function 1.

THEOREM 6. Under the conditions of definition 6, we have for any
good function F(x) (with r.r. G(3))

N r@rma= -7 foree

f " flan+ ) Py dn= Ti’[ f °_°w ) F(f—;l’) dx, ”
e I
[" @ e=[" o Fen

|7 en6me=|" for-sas
Proor. These equations follow at once from equations (12)
to (13).
Exampie 8. If F(x) is any good function,
[ om Py s (=2 P )

Proor. This follows by n-fold application of the first of equa-~
tions (16) (‘integration by parts’), followed by equation (10).

At this stage one can, if thought necessary, prove a whole corpus
of results like

3 et W =F @)+ ()
LU AN =F @D+ ) (), o flartB=af (@ +D)
Blax+b) flax+b)=hlax+8) if (%) f(x)=h(x),
* On the other hand there is no satisfactory definition of the product of

two ; for in the notation of definition 6, f,(x) 2,(x)
is not in geneml a regular sequence.

2-2
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etc., which are hardly worth dignifying with the name of theorem
since it is almost impossible to imagine reasonable definitions under
which they would not be true; they will be used without reference,
and the proof is short and easy in each case.. The longest is as
follows. If F(x)is any good function, then

|7 g e s
=[P ot sy ax
[ Lrw s Ras@ e

-7 P @+ e ) o

The more useful results on Fourier transforms are, however,
collected into a theorem.

THEOREM 7. If f() is.a generalised function with r.7. g(y), then
the F.1. of flax+b) is | a |~ ¥ 0¥ g ya). Also, the F.z. of f'(x) 35
2miyg(y). Finally (Fourier’s inversion theorem for generalised
functions), f{y) i the r.r. of g{ —x).

Proor. This powerful theorem follows at once from definition 6
and theorems 3 and 4. For example, to prove thé inversion theorem,
let the sequence f,(x) define f{x); then, by definition 6, g,(y), the
1. of f,(%), defines g(y), whence g,(—x) defines g(—x). But, by
theorem 4, the E.T. of g,(—#) is £,(). Hence the £.T. of g(—x)
is f{y).

ExampLE 9. The F.T. of §(x—c) is e27%, by example 7 and
theorem 7. Hence, by the last part of theorem 7, the r.1. of e2rlez
is 8(y —o).

Turorem 8. If f(x) is a generalised function and f'(x)=o, then
S(&)is aconstant (that is, f(x) is equal to a constant times the generalised
Sunction 1).

Proor. If F(x)is 2 good function, then clearly

E@=[" oy
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is a good function if and only if f * F(x)dw=0. It follows that

Fy#)= f ;{F(x)—?; f lF(t) dz} dw (18)

is always a good function, sirice the function in curly brackets is a
good function whose integral from —oo to oo vanishes. Hence,

j f(x) Flx) de= ( f f(x)—dx) f F()de+ f F) Fix) dx
—cf” rgas-[" rrmas (19)

where C is a constant. The last integral in (1g) vanishes, since
[f(x)=o. Hence, flx)=C.

Turorem g. If g(y) s a generalised function and yg(y)=o0, then
g(y) is a constant times 8(y).

Proor. This theorem follows immediately from theorem 8 by
taking Fourier transforms (using the second part of theorem 7 and
example 7). It can also be proved independently as follows. If
G(y) is a good function, then

Gy(y)=

is a good function. Hence

|7 srcma=66) [~ ey

G- Gl _g(o)*ﬂ. (20)

+[7 w01 v=coe), @)

where C is a constant, and the last integral vanishes because
38(y)=0. Hence g(y)=Cd(y).

2.3. Ordinary functions as generalised functions

DeriNirioN 7. If f(x) is a function of x in the ordinary sense, such
that (1 + x2)~Y f(x) s absolutely integrable from — oo to co for some N,
then the generalised function f(x) #s defined. by a sequence f,(x) such
that for any good function F(x)

sim [ f@R@ =] AR (22)
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Nore. The integral on the right is the integral in the ordinary
sense, which exists as the integral of the product of (1+x%)~7f(x),
which is absolutely integrable, and (1+%*)¥ F(x), which is a good
function. When the generalised function f{x) has been defined, this
imegrél has 4 meaning also in the theory of generalised functions,
and equation (22) states that these two meanings are the same.

PROOF OF CONSISTENCY. It must be shown that such a sequence
exists. We take*

Hie= [ A0 Stre-yme-tntat, )

where the ‘smudge function’ S() is any good function which is
1

zero for | y | > 1 and positive for || < 1and satisﬁesf S(y)ydy=1x.
-1

For example, S(y) may be taken as

peeE) { f b et dzjﬂl (24)
-1

for |y| <1 and zero for |y|>1; note that on this definition all
the derivatives of S(y) exist even at y= +1 (they are all zero

there).
‘We must now prove that the f,(«) are good functions, and that
equation (22) is satisfied. First,

|00 = [ A8 (- SOpte—pme-tinar
<n¥ima| S8y | elei I (1 (| 5]+ 7
< |7y ar
=0(|2[y™ as [x]|-o0forall M, (25)
where we have used the fact that where the integrand is non-zero
|x]—1<|t]<[x|+1.

* The S fact(l)r'in the integral ‘smudges’ f over a small interval (x—n-2,
x-4+n7%). The e~ factor makes it ‘good” at infinity.
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Secondly,
[RCLCE WL

o[ o]
[ soyeem{p(s-2)-ria) e
S IRCLCIGEE

< max
{yl<1

| Ry o a

©
—®

<7 i} mex | Py ae |

) A @
7 10t [ 1A

>0 as n->00, (26)

where 4 and B are constants and the facts that F{x) is a good func-
tion and that (x+#%)~Vf(2) is absolutely integrable have again been
used. This completes the proof of consistency.

Definition 7 increases enormously the range of generalised
functions available to us. Not only can all ordinary functions
f(x) with (1+#2)-Vf(x) absolutely integrable from ~co to o0 be
used as generalised functions, but one can obtain from them.
pew generalised functions by differentiation in accordance with
definition 6.

ExampLE 10. The discontinuous function sgn «, which is 1 for
x>o0and —1 for x <o, is a generalised function, and

dsgn afdx==28(x).

PROOF. sgn x satisfies the condition of definition 7 (with N=1x)
and, for any good function F(x),

f‘” d%;“‘z?(x)dxz _F sgnF'(x) da

-- f:F'(x)dHﬁ Fx)de=2F(o). (27)
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Turorem 10. If f(x) is an ordinary differentiable function such
that both f(x} and f'(x) satisfy the condition of definition 7, then the
derivative of the generalised function formed from f(x}is the generalised
Junction formed from f'(x).

Proor. This theorem, which shows that the notation f'(x) can
be used without risk of confusion, follows from the fact that both
definitions of it satisfy

f :o F(8) Fla) de= — f : S F() d (28)

for any good function F(x). With the second definition, equation
(28) assumes that f(x) F(x)—>o0 as x—-+c0 or x—>—o0. However,
the product must tend to some finite limit in each case, since’

|7 mopma [ reree

®
exists, whence both limits must be zero sincef f(&) Fx) dx exists,
~

Trrorem 11. If f(x) is an ordinary function which is absolutely
integrable from —o to 00, so that its r.7. g(y) in the ordinary sense
exists, then the r.1. of the generalised function f(x) is the generalised

Junction g(y).

Proor. The generalised function g(y) exists because g(y)
satisfies the condition of definition 7 with N=1; the integral

[ i5] wemmas (29)

remains convergent when each term is replaced by its modulus,
But, by the note following theorem 5, the ordinary function g(y)

satisfies o -
[emeorw=[" far-ne o

for any good function F(x) with r.T. G(y). Hence, by definition 7,
the generalised function g(y) also satisfies (30). Hence, by theorem
6, it is the 7.1. of the generalised function f(x). This theorem again
eliminates possibilities of confusion, this time between different
uses of the expression ‘ Fourier transform’.
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2.4. Equality of a generalised function and an ordinary
function in an interval

DerNITION 8. If h(x)is an ordinary function and f(x) a generalised
function, and o b
(LT RCE R (31)
— a

for every good function F(x) which is zero outside a<x<b (here,
a and b may be finite or infinite, and we assume the existence of the
right-hand side of (31) as an ordinary integral for all such F(x), thus
imposing a vestriction on the function h(x) in a<x<b, although it
need not even be defined elsewhere), then we write
fx)=Mz) for a<x<b. (32)
PRrOOF OF CONSISTENCY. The definition is consistent with the
maxim that everything is equal to itself, since if A(x) satisfies the
condition of definition 7, then the generalised function z(x) equals
(in the sense of definition 8) the ordinary function A(x) in any
interval.

ExAMPLE 11. 8(x)==o0 for o<x <o and for —co<x<o.

Proor. If F(x) vanishes outside either of these two intervals,
then F(o)=o0, and so by equation (10)

f ® 8(x) Flx) dz=o.

THEOREM 12. If B(x) and its derivative h'(x) are ordinary functions
both satisfying the restriction imposed on h(x) in definition 8, and f(x)
is a generalised function which equals h(x) in a <x<b, then

fx)=h'(x) i a<x<bd.

Proor. If F(x) is a good function which is zero outside a<x <,
then

" roree=-[" irees

. b b
- [[hapea=[ Karme 6

which proves the theorem. The assumption in the last integration
by parts that k(x)F(x)->0 as x—>a (and, similarly, as »—>3) is
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proved exactly like the corresponding assumption in the proof of
theorem r1o. The product must tend to some finite limit for any
good function F(x) vanishing outside @ <x <b, and if a= —o0 the

5
limit is zero because | A(x) F(x) dx exists. If a> —co, however, it
is zero because otherwise A(x) F(w)/(x —a) would not tend to a
finite limit, although F(x)/(x—a) is itself a good function vanishing
outside g <x<b.

ExampLE 12. Any repeated derivative 6®(x) of the delta func-
tion equals o for 0 <x<co and for —co<x <o (by theorem 12 and
example 11). It follows at once that any linear combination of the
™(x) similarly vanishes everywhere except at x=o, which is
interesting as showing what a wide variety of different generalised
functions can all be equal at all points save one.

Exampie 13. If f(x), g(x) are generalised functions such that
xf(x)=g(x), and if g(x) equals an ordinary function A(x) in an
interval @ <x < b not including =0, then f{ix) = x~(x) in a<x < b.

ProoF. If F(x)is a good function which is zero outside a<x <5,
then so is #~1F(x). Hence,

J " f) e de= f " (o) () d

-[7 swrrm s [ Ko reas 6o

which proves the result. Note that, by theorem g, the various
functions fx) with xf(x)=g(x) all differ by constant multiples of
&(x), which does not invalidate the result since 8(x)=o in such an
interval,

2.5. Even and odd generalised functions

DEFINITION 9. The generalised function f(x) is said to be guen (or
odd, respectively) if fw fx) F(x)dx=o0 for all odd (or even) good
Sfunctions F(x). ”

EXAMPLE 14. &(x) is even.

Proor. F(o)=o for all odd good functions F{(x).
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ExampLE 15. If f{x) is an even (or odd) ordinary function satis-
fying the condition of definition 7, then the generalised function
fix) is even (or odd).

Proor. This follows immediately from definition g.

THEOREM 13. If the generalised function f(x) is even (or odd,
respectively), then its derivative f'(x) is odd (or even), its r.1. g(y) is
even (or odd), while §(x) f(x) is even (or odd) when the fairly good
function @(x) 75 even, and odd (or even) when $(x) is odd.

Proor. This follows immediately from theorem 6 and the corre-
sponding results for good functions.

