
Contents

I Introduction 2
0.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
0.2 The Wigner crystallization . . . . . . . . . . . . . . . . . . . . 3
0.3 The statistical physics problem . . . . . . . . . . . . . . . . . 4
0.4 What do we know about the homogeneous phase . . . . . . . . 6

II Clustering & crystallization 7
0.5 The Requardt and Wagner argument . . . . . . . . . . . . . . 8

0.5.1 Potential energy . . . . . . . . . . . . . . . . . . . . . . 9
0.5.2 Mermin inequality . . . . . . . . . . . . . . . . . . . . 9
0.5.3 Clustering hypothesis . . . . . . . . . . . . . . . . . . . 11
0.5.4 Small wavelength limit in Mermin inequality . . . . . . 12

1



464 final project spring 1996

Wigner crystallization

versus

Goldstone theorem

in a

2D surface one component plasma

Riccardo Fantoni



Part I

Introduction

2



0.1 The model

A bidimensional one-component classical plasma (2D-OCP) is a system of
N point classical particles of charge e and mass m living in a bidimensional
space in an area Λ, immersed in a homogeneous neutralizing backgraund and
interacting with the usual tridimensional Coulomb potential v(r) = e2/r.

This system can ba parametrized by 4 constants: the mass m, the charge
e, the area per particle Λ/N ≡ ρ−1, and the temperature T = (βkB)

−1 (where
β−1 is the mean kinetic energy per particle). These parameters can be cast
into two characteristic constants: (i) the mean interparticle distance ro, such
that πr2oρ = 1, 1 (ii) the coupling constant, defined as the ratio of the mean
Coulomb energy to the mean kinetic energy per particle, namely Γ = βe2/ro
2

The 2D-OCP turns out to be a good model for example for the description
of surface electrons on liquid He [1]. The range of densities experimentally
accessible in these systems is particularly wide, i.e. at T = 0.5K Γ ∈ [2, 200].

0.2 The Wigner crystallization

Wigner [2] emphasized that at low densities, i.e. large rs, the Hartree-Fock
value of the ground state energy of a 3D-jellium must become a poor ap-
proximation, as the Slater determinant wave function used in calculating it
minimizes the kinetic energy scaling as an inverse square lenght r−2

s , while
at low density the energy is dominated by the potential energy scaling as
an inverse lenght r−1

s . He noticed that to minimize the potential energy as
rs → ∞, electrons would avoid one another optimally which is achieved by
their going onto the sites of a crystal lattice.

The argument of Wigner, while given explicitly for the quantum electron
fluid, obviausly is basically a comparison of electrostatic potential energy per
electron (Madelung energy) with kinetic energy. In the classical system the
Wigner crystal, i.e. the high caupling state (