ExampLE 16. 8®(x) is even if n is even and odd if n is odd.

Proor. This follows from exarople 14 and repeated application
of theorem 13.

THEOREM 14. If f(x) is an even (or odd) generalised function, which
equals an ordinary function h(x) in the interval a<x <b, then

f®)=+h-x) in —b<x<-—qg (35)
with the upper sign if f(x) is even and the lower if f(x) is odd.

Proor. If F(x) is zero outside —b<x < —a, then F(—x) is zero
outside @ <x <4, and also F(x) F F(—x) is odd (or even). Hence

[ soorwas= <[ farrc-sas
= iﬁh(x)l’(—x)dac= if::h(—x)F(x) dx,
which proves the theorem.

2.6. Limits of generalised functions

DErFINITION ro. If f{(#) is a generalised function of x for each
value of the parameter t, and f(x) is another generalised function,
such that, for any good function F(x),

i [* foRee=[" faRee 66

then we say lim i) =fle). (37)
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Here, ¢ may be finite or infinite, and t may tend to ¢ through all real
values or (when ¢=co) through integer values only.
TaeoREM 15. Under the conditions of definition 1o,

lim fi(@)=f"(®), lim j{av+b)=fax+b),
t->¢ e 8
lim 49 18)= 59 12, } 69

for any fairly good function ¢{x), and
lim g(y)=(), (39)

where g(y) and g(y) are the r.1.’s of f(x) and f{x).

Proor. The proof of this remarkable theorem offers no difficulty,
following closely the lines of the proof of consistency of definition 6.
For example, if F(x) is any good function,

limfuo f;(x)F(x)dx:—limfw Ji%) F'(x) dx
ol ~o tered —e0

=~ forea=" f@ R o

whence by definition 1o the first result follows; and similarly with
the others.

ExampLE 17. lim ¢| %[ t=20(x).
e—=>0
Proor. This is obtained by differentiating the result

lim | x |¢sgnx=sgnx (41)
>0

and using example 10 and theorem 15. To prove (41), let F(x) be
any good function, Then

[ ——

<ie[” floglxl{(s+ 5] P 8=00)  (42)

as e->0, where the inequality |tanhz | <|z| has been applied to
z=j}elog|x|.

Two specially useful kinds of limiting operation are now given
their usual special names and symbols.
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DEerINITION 11. Iffi(x) is a generalised function of x for each value
of the parameter t, we define
2 . X)) —f{) 2 L
2 py=im B 5 gyt ), ag)
ot st It 10 B0 bl
provided in each case that the limit function exists.

ExamvpLE 18. If (8/0%) fi(x) exists, then aat{ f(x)} exists and

equals { f,(x)}
Proor. By theorem 13,
[ SO _ & =)
tt Ht -t L=t
Nore. Similarly, the %.1. of (9/2%) fi(x) is (8/31) g,(y). Theorem 15

also shows that we can differentiate or take Fourier transforms of
series, term by term. This fact will be continually used in chapter 5.

. ExerCisE 1. Prove that

xS ) =(—1)* 1 80=x) (m2n), o (m<n)
(44)
Prove that the general solution of f™(x)=o0 is a polynomial of
degree n—1. By taking Fourier transforms of this result, or other-
wise, prove that the general solution of x%f{x)=o is a linear com-~
bination of &(x) and its first (z — 1) derivatives.
+ Exercise 2. If ¢(x) is any fairly good function, prove that
$(x) 8(zx) = $(0) 5(x)- (43)
More generally, from the results of example 8 and exercise 1, or
otherwise, prove that
) x) = = - Q) )
#3)= B (=17 o s G0, (46)
< Exgrcise 3. If f(x) is a generalised function and g(y) its F.1.,
find the F.T. of a7f{(x).
Exercise 4. Prove that
tim S 0(e) )

Norte. This is the Fourier transform of 2 much simpler result.

(m)

sinnx
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CHAPTER 3

DEFINITIONS, PROPERTIES AND
FOURIER TRANSFORMS OF PARTICULAR
GENERALISED FUNCTIONS

3.1. Non-integral powers
In this chapter a number of particular generalised functions are
defined and studied, some for their intrinsic interest and wide-
spread utility, and others solely for their application to the tech-
nique of asymptotic estimation of Fourier transforms described in
chapter 4. We begin by defining non-integral powers, and more
precisely (since non-integral powers of nmegative numbers have
without further particularisation no precise meaning) the functions
|2, |#|*sgnx and xoH(x)=}(|x|*+|=|*sgnx), (1)
where H(x), equal to 1 for x>0 and o for x <o, is Heaviside’s unit
function. The first of expressions (1) is an even function, the second
odd, and the third (the mean of the other two) vanishes for x<o.
These expressions are generalised functions of & by definition 7
when > — 1. The differentiation rules
d_dxl x|*=a|x|*tsgnuw, % |x|2sgna=c x|t
. @
o w2 H(x)=ax*H(x),

follow from theorem 1o, provided that a> o (so that a—1 as well
a: 2 exceeds —1). It is convenient to use these equations for a <o,
repeatedly if necessary, to define the appropriate generalised
functions for non-integral ¢ less than —1.

DEFINITION 12. If a < —1 and 1s not an integer, then we define
three new generalised functions as follows: )

=] [ %[+ (sgn )
I

L T S T— atn n+l

@E D @i ar) #ema ()

wH(x) w*trH(x)

where n is an integer such that +n> —1.

|a|*sgnax



PARTICULAR GENERALISED FUNCTIONS 3r

ProO¥F OF CONSISTENCY. The value of 7 chosen is immaterial,
by equations (2). Definition 12 now extends the validity of these
equations to all non-integer & The relation (1) between the three
functions, known in the first place for > ~ 1, is similarly extended,
by repeated differentiation, to the three new gen=ralised functions
defined by equation (3). By theorem 13, |x|* is an even, and
| % |=sgna an odd, generalised function.

Each of the three new generalised functions of definition 12 is
equal to the ordinary function of the same designation in the
intervals o<x<co and —co<x<0, by repeated application of
theorem 12. (Note that the restriction on () imposed in definition
§ is satisfied by all these functions in the intervals stated, because
a good function F(x) which is zero outside either interval must
tend to zero faster than any power of | x| as x~>o0.) Hence, 2s the
ordinary functions are undefined at x=0, no conflict between the
new and established usages is possible.

One can use definition 12 to interpret ‘improper’ integrals like

fax“F(x) dx, in which « is non-integral and < —1 and F(x) is a
0

good function,* as
|7 ottt - tie—a piay e, @

where the second term in curly brackets is to be interpreted as a
generalised function by definition 7. Integration by parts can be
used to express (4) as an ordinary integral. We need the fact that,
by theorem 1o, if f{x) is an ordinary function (here 2%) differentiable
for x> a, then

S U Ha—a))= () ) Bz~ )] +l@) oz ~a)
=) B~ 0) (@) 3z —a), 5

which is easy to remember because of its similarity to the ordinary
rule for differentiating a product. Applying this repeatedly to the

* More generally, it is sufficient that F(x) be differentiable any number of
times in some interval which includes (o, a). This is because any such function
necessarily coincides with some good function in (o, a).



42 FOURIER ANALYSIS AND GENERALISED FUNCTIONS
second term (and using equation (3) for the first), we obtain
x*H{x)—x°H(x—a)
et & e Hx—d
@t (oz—l-n)dx"rx {H(a) — Bl

+ﬁ+;6‘(x—a)+ —v)(?’(x—a)+...

(x+ 1)(zx+2
axtn
+(:z+ )(a+2)... (a+n)

which on substitution in. (4) gives the interpretation

“ (=1 * (n)
~}-,,"CKIF(M)CI"“(::?TI)(GL-&—Z)... <x+n)f ) de

-V x—a), (65

a*t?
u_HF( - EinEig T @
(~1)rtartn

(oc +1){x+2) ... (e+n) FoHa). ”

Equation (7) is what the ordinary formula for repeated integra-
tion by parts would give formally, if 2ll the contributions from the
Jower limit (which invelve 0#12, 0242, ..., 0**%, and so are ‘infinite’
if 7 is the least integer with a+n> — 1) were omitted. For this
reason the. interpretation. (7) was given the name ‘finite part’ by
Hadamard, who showed that the finite part obeys many of the
ordinary rules of integration. Its inclusion within the framework
of generalised-function theory makes this conclusion readxly
intelligible.

The rest of this section is devoted to obtaining the Fourier
transforms of the functions of definition 12. We need some pro-
perties of the factorial function w!, called I'(+1) in the older
books, and defined for &> —1 as

o
f weadg=al, ®

0
where &= is of course positive. The straight path of integration in

(8) may be rotated about the origin through any angle <3, pro-
vided that x* is taken as a function regular in the right-hand half
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plane which is equal to the positive number x* for real positive x;
in other words, the many-valued function x* must be made precise
by taking |arg# | <4m. Hence, if a is any complex number with
positive real part,

fmx“e—“ dx=a‘“'1f zeerdz=qlael, )
0 0
by the substitution ax=x; and in (9) we must have |arga | <{m,

in order that arg z=arg a shall satisfy the same condition.
To obtain the F.T. of x*H{x) for &> — 1, we use the limit property

1im x® e~ H(x) = x*H(x), (10)
>0
which holds for &> — 1 because for any good function Fx)
f ° (1~ x2F(x)de
0 .

as -0, where A=max|s**iF(x)]. Now, by theorem 11, and
equation (9) above, the 7.1, of x* e~ H{x) is

QI_e-zl
SAJ de=24./(mt)>0 (11)
o at

@ . d® (g —n)l(¢+2miyyaot
~ATINE g = 1) e il 2
fo xre T Qoo =l (£ 2711y i (—anl .
(12)
But, by theorem 15, the 7.7, of x*H(x) is the limit of (12) as t—>o,
and this is the nth derivative of the limit of the quotient, namely,
& (a=)l(am |y |)=-tebrioe s
dy* (—zm)

~{ebemmal(an|y )~ (i3)

In (13) the limit of the quotient is given for n—a—1>0, when
the limiting result is easy to prove, using the rule about the argu-
ment of 2 in (g). The nth derivative of this limit is then evaluated
from definition 12, which" defines as repeated derivatives the
generalised functions |y[~** and |y|—=1sgny, of which, by
de Moivre’s theorem, expression (13) is a linear combination.
Now, by theorem 7, the F.1. of f'(x) is 2aiyg(y) if the F.T. of
f(x) is g(y). Applied as a check to (13), this says that the F.T. of

WOHER L ebemal(an]y ), (19

3 LFA



34 FOURIER ANALYSIS AND GENERALISED FUNCTIONS

since jy=ednisenv|y| Equation (14) shows that the expressior
(13) for the F.7. of x=H(x) is valid for & — 1 if it is valid for &, and s
extends it by induction to all values of @, which is necessary because
the proof given, using the integral expression for the factoria
function, applies only when > —1.

Since

lxl“=x“H(x)+(—x)“H(—x),} (xg)

| % |*sgn a = xH(x) — (—x)* H( ~ ),
and by theorem 7 the F.T. of (-~x)* H(— ) is obtained by changing
the sign of y in (13), we deduce that the .T. of | x|is
{zcosim(a+ 1) (2m |y ]yt (26)

(which is even, in agreement with theorem 13), and that the r.T.
of |x[*sgnx is

{~zisinjn(a+1)}al(2r]y|)=sgny (x7)
(which, similarly, is odd). Conversely, if (16) and (17) had been
derived first, (13) would follow from them by equation (1).

i EXERCISE 5. Show that

1 da
=} +4
fo *¥(1+ %) s
wEXERCISE 6. Prove that the equation xf(x)=|x|* is satisfied by
fix)=]|x|**sgna. Are there any other solutions?
LExercisE 7. Check that Fourier’s inversion theorem (see
theorem 7) is satisfied both by | x|* and by |« [sgnx.
Notz. The standard formula
al(—a—1)l= —mcosec me (18)
will be required.
3:2. Non-integral powers multiplied by logarithms
DEermNITION 13.

[x]"‘log]x[=;~%|x]“, {x]‘log[xlsgnx:%(]x[‘sgnx),

) (19)
x*log xH(x)= 5{;{%"1{ (*)}. .
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Note. These equations are of course true in the ordinary sense
for o> —1. For non-integral & < — 1, they may be taken as defining
the generalised functions on the left-hand sides; the derivatives
with respect to « (in the sense of definition 11) then exist by
repeated application of the result of example 18. This example
shows also that the ordinary rules of differentiation apply to these
functions; for example,

?
4 (2 etog e )=y 1 5le= s |55 ] ogn)

=|x|*tsgnx+a|x|*log|x|sgnz, (20)
as one would obtain for positive o by direct differentiation.
The £.T. of | 2|*log | x|, by the note following example 18, and
by equation (16), is
S [{zcos et D)} al(am| y )]
={2cos}m(a+ 1)}l (am |y )=
x{~log (e |3 ) +¥e)—Jriankmlat 1)), (21)
() =E—ilog (G218 (22)
Similarly, that of |x |*log | x| sgna is
{~zisindn(ec+ r)}al{am |y |y *?Psgny
x{=log(am|y [} +¥(@) +imcotin(e+1)}, (23)
and that of x*log xH(x) is

{e-brierbma} gl (20| y [}~ log (a7 | y |} + ()~ Imisgny}
(24)

where

3.3. Integral powers

Throughout the rest of this chapter, n signifies any integer >0
and m any integer >o. By the second and third parts of theorem 7,
if f(x) has F.T. g(y) then

xf(x) has RT. (—2mi)g®(y). (25)

(This is the solution to exercise 3.)
32
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Hence, by example 7, the .1, of #* is (—27i)™6®(y). This, as
theorem 15 requires, is actually the limit as @->n of expression (16)
when 7 is even, namely

1
ji_r)r;[:{zcos%ﬂ(cw1)}(_a)(_a+1;‘m(_GH_”_‘I)

1 dn 1
x {am Gy [y [iren

={lim 2cos §m(o+ 1)} (zﬂ;nﬂ (;i_y’:;{agbfynll—:_ﬂ}

a0 n—c
i O (), (a6)

where theorem 15 and example 17 have been used. Similarly, it
is the limit as oz—>n of (17) when z is odd.

We next define negative integral powers of x; the only problem
is how to define x~%, the others being deduced from it by differ-
entiation.

DeriNITION 14. %71 &5 the odd generalised function satisfying
af(x)=1; and e (1t gmt

T =) det

ProoF oF consisTENCY. The equation xf(x)=1 has such a solu-~
tion, since fix)=dlog|x|/dx is an odd generalised function by
theorem 13 and example 15, and it satisfies

#f(x)=d(xlog | »|)/dx—log | x|=1. (28)
By theorem g, the general solution is f{x)-+ Cd(x), but this is odd
only for C'=0, by example 14. Hence the definition specifies x~!
uniquely, and theorem 12 shows thatit equals the ordinary function
#lino<x<wandin —co<x<o. Notealso that x— has a similar
property and (by theorem 13) is even when m is even and odd when
m is odd.

Now, if sgnx has £.T. g(y), then by example 10, theorem 4 and
example 7, 2miyg(y)=2. But g(y) is odd by theorem 13, and so
(by definition 14) it is (#i)y~1. Hence also, by equation (25), the
F.T. of x"sgnx is

(~2ni)y= ("i)"ld-dyi,, (y ) =2(nh) (2niy) 2. (29)

(=) (27)
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Now, when = is even, x*sgnx= lim{x|*sgn«x, and so, by com-
a->rn

paring the limit of {17) as &7 with (29) (and using theorem 15),

we see that fim |y | tsgny=y-r1, (39)
QT

When # is odd, #%sgna= lim | x [%, and so (29) must be compared
&—rn
with the limit of (16), and we infer that in this case
lim |yt =yt (1)
a—rn
These properties are satisfactory features of definition 14.
Definition 14 is also closely connected with Cauchy’s *principal

value” of an integral whose integrand has an inverse-first-power
singularity. In the present theory, if F(x) is a good function and

b
a<o<b, the integral f 2~2F(x) dx must be interpreted as
a
Y e Ha-b) - Ha- ) Py e, (32)
But, by equation (),
a1 Uz — b) ~ 5~ \H(a — x)
d
= log || {1~ H(w—B)— H(a-a)]
+(log8) 8(x—b) —(log| a|) é(x—a), (33)
which substituted in (32) gives the interpretation
b b
f 1 (x)dx= «f (log | x|) F'(x)dx+ F(b) log b~ F(a) log | a|.
a a

(34)
This may be compared with the * Cauchy principal value’, defined as

e T
+F(b)logh— Fle)loge + F(~¢)loge— F(a)log | a j}, (35)

which is seen to be identical with (34).
In the same way, integrals involving other inverse-integral-
power singularities can be interpreted by definition 14, and this
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interpretation also has been anticipated by a number of writers,
We obtain as above {but with repeated integration by parts)

f '”‘F(x)dx__ I)J &LF=D(x) die— GonE(p) —at (e

m—1
B2-mF(B) — a2 F"(a) b1 Ftn=a(p) a—lF(”"z’(a) o
R e B R T I R

where the Cauchy principal value itself has been left uninterpreted
because most readers will be familiar with these integrals, The
interpretations (36) and (34) are valid (see the footnote to equation
(4)) if F(x)is any function differentiable any number of times in an
interval including (a, 5).

We have treated &7, a"sgna and x~™; more serious difficulties
are presented by a~sgnx. These difficulties are already fully
present in the case m = 1, that is, for the function | % |-L. The limit of
the generalised function | x |** as e-> o does not exist, as example 17
clearly shows. Again, all the solutions of the equation

xf{x)=sgnax
are even, so that the method of definition 14 cannot be used to pick
out one of them. Particular solutions can be specified, but they do
not obey the manipulation rules which one expects of a function
called | x|~%
ExampLe 19. If flx)=d(log|x|sgnx)/dx, then xf(x)=sgnzx,
but flax) | a|fz).

Proor. The first part is proved as in equation (28); also

flax)= df(log x|+ 10§(|L: |)sgna sgna}

1 d
“Ta d-a—c(log || sgnx+log|a|sgnx)

I
=1z V@) +2log| a| 8(x). 37)
The only satisfactory definition is one which admits the in-

determinacy, in the same way as does the definition of the ‘in-
definite integral’.
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DEFINITION 15. The symbol | x|~ will stand for any generalised
function f(x) such that xf(x)=sgn. The symbol x~™sgnx will stand
Jor (— 1y (m—x)! times the (m—x)th derivative of any of these
functions.

Thus (by theorem g and example 19) | #|~* can be written as

—(log[x]sgnx)-}—C(? (a0) = dx{(log|x]+C)sgnx} (38)

and ¥~™sgnx as

2 g1+
((;I)mﬁ1 o log| x| sgn¥) + COmI(),  (39)

where C is an arbitrary constant in each expression (not the same
in each). Study of example 19 shows that, with C arbitrary in this
sense, definition 15 gives | ax|=|a|~*] x|

Again, it is only with C arbitrary in this sense that the relation
w(w™sgnx) =x~"Vsgna holds.

ExaMpLE 20. lim {] o] —2672(x)} = | % |2
e~r0
PrOOF. An equation like this means that the limit exists and

equals one of the values of | x|~ Itis obtained by differentiating
the result

i I—x-[—“gigﬁic—-lcg | %] sgnx. (40)
Exampie 21. The r.1. of log| x| is —3 |y |
Proor. Since log|x|=lim(1—|=|~)/e, its F.T. (by theorem 15
and equation (16)) is
lim 8(9) —(asind7) (=)} a7 e
~ —lim {[x+ eflogam)~ ¥(o)}+ O(eA] | [ ~20(3)}
= ~Hlim{|y |t ~2e7(y)} ~ {log (am) -4 (O} 83),  (41)

by example 17. Expression (41) is (—3) times one of the values of
| [ (though a different one from that in example 20).
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Conversely, the r.T. of | x| is
—2(log|y]+C), (42)
where the arbitrary constant C is present because |x|[~! contains

an arbitrary multiple of é(x). It follows from (42) by definition 15
and theorem 7 that the F.1. of x ™ sgnax is

—2(-(;71%{))—? (log]y|+C). (43)

Note finally that, by theorem 12 and example 12, all the deter-
minations of x~"sgnx are equal in the intervals —co<x<o and
o<x<oo, and equal to the ordinary function ¥ ™sgnx in these
intervals.

3.4. Integral powers multiplied by logarithms
The generalised function xlog|x| exists by definition 7, and
its F.T., by example 21 and equation (25), is

(zmy)n+1 sgny, (44)
a result which can be checked against equation (43) and Fourier’s
inversion theorem,

The generalised function ™ log | x| requires definition, but like
x~™ itself it presents no difficulty. In fact, if mis even, | x|*log| x|
tends to a limit as «——m, as is proved by the fact that its F.1.
(expression (21)) can be written as

|y ;= {=log(am |y [} +¥{~a—1)
—mcotma+ 4 cotma}  (45)

.

(—oe—1)!cos o

(where equation (x8) and its logarithmic derivative have been used
to put (45) into a convenient form), and that this tends to a limit

A2 snsllog ey D —pm-1)  49)

as a->—m. Similarly, we may infer that |x|*log|x|sgnx tends
to a limit a&->—m if m is odd, from the fact that its F.T. (23) tends



PARTICULAR GENERALISED FUNCTIONS 41

to a limit, which again can be thrown into the form (46). These
facts make the following definition appropriate.

DeriviTIoN 16, The generalised function x™log|x| i the
function whose r.r. is (46), so that it @5 the Limit as a—>~m of
|&|=log| x| if m is even and of | x|*log| x| sgnx if m s odd.

Fourier’s inversion theorem applied to definition 16 gives us
that the £.T. of x™log | x | sgnx is

- (zmy)n-'-l{log 27|y [y~ 9(n) (47)

In connexion with (46) and (47) the reader may like to be reminded

that 11 N
Yin)= —'y+x+;+3+...+;, (48)

where 7= —(0)=0-5772 is Euler’s constant.

Finally, we come to the function x™™log|x|sgn«, which like
x™sgnx presents more serious difficulties, and involves a certain
indeterminacy. It is most expeditiously approached from the
special case n=0 of (47); the F.T. of log | x| sgnx is

—W—{log G|y +vi= —ﬁ;{log(myl)w}“ (49)

If now f(x) is taken as the function whose £.T. is {log (27| y |) + )2,
it follows from (49) and (25) that

afx)=log| x| sgn. (50)
However, by theorem 9, the general solution of equation (50) is
Ax)+ Cd(x), and there is no way of selecting one solution as more
suitable than the others (for example, all are even) and, indeed,
if C is not left arbitrary, the ordinary rules of manipulation cannot
be applied to this function and those derived from it by differen-
tiation.

DerNITION 17. The symbol |x|"log|x| will stand for any
generalised function f(x) which satisfies equation (50). The symbol
x™log | x| sgnx wwill stand for

=0 ey, ( ) ~m
x+H—++ +————x sgnx, T
-1 f () 3 gnx,  (51)

where f(x) is any generalised function which satisfies (50).
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Nortk. (51) is the equation relating the corresponding ordinary
functions.
Under definition 17, the k.1, of | x| log| x| is
{log(em |y 71+ G (52)
where C is arbitrary, and that of x™log|#|sgnx can be thrown
into the form

2 g nls - bn 69

where C again is arbitrary (and not in general the same in each
formula).

3.5. Summary of Fourier transform results

The complete set of Fourier transform results for the elementary
functions possessing algebraic or algebraico-logarithmic singu-
larities at =0, which have been derived in the foregoing sections,
are collected for easy reference in table 1. By use of this table it is
possible, as will be seen in chapter 4, to write down the asymptotic
behaviour of the F.T. of a function as |y|—-co by inspecting its
singularities and adding up the F.T.’s of the elementary functions
which have the same singularities. As these singularities are not
always at the origin, the formula which expresses the r.1. of
Jflax+b) in terms of that of f(x) (theorem %) must frequently be
used in conjunction with table 1 and accordingly has been written
under it.

" ‘The kind of singularity occurring in most applications consists
of some linear combination of those in table x. Very occasionally,
however, terms involving higher powers of log|x| are present.
The reader should be able to derive the F.T. of a function involving
(log|#[)® or higher powers by the methods of this chapter (for
example, in §3.2, further differentiations with respect to & would
be necessary); one set of results involving (log|x|)? can in fact
be obtained directly by applying Fourier’s inversion theorem to
the result (53). ’

Table 1 can also be used to find directly the Fourier transform of
any rational function. By a familiar theorem in algebra any rational
function can be expressed ‘in partial fractions’, or more precisely
as a linear combination of integral powers x™ and negative integral



43

ﬂ. ﬁxﬂyléu St (%) 2y JO L Y .zuﬂgnc& .Amvu -

1

ST {q-+ap)f Jo "xa a1 udyy ()3 ST (x)f JO “L'x B 31 Yo

3081 243 ynas Joyqzafio) pasn usiM slqeniea A[je1oads st 91qel AU, (%) r-unf JO SdNNGI AIe31Q18 UB JO JUAIXS 9y} 0} AIBUIWISRIPUI Y10q I8
#uls | F0] ¥ pue & Uds ,,. & osnEdaq JUAsHId 51 YOIYM JUTISUCD AIBIIQIE U JO§ ) PuE ‘o < 1a8ojuy Luk 305 u ‘o <& JoFojui Aut Joj u ‘TeBojur
UE 30U TaqUIMW [833 AUE JOJ Spuels © ‘€ sopdeqd InoyBnolt) su [am 58 L 2(qEl UT “r—-(f122) (j1)T St x uls 4 3O "Ld oy} ‘snyy, ‘Uwmos §3
3O pray 94} Je uoIssIrdxs AUY Y4 401 S3T JO PEsY 211 I Uolssardxs 9y Jo 3onposd 9y) Jo uirojsusI} IALINO,] AYY SE L1309 YOBE X UL,

[0 +{(x —w)p — (| 4] u2) Bor+

[0 +5{(1 —wu)p — (1 €] uZ) Bog}] x

(G~ —(] €] w2) Bol} x

o[ €] 22}% {anascismpuy-2}

A uds ;5 (| €] w2)jo {{1 +0)uf uis 12—~}

(] €] £8)j0 {(1+2)uF s00 2}

i(1—w) 1(x — ) i3 —w) {x] 5ol wr
« uBs §iE] T e £ usds uEE S w
() — (1 42) Bog + € uBs 1§} x
praSTu) (@A) Bop 2D Cue AT o, I%] 80
lllll - i
m
{€ uls suf — @)+ (| £] 2) Boy—} % | {(1 40} 300 1§ + () + (] €] 22) Bop—} x| {(1 +)u} ued 2§ — (D) + (| 6] %) Boy—} x || B0} o] x|
1-o-{| €} £2)2 {1 assrsmpres—2} € uBs ¢ (| €] 22 {(x +-w)uf ws 12—} (| | £®)iw {(x +0)u§ soo 2}
{o+14] Bor+4 uBs wh)x
i(r—uy 1(x—u)
\_MAWMWV:V _ O+ g0) — r e s e it
e
T | gt} umz—) (A7) 2z () ulemz —) o
(1)

(€724

x uSs

1 o1qu],




44 FOURIER ANALYSIS AND GENERALISED FUNCTIONS

powers (x—c)~™ for different real and complex values of ¢. The
F£.T. of 27, and of (x—c)™ for real ¢, can be read off from table 1.
For complex ¢ we need the following additional result.

ExampLE 22. The BT, of {x— (e, +ic)} ™ for ;40 is

i~ cpy)sgnes AT e ()

Proor. The result (12), with a=m—1 and f=27|c,|, says
that the r.T. of 1l ety i

o X e i e My

oy = e Z e ) (s3)

is g(»)=(y—1|¢; )™, whence by Fourier’s inversion theorem the

e of (v=icg ™= (sgn el sga.cy) (56)

is
(sgne)™ f{—ysgney)=2misgn Cz( 0 zmy)) et H{ —yc).
(57)

Hence, by theorem 7, the F.T. of {#— (¢, +icy)}™ is =2 times
(57), as (54) in fact states.

It is worth noting that expression (54) is 2H(~¢,y) times what
is got by inferring (incorrectly) the £.T. of {x— (¢, +ic)}™ from
that of 7 by means of the result quoted at the bottom of table 1
(which is valid only for real & and b, and therefore applicable only
for ¢5=0). It follows that the ¥.T. of (x—c,)™™ is not the limit of
that of {x— (¢, +icy)}~™ as ¢,—o0 either from above or below, but
that (since H(—cyy)+H(c,y)=1) it is half the sum of the two
limits. (This point emerges clearly also from a contour-integration
approach to the evaluation of Fourier integrals.)

We end this section with an example on finding the F.T. of a
rational function.

ExampLE 23. The F.1. of flx) =4%/(x*—1) is

& ——@+ dai(eW~ cos 2my) sgn y. (:8)

Proor. In partial fractions,

S SN S
fey= x+x+1+x—r x+1 x—1 (59)
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whence, by table 1 and example 22,
I 1 § .
£(3)= =5 )+ eI (- misgny)
~}(emi){~H(y)e* + H(-y) e}, (60)
which on simplification takes the form given.

Exercisk 8. Show that
r ate P dx=g
Exereist g. Find the £.1. of
(1 —x)Hog (1 —x) H(x ~x).
Exercrs 10. Find the F.T. of

) (@+s5x+4y? () (Praxs 5%
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CHAPTER 4

THE ASYMPTOTIC ESTIMATION OF
FOURIER TRANSFORMS

4-1. The Riemann-Lebesgue lemma

An asymptotic expression for a function is an expression as the
sum of a simpler function and of a remainder which tends to zero
at infinity, or (more generally) which tends to zero after multi-
plication by some power. When we do not know the Fourier trans-
form of a given function, it is convenient to possess at least an
asymptotic expression for it. In this chapter we develop a method
which leads quickly to such an asymptotic expression for most
functions occurring in applications.

The method involves writing the given function, say f{x), as
the sum of a simpler function F(x), whose F.T. G(y) we know, and
of a remainder fz(x), whose F.T. gx(y) tends to zero, or (more
generally) is such that the F.1. (2711y)Y gr(y) of its Nth derivative
(%) tends to zero. Then the F.1. of f{x), say g(y), satisfies

8(3)=G(3)+2r(3) =G} +o(|3 ) ®
as | y|~—>c0.

To develop such a method, we need a simple technique for
recognising functions whose Fourier transforms must tend to zero
as |y|—>co. The following theorem is the classical result which
does this for ordinary functions.

Treorem 16 (The Riemann-Lebesgue lemma), If fix) is an
ordinary function absolutely integrable from —oo to oo, and g(y) is
its r.1., then g(y)—>o0 as | y| 0.

Proor. This theorem is proved in standard books on analysis;
we remind the reader that one writes

.

8(y) =f:° Six) etmiav dy = — f :u f (x+ ;I;) ererdy  (2)
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by a simple substitution, whence

len! =’§fl {f(x) —f(.x'-}‘%)}e—znlzydx!

1=
<=
L

which tends to © as |y |- by a fundamental theorem of in-

fe)-f{x4 2o )

tegration.

To use theorem 16 one must be able to recognise absolute inte-
grability in commonly occurring functions. The most useful test
is as follows.

ExampLE 24. If f{x) is continuous except at x=x,, x=uay, ...,
%=y, and if
f@)=0(x—x,|#) as x>, where f,>~-1 (4
for m=1to M, and
f®)=0(|x%) as |x|>o0, where fi< -1, (s)
then f{x) is absolutely integrable from —co to oo and therefore its
RT. g(y)>oas|y]—>cw.
ProoF is immediate from the integrability properties of the
comparison functions.
Exampie z5. The function
f)=let—1|sgnx {6)

satisfles the conditions of example 24, with %= —1, x3=0, 23=1,
By=—14, fy=0, fz=—1% and S,= —2. Hence its F.T. g(y)->0
as |y |0,

4.2. Generalisations of the Riemann-Lebesgue lemma

We need results similar to theorem 16 for generalised functions.
We begin with some rather trivial definitions.

Drrmnrrion 18, If g(y) @5 a generalised function, then anmy
statement like

gy)=o, g)=0kh()}, or gy)=olh(y)} (n
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as y—>c (or as |y | —>c0), means that g(y) is equal in some interval
including y=c (or in some interval |y|> R, respectively) to an
ordinary function g((y) satisfying the stated condition.

ExaMPLE 26. 8(y)+yt—>o0as |y|-—co.

DEerINITION 19. If f(%) is @ generalised function which equals an
ordinary function f,(x) in the interval a<x <b, and fi(x) is absolutely
integrable in the interval (a,b), then we say that f(x) is absolutely
integrable in (a,b).

ExAMPLE 27. 8(x) is absolutely integrable in (o, c0) and ( —co, 0),
but not in (~ c0,0).

THEOREM 17. If a generalised function f(x) is absolutely inte~
grable in (~0,0) and g(y) &5 its r.1., then g(y)—>0 as |y |00,

Proo¥. This, by definitions 18 and 19, is just a rewritten version
of the Riemann-Lebesgue lemma.

Now, the condition in theorem 17 may be split up into two
conditions—absolute integrability in every finite interval (— R, R),
which holds for the function of example 24 subject to equation (4)
alone; and absolute integrability up to infinity, which in that
example requires also (5).

The first condition (absolute integrability in every finite in-
terval) cannot easily be relaxed if we are to have g(y) o as | y | ->o0.
Thus, functions satisfying (4) only with §,,< —1 do not normally
have g(y)—o, as table 1 shows. The reader should check that all
the functions in table 1 with the " factor, or the factor | x |= for
a < —1, have Fourier transforms which are non-zero or infinite
at infinity, while the result about the r.T. of f{ax+b) shows that, if
the non-integrable singularity is at x= —b/a instead of x=o, the
behaviour of the F.T. as | y | o0 is still not a subsidence, but rather
a finite or infinite oscillation. Again, the delta function and its
derivatives have F.7.’s which are non-zero or infinite at infinity,
and so generalised functions which miss being absclutely integrable
because of singularities of thés type will not have their ».T. —o.

However, table 1 also shows that the second condition (absolute
integrability up to infinity, as implied by equation (5) for example)
is by no means generally necessary. The reader should check that
all the functions in table 1 which are absolutely integrable in every
finite interval (namely, those with the x* factor, or the factor | x|*
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for > — 1) have Fourier transforms which =0 as |y |00, even
though none of these functions is absolutely integrable up to
infinity.

It would be wrong to conclude from this that absohtely any
generalised function which is absolutely integrable in every finite
interval has its ¥.7. tending to 0 as | y | 0.

Exampie 28. The F.1. of €22 is e~ (x 1 1) /(1n), which does
pot >0 as | y|—+co.

Proor. The r.T. of the ordinary function ei=", of which ei# is
easily seen to be the limit as >0, is

@ w
f -2t -2may 0 o e MEe) j elde) lz-nlefi-ei® dy
- -

- P A/ (eh:) , ®)

which is In the limit as ¢ o is the function stated.

However, the function of example 28 is somewhat exceptional
in that it oscillates with a frequency which itself increases to infinity
as |x|->oc0. Most functions occurring in applications do not do
this, and the following definition and theorem represent an attempt
to include most of them in a general statement without making
the latter too complicated to prove,

DEFINITION 20. The generalised function f(x) is said to be ‘well
behaved at infinity’ if for some R the function f(x) — F(x) is absolutely
integrable in the intervals (—co, —R) and (R,o0), where F(x) s
some linear combination of the functions
ebslx |8, efe|xlbsgnw, eF|x|lloglx|, el*®|x|flog|x|sgnz,

()
Jor different values of 8 and k.

Norte. Obviously no values of §< ~1 need be present in F(x).

TreoreM 18. If the generalised function f{x) is well behaved at
infinity and absolutely integrable in every finite interval, and g(y)
18 its £.T7., then g(y) >0 as | y|-+c0.

Proor. Itis convenient to divide up the function F(x) of definition
20into the terms F(x) with #> — 1 and the terms Fy(x) with f= — 1.
If Fy(w)=o0, the proof of theorem 18 is trivial, for F,(x) is absolutely

4 LFA
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integrable in every finite interval (it satisfies equation (4)) and
therefore f{x) - F,(x) is; but the latter is given to be also absolutely
integrable in { ~co, —R) and (R, c0), and hence finally in (— o0, c0).
Hence, by theorem 17, if Gy(¥) is the £.T. of F(x),

25)-Gyy)>o as -[p|>co (10)

But Gy(y)->o0 by table 1, and so g(y)~>0 as | y | >c0.
This method fails when Fy(x)%o, since Fy(x) is not absolutely
integrable in any interval including the origin. However,

By#) (|=]>R),
Fy(x)=1F(R)(R+x)+ F(—R)(R—x b44
= \BREAS R RE) () oyl 00
is absolutely integrable in every finite interval (in fact, it is a con-
tinuous function), and hence we can conclude as before that
f(x)~F,{x)—Fy(x) is absolutely integrable in (~c0, c0). Therefore,
if Gy(y) is the ©.T. of Fy(x),

&) -Giy)~Gy(s)>0 s |y|>co (12)

But Gy(y)--o0. Also, if Fy(#) signifies the contribution to Fy(x) of
terms carrying the el*® factor, then Fy(x) — 1kFy;(x) is

O(|=[-2log|x]) as |x|->c0

and hence is absolutely integrable from ~co to co (the derivative
Fy{x) has only simple discontinuities at x= + R} and so its F.1.
(2mly —ik) Gg(y)~>0as | y|->o0, whence Gg(y)>oand, on adding
up these results for the different values of k, Gy{y)—>o0. Hence
finally, by (12), g(y) >0 as | y | >c0.

ExampiE 29. If g(y) is the r.T. of f{x)=|ax [ J{|x|), where J(x)
is the Bessel function of the first kind, then g(y)—>o as {¥| >0
fv>-3

Proor. f(x) is continuous except at x=o, where it is O(] x |%),
so it satisfies equation (4) if > — 4. Hence itisabsolutely integrable
in every finite interval. Itis not absolutely integrable up to infinity,
but, by the asymptotic expansion for J,

f@)=Fe)+0( ) a5 [w[->o0,
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where leu—% - renpl
R vy s g v oy py

x {(—ryreitei-br-dn 4 e~1<1xx—§un—in)} (13)

is a linear combination of functions of the type (9). It follows
that f{x) is well behaved at infinity, since if N> v+ § then f{x) — F(x)
satisfies equation (5) and so is absolutely integrable up to infinity.
Hence, by theorem 18, g(y)->o0 as [y ]->c0.
‘We now check this conclusion by calculating g(y). Note first
that, if v> —1, lirr:){e—f‘z‘ ()} = f(x), since for any good function
>

F(x) we have
f:, (I—e—&m)lx[vJv(!xl)F(x)dxh
<e[” japnla)Fe | &s=00 (9

if v> — 1. Now, the ¥.1. of e~¢/=| f(x) is*
ZV(V_%)! + ZV(V—Q)! . (15)
{s+(e+amyPpfr {x+(e~aniy)P+tym
Hence g(y), the limit by theorem 15 of (15) as e-»o0, is

2 v—Hl 1 2y —Hlsinyr 1
g (21<5) sy (9175)

(16)
This checks that g(y) does tend to o as | 3 | >oc0 when v> —§; and
the fact that g(y) does not tend to o for —1 <v< —}% reconfirms
the importance of the condition that f(x) be absolutely integrable
in every finite interval.

4-3- The asymptotic expression for the Fourier transform
of a function with a finite number of singularities

DerFINITION 21. A generalised function f(x) is said to have a
finite number of singularities x=1;, %, ..., %y if, in each one of the
intervals —O <X <Xy, Xy <X <Hgy .uvy Xpp g <A<y, Xgr <X <O,

* This follows from Watson’s Theory of Bessel Functions (2nd ed. 1944),
§13.2, equation (5). Cambridge University Press.

42
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f(x) is equal to an ordinary function differentiable any number of
times at every point of the interval.

ExampLe 30. 8"(x)+|at—s5x244|~t has the singularities
%= —2,—1,0,1and 2.

Most ordinaty or generalised functions which occur in applica-
tions have only a finite number of singularities; for these, the
method of the present section is very effective. The principal
exceptions are periodic functions, which are treated separately in
chapter 5.

THEOREM 19. If the generalised function f{x) has a finite number
of singularities x =y, %y, ..., %3, and if (for each m from 1 to M)
f(x)— F(x) has absolutely integrable Nth derivative in an interval
including x,,, where F,,(x)} is a linear combination of functions of the type

22—ty | £ log | 2~ 20, | sgm (3~ ) } @7)

and 0P(x —x,), for different values of £ and p, and if f¥¥x) is well
behaved at infinity, then g(y), the r.1. of {x), satisfies

|2, (ANEES N [#sgn(x—2x,), Ix—xm[ﬂIOg]x_me’

M
s0)= T Gul)+o(ly[™) as |y]—>oo, (18)
where Gy,(y), the v.1. of F,(x), can be obtained from table x.
4
Proor. Let fix)— 3 F (&) =fz(x) have F.T. gg(y). Then /&)
m=1

has F.T. (271y)Vgg(y), and to prove (18) we must show that this
->0as | y|->c0. Now, f(x) is absolutely integrable in an interval
including #,, but no other singularity, because f®(x) — F(x) is,
and so are F{(x), ..., F&2,(x), FE (x), ..., F§Xx). This being a
correct conclusion for m =1 to M, it follows that f§(x) is absolutely
integrable in every finite interval; also, it is well behaved at infinity,
since f®)(x) is given to be, and each component in each of the
F{(x) obviously is. Hence, by theorem 18, the F.T. (271iy)}¥ g5()
of f27(x) tends to zero as | | oo, as stated in equation (18).

The result of theorem 19 is most often useful when f{x) is an
ordinary function. Note, however, that even in this case the state-
ment (18) of the result, let alone its proof, would be meaningless
outside generalised-function theory, since in ordinary Fourier-
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transform theory the transforms G,,(y) would exist only if all the
E,(x) were composed solely of functions of the type (17) with
—1<fi<o.

The method of theorem 19 will now be illustrated by a number
of examples. After studying these, the reader should practise the
method on several of the exercises at the end of the chapter. It is
instructive to begin with an example to which we already know
the answer.

ExampLE 31. Find an asymptotic expression for the F.T. of
fe) =1 g{]= ).

Sorution. The behaviour of f{x) near its only singularity x=o0
is given by the series

fiy=| s} § GLZFEHCAL, (t9)
Hence, if F)= |,,1 Lv (20)

is the leading term of this series, f{x) — Fj(x) is O(] z[**?) as x >o,
and its Nth derivative is absolutely integrable in an interval in-
cluding the origin x =0 if NV is the least integer 2 2v+2. Also, f(x)
and its derivatives are well behaved at infinity (see example 29),
and so, by theorem 19 and table 1,

£0)=Git9) +olly |~ EEBELI o )

2P (y—-Plsinyr

G |y Py +o(|y1™),  (21)

where g(y) and Gy(y) are the F.1’s of f(x) and Fi(x), and the
‘duplication formula’
(@) =yl (v—})! 2272 (22)

has been used to throw the result into a form which can be im-
mediately checked from the exact form (16) of g(¥).

Note that, by including more terms of the series (19) in Fy(x),
one could make higher derivatives (the (NV-+2)th, the (N +4)th,
and so on) of f(x)— Fj(x) absolutely integrable in an interval in-
cluding #=o0, and so reduce the error in the equation g(y)= Gy(y)



54 FOURIER ANALYSIS AND GENERALISED FUNCTIONS

for large |y | successively to o(jy |2, offy|~¥*), and so on,
depending on how many terms were included. In this way one
would build up an ‘asymptotic expansion’ of g(y), which in the
particular case here discussed would be simply the binomial

expansion of 24— Plsinvr

Gy
in descending powers of y, as the reader may check.

ExampLE 32. Find an asymptotic expression for the ¥.r. of
fx)=] x|} x+1]}| 2~ 1| with an error o]y |#).

SovutioN. The singularities of f(x) are #= —1, o, + 1. Expres-
sing f{x) near each singularity as a sum of terms (17), with an error
whose second derivative is absolutely integrable in an interval
including the singularity, we have

1) ”“+“+0|x+xi%> fay=la]+0(1[2),

(23)

¥z sle~xf 3
A= U e e )+ O a1 )
as x->—1, 0and 1 respectively. Taking the right-hand sides of (23)
(without the error terms) as F(x), Fy(x) and F(x) respectively, we
see that the conditions of theorem 1g with N=2 are satisfied, and
therefore (in the notation of that theorem)

(=GN +G3)+ Coy)+ o] y|7)

= pdrly __’(1”) 2
Jz(zﬂm Griy?
L a-2nt Ve ‘Sg“y)J(’}” _p
- ”{“/Z(WIyD* 2z (am|yt }MM)

=)ty (2

oaty 4 SISBRY o) 1,122
P +87r‘/ze gL

~s ol ], (24)

As in example 31, if higher terms in the expansions of f{x) near
each of its singularities were retained in the F,(x), then the error
term in the expression for g() could be reduced in magnitude for
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large |  |. One would build up in this way g(y) for large | y | as the
sum of three asymptotic series, one in simple powers of | y|, one
in powers with the factor €2l outside and one in powers with the
factor e~271¥ outside.

The ‘leading term’ in g(¥), that is, the one asymptotically biggest
for large |y |, is that in |y ]‘5, which arises from the term in f{x)
which is of order |x—1|-% as x> 1. This illustrates a general
principle, obvicusly implied by theorem 19 and table 1, that the
‘worst’ singularity of a function always contributes the leading
term to the asymptotic expression for its Fourier transform.
(Here, ‘worst” is used in the sense that the singularity x =, , where
Jf(x) is of order | x—ux,, |4, is “worst’ if § is algebraically least.)

Note that the precise order of magnitude of the error term in (24)
(instead of the rather vague information that »* times it tends to
zero) can be deduced from the orders of the error terms in (23);
the worst of these is of the O(| % —x,, |¥) form, soits 7.1 is O(} y | ).
We can increase the precision of equation (24), therefore, by
replacing the o] y {=2) by O(|»|-%).

ExampLE 33. Find an asymptotic expression for

te 2”’-"”L:osh.ac
s0)= [} T (25)

with an error o(| y [~%).

SorurioN. This g(y) is the F.T. of
() = (1 — 28)~ (cosh «) H() H(x — %), (=26)

which has the singularities x=0 and 1. Near x=o, f(x) — F(x) has
absolutely integrable second derivative, being in fact O(| # %), if
Fy{x)=H(x)., Nearx=1,

_cosh1+(x—1)sinh1
T~ et

=F@)+ O =1 [}, (27)

H(1—x)+0(1 —x)}

where
Fy(x)=(} coshx) (1 %)t H(x — )
+(@coshr—}sinh1)(x ~x)t H(z ~x). (28)
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Applying theorem 19 with N=2, we deduce by table 1 that
e}ﬂisgnﬂ,\/ﬂ
(aniy
by} /)
@iyt

as | y[>co. From the detailed expressions for the errors in Fy()
at x=0 and in Fy(x) at x=1, we can say that the precise order of
magnitude of the error in (2g) is O(| y | ).

IR S
e =g+ oosh)

+(3cosh 1} sinh 1) ol (29)

Exampir 34. If F(x) and all its derivatives exist as ordinary
functions for x>0, and are well behaved at infinity, derive the
asymptotic expansion

fo F(x)SlDZnydeﬁ_W-F(ZT}’)"'—"“ (30)

SorurioN. The ‘half-range’ Fourier sine integral (30), by §1-4
(see especially equation (18)), signifies ig(y), where g(3) is the
F.T. of

fw)=F|=})sgnx. (31)
Now f{x) has only one singularity, &=o, near which Sflx)—F(x)
has absolutely integrable (2p)th derivative if
Fen-2()
)
Hence the conditions of theorem 19 with N=2p are satisfied,
whence, using table. 1,

p-1 pen) 1
=3 Eﬁl)z(z%—%

F(x)= F(o)+£2('—°)x2+ P Hsenx.  (32)

+o(| y|2%) (33)

n=0
a5 |y | >co. The fact that this is true for all 2 is what is meant by
the ‘asymptotic expansion’ formula (30) for ig(y).
Similarly, under the same conditions, we have
© F{o)  F'(o) _ F¥(o)
F dem — g o 2D,
R A

ExampLE 35. Find an asymptotic expression for

)= [ Ko coszmaya 5
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with an error o(| y|), where K, is the modified Bessel function of
the second kind of order zero.

SorutioN. This g(y) is the r.1. of
Flay=1Ko(| ) Hsc+ 1) H(z —2) (36)
which has singularities = ~1, 0 and +1, where
Slo) = 3Ko(3) Hz+ 1)+ O #+ 1),
flay=H{-log(}]|x[)—¥}+O(|»|*log|x|), (37)
Fo)=$Ko(x) H(x %)+ O(f x — 1),
respectively. Hence, by theorem 19 with N=1 and table 1,

£0) =40 =3 (<) i) S olly 1)
sin 27y _2 \
=&y(1) Py +m+0(|y| ) (38)

where the precise form of the error term is O(] y [~2) because the
‘worst” error term in (37) is of the O(| x—u,, |) form.

Exercist 11. Find an asymptotic expression for the F.1. of e~1@!
with an error of| ¥ |™), and check it against the exact expression

obtained by direct integration.
ExErCIsE 12. Derive the asymptotic expansion of
o g—2mizy dy
o

(39)

Exgreise 13. Find an asymptotic expression for the ».T. of
| %~ 522+ 4 |~sgnx with an error o]y | ), and state the precise
order of magnitude of the error.

ExERCISE 14. Derive the asymptotic expansion of

fm (1 —x)"tcos amey da. (40)
0
Exercist 15. Find an asymptotic expression for
1 log
d;
fo - )*smzmy x (41)

with an error of| y |2), and state the precise order of magnitude of
the error.



CHAPTER §
FOURIER SERIES

5.1. Convergence and uniqueness of trigonometrical series
as series of generalised functions

THEOREM 20. The trigonometrical series

% ¢, einmzfl ( I)
R
converges to a generalised function f(x) if (and only if) ¢,=O(| n|¥)
Sor some N as | n|—co, in which case the r.1. of f(x) is

£0)= 3 6y=nfzD. @)

Further, the sum fix) of (1) can be zero only if all the ¢, are zero.

From this follows the uniqueness theorem, that two different
trigonometrical series (1) cannot converge to the same function (since
then their difference would converge to zero but have non-zero
coefficients).

Proor. By theorem 13, the series (1) converges to a generalised
function f{x) if and only if the series (2), obtained by taking Fourier
transforms term by term, converges to g(y), the F.1. of f(x). Hence
it is sufficient to consider only the convergence of the series (2).

First, assume that ¢,=0(|»|") for some N. Then the ‘step
function’ g,(y), defined (see fig. 4) as

o (osy<1/2l),

)';1 & {la<y<(r+a)ab,

&)= 0| G

e {-rieley< -G,

satisfies the conditions of definition %, and so can be regarded as
a geperalised function. Further, we can write

80)= ZaHy=na)- e H-yna, (1)
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because for any good function G(y)

" aweme=Fa]” ciw-Ee f“”"‘”c( ¥
et el i Frur Sl BN Y16
(5)

where the right-hand side of (5) converges even when each term
is replaced by its modulus because G(y)=0(] y |~ for all M.
Hence, by theorem 135, the series obtained by differentiating (4)

term by term, namely ¢, 8(y —n/2l), converges to the generalised
—®

aily)

520 -afat 321 -1 .l : : T
[ i T ! C°I [ O L

Fig. 4. Graph of the ‘step function’ g,(3) of equation (3),
@
whose derivative is g(3)= X ¢,0(y~n/2]).
T 0O

function gi(v), which we may call g(y). Hence (1) converges to
the generalised function f(x) whose ¥.1. is g(y). Note also that, if
Sf(x) were zero, then g(y) must be zero, and so, by theorem 8, g,(y)
is a constant, whence by inspection of (3) all the ¢, must be zero.
This simple proof of convergence and uniqueness under the
rather unrestrictive condition ¢,=O(|#[¥) is all of theorem zo
that is needed for the practical use of trigonometrical series, The
proof of necessity of the condition (as stated in the theorem) is
so easy, however, that it may as well be given. If there were no N
for which ¢, =O(| n|V), then there must be ar increasing sequence
of s, say 1y, 1y, g, ..., such that | ¢, |>|n,|" for each . Now let
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G(y) be any good function such that G(n/2l) =0 if nis not a member
of this sequence but G(n,/2l)=c;). (For example, one might take

6(5)~ 3. Tlaly—n), ©

whete T{x) vanishes for | x| > 1 but is say
o)

for | x| <1 and in particular is 1 when x=o0. Then G(y) is a good
function by the inequality satisfied by the ¢, .) We may then infer
that the series (2) does not converge according to definitions 10
and 11, because

[7o0) £ stv-ma)e- Zaslz) o

has all jts terms zero, except those with # in the sequence 7y, 7y, ...
which are all 1, and hence it increases without limit as N-»co.
This completes the proof of theorem zo.

DrrINITION 22. A generalised function of the form (2) is called a
‘row of deltas’ of spacing 1/2l. A generalised function f(x) is said to
be periodic with period 21 if flx) = flx + 21).

ExampLE 36. = js periodic with period 2/. Hence, by theorem
13, the f(x) of theorem 20 is periodic. ‘Theorem 2o therefore states
that the F.T. of 2 row of deltas of spacing 1/2/ is a periodic function
of period 2/ (For the converse result, see §5.3.)

5.2, Determination of the coefficients in a trigonometrical
series

We now consider the problem: if we know that
fr)= T cyetmet ®)
[

for some ¢, how can these coefficients be determined? The deeper
problem, to prove the existence of such an expansion for any
periodic function, is postponed to §5.3. Note that the classical
solution of the present problem (equation (12) of chapter 1),

™ ©
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is of no use where generalised functions are concerned, as these
cannot be integrated between finite limits.

ExampLE 37. No suitable definition of such integration is pos-
1
sible which will give a meaning to f &' () dae.
o
However, the idea of ‘integration over a period’ can be repro-
duced by the use of a special kind of function.
Tueorem 21. A ‘unitary function’ U(x) can be found, which is
a good function vanishing for | x| > 1 and such that

% Ul +ny=1 (10)

Jor all x. The Fourier transform V(y) of any such function has
V(o)=1, but V(m)=o0 if m is an integer other than zero.

Proo¥. Many such functions U{x) can be found. For any x, at
most two terms of the series (o) differ from zero (those with
| x+n | <1). Therefore, it is necessary only that

Ux)+ Ulx—1)=1 for o<gx<1, (1)

and that all derivatives of U{x) should vanish at x= + 1 (so that
they are continuous with zero, their value for | x| >1). One may

ke U(x)= fmexp{ Z)} dt/f exp{ }dt (12)

for instance (see fig. 5). The exponential ensures that all the deri-
vatives of U(x) vanish (with Ul(x) itself) at x= + 1. Condition (x1)
is easily proved by making the substitution ¢= 1 —s in the integral.
Lastly, if m is any integer,
+3
Vim)= f e-nima U(x) da = " -tmine U(x)
-

=-w

H
= E e~2mim {f(x 4 n) dx
n=—odJ —}

LI 1 (m=o0),
which completes the proof of theorem =21.
The idea of integrating a periodic function f(x) over a period can
now be replaced by the idea of integrating f{x) U(x/2l) from —oco
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to co. For in this integral each value of f{x) of the function (which
value occurs also at x+2nl for all integers #) is multiphied by just

% U(x/2l+n)=1; but the integration is permissible in the theory
nE=—0

of generalised functions since U is a good function.

46
10 .
<
Ux—1)
075
05
UG
025
Ux—1)
L ! 1 1 X
=10 —05, 05 10
(x=1) x

Fig. 5. Graph of the unitary function U{x) of equation (12}, lustrating
the property U{x) + U(x—1)=1 for oSa<r.

@

TrroREM 22. If fla)= X ¢, ei""%, then

gy ) Ulafaemnos s, (4)

where U(x) is any unitary function.
Proor. The right-hand side of (14), by definitions 10 and 11, is
N w
lim X C"‘J Ulx/2l) ezl (dx/al), (15}
Na>on=—N -

and the integral in (x3) is simply V{(m—n), which by theorem 21 is
1 for n=m and o for all other 7, so that (15) is simply ¢,

5.3. Existence of Fourier-series representation for any
periodic generalised function

All the main objects of a theory of Fourier series listed in § 1.3

have now been achieved, except that of proving that, if f(x) is any

periodic generalised function, and the ¢,, are defined by (14), then
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(8) holds, or (what is the same thing) then g(y), the F.T. of f{x),

satisfies g(y)= X ¢,0(y —n/2l). The following theorem is a useful
first step towards this, since E Ulzly—n)=1.
n=—c

TREOREM 23. If flx) is a periodic generalised function with period
2l and r.1. g(y), and if

a=5[" 10 U(E)ermtan=[" ) vo-am e, (6)

where the equality of the two forms of ¢, follows from theorems 6

AT gly) Utaly— )=y —naD, ()
Proor. We are given that
fx)—fla+2l)=o. (x8)
Hence, taking Fourier transforms,
8 (x—e)=o, (29)

which means that
'
|7 e -em 6,y ep=0 (20)
for any good function Gy(¥). Now, if G(y) is any good function,
then
Gyy)= Gy) Uly —n) — G(nj2l) V(n - 2ly) (21)

1 —edriy
is also a good function, since the numerator is the difference of two
good functions each of which vanishes at all the points y=m/2]
where the denominator vanishes, except the point y =n/2l, where
however each takes the same value by theorem 21. Hence, by (20)
and (21),

|7 sy ver-neoie-6(z) [ s va-anw,
(22)
which proves the theorem.

2
To complete the proof that g(y) satisfies equation (x) it need
only be proved (after equation (17)) that

£0)=_ 3 _g(s) Utaly—n) )
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for any generalised function g(y). This appears almost obvious by
theorem 21, but the proof requires some care because our general-
ised functions are such a very unrestricted class of objects. A lerama
on convergence of series is first needed.

THEOREM 24. If the a,, are such that 2 oy B, 85 @bsolutely
convergent and tendsto a ﬁmte Limit asm~»co0 for any sequence x,, which
is Oln) as n->co, then E hm L i, CONTEIGES to the sum lim Z a,

n=0m n>o n=

Proor. If the concluswn were false, then an infinite sequence
of N’s such that

| ¥ ©
[ 3 lim a,,— lim ¥ a,,/>¢ (24)
n=0m-—rn me>con=0

would exist for some ¢> o, This means that

lim 3 a,,>e (25)

m—>on=N+1
or thatitis < —e. There must therefore be an infinite subsequence
of these N's satisfying only one of these alternatives; the proof
proceeds along similar lines whichever it is, but for definiteness
suppose it is (25). Let the first of these N’s be V,, and then define
the sequences &, M, by induction as follows. If Ny, ..., N, and
My, ..., M,_; have been defined (where the former are all members
of the sequence satisfying (25)), choose M, > M,_, (as is possible
by (25)) such that -
3 ana>ie (a6)
n=Ne+l

for all m> M,. Now choose N, >N, as a member of the sequence
satisfying (25 ) such that

©
T nlay,|<e (=7)
W=Ngp +1

®
This is possible since 3; nay, , is absolutely convergent.
n=0

If now, for each #, x, is the number of N, which are less than 7,
then x, = O(n) as >0, and so
@ @ o
X

y 0> (28)
n=1 s=1 n=N,+1
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because the left-hand seriesis absolutely convergent. Butform =M,
say, ©  w -

I 3 e 5G9-s (29)
by (26) and (27). Hence for the increasing sequence My, My, M,, ...
the series % 2, Gy, inCreases without limit, in contradiction to the
hypothesi: '1I‘h.is proves the theorem.

Turorem 25. If g(y) is any generalised function, and U(x) is a
unitary function, then

£0)= 3 _g0) Ualy—n) )

Proor. By definitions 10 and 11, equation (30) means that, if
G(y) is any good function, then

im 3 [ ) Ueb-n60)o=[" d6me.

N->00 nw—
(31)

To prove this it is necessary to go back to the definition of the
generalised function by a regular sequence of good functions

&m(y)- Writing
= [ 8al) (UCaly =)+ UG +7} 60 &, (32)

except for z=0 when the term in curly brackets is taken as only
Ul2ly) instead of 2U(2ly), we can write equation (31) in the form

o @
3 lim a,,=m 3 a5, (33)
ne=0 mep m~ro0 n=0

where on the right-hand side equation (10) has been used.
Now, with the same gloss regarding the term in curly brackets,

$0)= 3 s Ualy—n)+ Ualy+)} 39

is a fairly good function if x, = O(n) as n—0 for some NV, a result
which we use for N=1. (The proof is trivial, since at most two terms
of the series can be non-zero for any 3.) Hence ¢(y) G(¥) is a good

5 LFA
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function, by theorem 1, and, by the definition of a regular sequence
(definition 3),

|7 )01 60) = 3 5 (s3)

is absolutely convergent and. tends to a finite limit as m—>c0.
Hence, by theorem 24, we have equation (33) and hence equation
(31) and hence the theorem.

After this digression on convergence matters the main theorem
follows at once.

THEOREM 26. If f(x) is any periodic generalised function with
period 2l and F.1. g(y), then

)= 3 aemt ad gy)= 3 adly-nad,  (6)

where C"=zilf:, fxyU (zfl) etrmal dy, (37)

Proor. The second of equations (36) follows from theorems 25
and 23, and the first follows from it by theorem 15.

Nore. If in addition f(#) is absolutely integrable (as assumed in
the classical theory of Fourier series) then we have simply

T
o=l f Al et g, (38)
-1

since for such an f{(x) we can write

(@m+11

=t 3 f 1) Uljel) et g
2l ) @metn

o A
5 = f ) Ulsfal- m) =i s,

and then interchange the order of summation and integration.
Therefore, the classical Fourier-series theory is included in our
more general result,

There is a simple corollary of theorem 26, of little practical
importance, but of some general interest.
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TurorEM 27. Under the conditions of theorem 26, c,, is necessarily
O(| n{¥) for some N as |n|—>co. Hence

fiey =20

e
ok -1 1\ N4
where fl(x)=£0(—]\ﬁzjl ( o+ 2) ( ﬂ) elnnl

=0 Rl

(39)

is a continuous function.

Proor. By theorem 2o, the series (36) which have just been proved
to converge could not do so unless ¢, =0(| n |V) for some N. The
first of equations (39) is obtained by term-by-term differentiation
(permissible by theorem 15). The fact that fy{x) is continuous
follows from the fact that the series for it is absolutely and uni-

formly convergent, by comparison with the series ): n2,

The fact that a periodic generalised function ml‘xst necessarily
be a repeated derivative of some continuous function is interesting
as showing that there is a limit to the seriousness of the singularities
that these functions can have.

‘We have now derived all the general properties which were noted
in§ 1.3 as necessary for a satisfactory theory of Fourier series; there
exists a unique Fourier-series representation of any periodic
function, which converges to the function, whose coefficients can
be determined, and which can be differentiated term by term.
We conclude with a number of more special results.

5.4. Examples. Poisson’s summation formula

This section is mainly concerned with consequences of the
following result.

ExampLe 38. The generalised function
fwy= 3 dx—aml) (40)
me—e

exists by theorem 20 and is periodic with period 2/ by theorem 15.
Its nth Fourier coefficient is

=y o= zml)U( ) “"’"’/‘dx=g~lm§mU(m)=zll,

2l _oms
(41)
52
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and so by theorem 26
L S
fo)=gy 5 e )
2l 22

an equation whose real form

E Ox— 2ml)——+l Z cos 2% (43)

M=o

is worth noting; and the r.T. of f{x) is

=5 3 o(r-3). (49

In words, a row of equal deltas has as its F.T. a row of equal deltas.

ExampLE 39. From (43), by differentiation,

© ©
= 8’(x—zml)=—l7—; b nsin’f;—x. (45)
me—w n=l

Norte. This is a trigonometrical series on which the old-fashioned
‘summability’ methods of handling divergent series (which pre-
ceded the introduction of generalised functions) broke down. They
gave its sum as zero for x = 2ml (which is correct, as the generalised
function is equal to o in any interval not including these points),
but also gave it as zero for x=2aml, on the ground that every term
of the series vanished at these points. Thus they missed the true
character of the singularity at x=2m/; and (what was perhaps even
worse) uniqueness was absent in these theories, because of the
existence of trigonometrical series whose ‘ sum’ was everywhere zero.

ExampLE 4o. In the classical theory of Fourier series one cal-
culates the nth Fourier coefficient of the function x in the range

(=11 4 . J
a=g _lxc“‘""/’dx=,-l7~1(—1)", 46)

ivin, 2l & (=12 . mmx

Bng 72 —)Sln“l— (#7)

as the full-range Fourier series of x in (~11). Now, it is usually
stated that such a series cannot be differentiated term by term; and,

©
in fact, the Fourier series of 1 in (—1, 1) is not 2 3 (— 1) cos narx/l
n=1
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®
but 1+ X (o)cosnax/l. In the theory of generalised functions,
A=l

however, we have seen that any series can be differentiated term

by term. To reconcile the apparent contradiction, note that the

sum of (47) is not %, but rather is a periodic function which coin-

cides with x in the period (—/,{). Thus, if

fey=a (~l<x<l), x—2zml {(am-1)l<x<(@m+1)l},

(48)

then by theorem 26 and the note following it f(x) is equal to the

series (47), and by differentiation

Flay=2 5 (~ay-teosE. (49)
But by (48)

d ® 0
f(%) I [x—- zlm)le{x— (am— x)l}+zlm£mH{(2m - x)l—x}:l

=1-2l % Hw—(2m—1)1}. (50)
me—~X% -
This f*() is not the function 1. In fact, by equation (43) above, itis
-—2§,(—1)"cos7l—7l7x, (51)
n=1

in perfect agreement with (49).
We learn something useful by applying Parseval’s formula to
the result of example 38.

Tueorkm 28 (Poisson’s summation
function and G(y) its r.1., then

ula). If F(x) i a good

£ rom=; % 6f3)- (52)

1
i A plle

Proor. This is the equation

|7 soR=nas=[" sicme (53

of theorem 6, with f and g as in example 38 (equations (40) and (44)),
and 2/ replaced by A.
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ExampLs 41. If F(x)=e"" then G(y)=nte"" and theorem
28 gives

E e~ «/ Z etz (54)
This equation is obvious only for A=.,/m. The left-hand side con~
verges very rapidly for A> /7, and so does the right-hand side for
A< qfm—in both cases, faster than

1420 +2e 4o
=1+00864278 4 0:0000070+ (167 +.... (55)
The equation can therefore be used to compute either side very
rapidly for any positive X.
ExampiE 42. If F(x)=e-%1 then G(y)=nte®+ and
theorem 28 gives

3

142 E e cog (271mAZ) = —‘L e (1 +2 E e cosh ——~

27 nz)
n=1

(56)
which is Jacobi’s transformation in the theory of theta functions.
Similar remarks about convergence apply (the cosh in the series
on the right worsens its convergence only slightly, since the expres-
sion (56) is a periodic function of = with period A~ and so one may
take | z| <$A~* for computational purposes), and the equation is
therefore the key to the computation of the theta functions and,
through them, of the elliptic functions.

‘We may note here that Poisson's summation formula (derived
in theorem 28 for good functions) can be extended to functions
which are not good by approximating to them by a sequence of
good functions (as in the proof of consistency of definition %) and
taking the limit. For the formula to be valid in the limit, it is suffi-
cient for F(x) in theorem 28 to be replaced by a function continuous
and of bounded variation in (—o0,0) and such that the infinite

mtegralf F(x) dx converges. Inall cases the left-hand side of (52)
converges more rapidly for large A, and the right-hand side for
small A, as in the above examples.

Occasionally the formula leads to a simple analytical form for
the sum of a trigonometrical series.
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ExamPLE 43. In the period o <2 <27 we have

& cosnz_meosh(m—z) |
wh1+4n2 zsinh7 2 (s7)

Proor. We may write

® cosng 2 elme d
2n§1 1+n? +1 =m,2_w X +m2=m=Z_mF(m), (58)
where elzv . .
Fx)= e and its T, is  G(y)=m eI 202! (59)

(as obtained by the method of §3.5). Hence, by Poisson’s sum-~
mation formula,

@ @
Y Fm)= Y G(n)
M= —as n=—w
me st et

0 ©
= ¥ me®dny VrelRrttm (60)
n=—w n=l 1—€

where the geometric series have been summed forthecaseo <2 <27,
Equation (57) now follows from (58) and (60) by rearrangement.

5.5. Asymptotic behaviour of the coefficients in a Fourier
series

The following theorem enables us to use the method of chapter 4
to find the asymptotic behaviour as |z |->c0 of the Fourier coeffi-
cients ¢,, of a given function f{x).

THEOREM 29. If f(x) 75 a periodic generalised function with period
2l, then C(y), the F.1. of (2ly=2f(x) U(xf2l), is a continuous function
whose value for y=mn/alis the nth Fourier coefficient c, of f(x).

Proor. By theorem r5 the F.7. of

(2l flx) Ulw/2l) = (21~ E ¢, el U(x/21) (61)

is )= I aValy-n). (62)

This is an absolutely and uniformly convergent series of con-
tinuous functions in any finite interval of y, since by theorem 27
¢, =O(] n|¥) for some N but V(2ly—n)=0(|n|¥2) as |n|>cc.
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Hence C(y) is continuous. Also, C(m/2l) =¢,, since, by theorem 21,
V{m—n)=o except when m=n, and V{o)=1,

Note. Itis easily shown that C(y) is in fact a fairly good function,
but this result is not needed below.

Now, it was noted in connexion with definition 21 that a periodic
function f{#) could not have a finite number of singularities (unless
the number were zero). However, theorem 29 shows that, provided
only f(x) U(x/2]) has a finite number of singularities, then the
method of chapter 4 can be applied to determine the asymptotic
behaviour of C(y) and hence of the ¢,’s. Since U(x/2]) vanishes
for | x| > 21, the condition is simply that f{x) have a finite number of
singularities in any one period.

DEFINITION 23. - The periodic generalised function flx), with
period 21, is said to have a finite number of singularities 8= %1, Xy, ..., %y
in the period —1<x<11f, for some €> o, f(x) is equal, in each one of
the intervals

—lax<ny, X <X<Ay .., Ky, <X<Ly, Xy<x<l1+e),
to an ordinary function differentiable any mumber of times at each
point of the interval.

TureoreM 30. If fix) s a periodic generalised function, with a
fintte number of singularities x=y, xy, ..., %y, 10 the period —I<x <],
such that (for each m from 1 to M) f(x)—F,,(x) has absolutely inte-
grable Nth derivative in an interval including x,,, where F,(x) is a
linear combination of functions of the type
el nbileonl)

|55, Plog | =5, gn (- ,)
and 8% x—x,,) for different values of f and p, then c,,, the nth Fourier

coefficient of f(x), satisfies
1 X n )
63,2, Guly) Folln ) @ [nlsem (69
where G, (), the F.1. of F,(%), can be obtained from table x.

Proor. The result follows most directly if we take the unitary
function U(#) in theorem 29 to be one which equals 1 when
—#{1—6) << }(x+3¢) and o when x < —§(1 ~§¢) or 2 }(1 +¢).
Here, ¢ is that of definition 23, assumed chosen so small that
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> —[x—~¢). In this case, (2I)"!f(x) U(x/2l) is a generalised

function with only the singularities x=2, %,, ..., %y, and is equal

to (2)~f(x} in an interval — {1 —€)<x < {1+ %) including all of

them. It and all its derivatives are “well behaved at infinity’ (they

are zero for |x|>/(1+¢)), and so its F.T. C(y), by theorem 19,
satisfies

C(y)~~ E Gm(;v)+0(iy! V) as |y|->oo, (65)

whence equation (64) follows by theorem 29.

Ulx)
10
~C75
=05
025
1 1 I\ X
=10 =05 0 05 10

Fig. 6. The unitary function Ulx) of equations (66) and (67), in the case eé==0o-2.
Note that U(x) + U(x—1)=1 for o<x< 1, and also that, wherever in the period
—l<x<l the singularities xy, x4, ..., %, are (the crosses indicate possible values
of xpufal), we have U(x,,/2l)=1 for m=1 to M for sufficiently small ¢.

To complete the proof, we need only produce a unitary function
with the stated property. This U(x) (see fig. 6), besides being o for
< ~—§+teandxzd+de and 1 for —3+de<a<i+s is

ﬁzzu—i«)/(ie)exp { t(1—t)} / J‘ { t)}dt (66)

for —}+e<x<—4+3e and

Jois @ i) [ e | g8 o0

for }+le<x<i+ie
Theorem 30, like theorem 19, is most often useful when f(x) is
an ordinary function, but again the theorem would be difficult to



74 FOURIER ANALYSIS AND GENERALISED FUNCTIONS
state without the apparatus of generalised functions. The theorem
will now be illustrated by some examples.

ExamPLE 44. Find an asymptotic expression, with error of} #.{9),
for the nth Fourier coefficient ¢, of the periodic function

f(w) =etcosals, (68)

SorutioN. In the period —~ 77 <x <7 the singularities of f(x) are

where cos =0, that is at ¥ = + }7. When x> + }7,

f(x)-HicosxP wjx !CO;‘xI (69)
where |cosa|=|xF 77!——*1 Tin |3+§~‘IJL‘-{_>§7T]5—‘." (70)
Hence

fy=r 5T g Py 5 T d oo | s F A 7
HEF - YT+ 027D ()

as x—>+47. Hence, by theorem 30 with N=¢ and [=m, and
table 1,

€= (e—imu + ehﬂl) [(1(”)4) ;?1(3) ] + :230 Z(Z ] + (l n I—s)}

12 cos (nm) [ 1 Io 1
Z“ﬂ(% ){ +Io 9 +O(n1°)} (72)
where the precise form of the error term follows from the detailed
expression for the error in (71).

ExamPLE 45. Find an asymptotic expression for the coefficients
b, in the Fourier sine series for 4/x in the range o <x</, with an
error o(n2) as n~>o0.

SoLuTiON. By §1.3, this Fourier sine series is simply the full-
range Fourier series of the odd function | [¥sgna in (=11); and
the coefficients b, in the sine series are 2i times the Fourier co-
efficients ¢, of the periodic function f{x) which equals | x|}sgnx
in the period ~I<2<L Now f(x) has singularities at x=o0 and [ in
this period, and

flw)=]x|tsgnx, fx)= ~Lsgn(x—1)+3He— 1)+ O(|x~1]2),
(73)
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as x>0 (where for once the error in the expression quoted is zero!)
and as x>/ Hence, by theorem 30 with N=2, and table 1,

e =@ aEl
bn—zmn—% -—(;”W—ﬁe %‘(‘0(" D)
;‘_(:_177)7”1«/! +“/~;T(-%+O(n‘3) (74)

as - 00, where the precise form of the error term follows from the
detailed expression for the error in (73).

Note. This example exhibits a common feature, where Fourier-
series representations of continuous functions in a limited range
are concerned—namely, that the ‘worst’ singularity of that periodic
function, which coincides with the given function in the range, is
a simple discontinuity at one of the end-points. By theorem 30 and
table 1, the nth Fourier coefficient for large # is then necessarily
of order n~L. But there are, of course, exceptions to this rule, that
is, functions for which no such discontinuity occurs at either end-
point (see, for example, exercise 18).

ExercIse 16. Sum the series % 2SI for o <z < 2.

w1 D7

Exzrcise 17. Find an asymptotic expression for the zth Fourier
coefficient ¢, of the periodic function | 1+2sinx |4, with error
o] 7|~2), and state the precise order of magnitude of the exrror.

Exercise 18. Find an asymptotic expression for the coefficients
a, in the Fourier cosine series for xlogx in the range o<x <1,
with zn error o(n3), and state the precise order of magnitude of
the error.
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Error term, 46, 52
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745
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46-57
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of derivative of generalised function,

) 23
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of rational function, 42—5
summary of results on, 42—5
table of, 43
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Generalised function, 1, 10~14
constant, 17, 20
definition of, 17
derivative of, 18, 24-5
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Generalised function (cont.)

derivative of with respect to a para-
meter, 29, 34-5

equal to ordinary function in an
interval, 256

F.T. of, 18—21, 24, 27

F.T. of derivative of, 20, 33

general properties, 16~29

limit of, 279

limit of derivative of, 28~9, 33, 39

limit of F.7. of, 28-9, 36, 401

ordinary function as, 21-4

particular, 30-45, 537

periodic, 6075

series of, 29, 58-73

well behaved at infinity, 49-57, 73

Good function, 13~16

definition of, 15

fairly, 15, 1820, 28~9, 635, 72

F.T. of, 15~16

sequence of, ro-14, 16~18, 21-3,
656, 70

Hadamard finite part, 14, 31-2, 34
Half-range, Foutier integral, g9-1o0,
567
Fourier series, 4~7, 745
Hardy, G. H., 7
Heaviside unit function H(x), 30-45,
558, 89
Historical account of subject, 13

Improper integral, 312, 37-8
Indefinite integral, 14, 38
Integral powers, 35~40

muliiplied by logarithms, 402
Integration by parts, 1,15, 19,31~2,37
Interchange of order, of limit

Logarithmic singularities, 34-5, 40-3,
52, 56-7, 75

Mikusinski, J. G, 13

Non-integral powers, 304
multiplied by logarithms, 34-5

O and o notations, 2, 47
0dd function, 5-7, 9, 26~7, 31, 36
QOrdinary function, as generalised
function, 214
derivative of, 23-5
equal to generalised function in an
interval, 256
F.T. of, 24
Oscillations, 3, 8, 49

Parseval’s theorem, 16, 19, 69
Partial fractions, 42-5
Particular generalised functioms, 30~
45, 537
arbitrary constant in definition of,
39-43
Periodic function, 3—7
equal to given function inaninterval,
5-6, 8, 69
generalised, 6o0—75
Point charge, 12
Poisson summation formula, 67-71
Polar coordinates, 3—4
Powers, integral, 35~40
non-integral, 30-4
Psi function ¥ («), 35, 39-43

Quarter-range Fourier series, 4~6

Rational function, £.. of, 42-5

and di

Regular 16-18, 21-3, 656

28-9, 35
of limit processes and Fourier
transformation, 28-9, 36, 40-1
of summation and/or integration 2,
16, 22~4, 59, 64~6

Jacobi’s transformation, 70

Laplace’s equation, 3~4
Laurent’s theorem, 4
Lebesgue theory of integration, 2
Limit, of generalised functions, 27~9
of derivatives of generalised func-
tions, 28-9, 33, 39
of p.1s of generalised functions,
28-9, 36, 40-1

Remainder, 46, 52
Riemann-Lebesgue lemma, 46-51
Rogosinski, W. W., 7

Row of delta functions, 1, 60, 67—9

Schwartz, L., 1, 14

Sequence of good functions, ro-14,
16-18, 21-3, 65-6, 7¢

Series of generalised functions, 29,

5875,
Sgn function, 23, 28, 3045, 47, 49,
52, 54, 56~7, 72, 74
Singularity, 42, 517, 72-5
defined, 51, 72
‘worst’, 55, 57, 75
Smudge function, 2z
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Step function, 58-9 Titchmarsh, E. C., 8

String, plucked, 5~6

Summability of Fourier series, 14, 68 Unitary function, 61—, 71-3
Summary of Fourier transform resuits,

42-45 Watson, G. N., 51
Waveform, 3
Temple, G., 1, 8, 13~14 Wave number, 8
Test function, 13~14 Well behaved at infinity, 49-57, 73

Thete function, 70 “Worst' singulerity, 55, 57, 75





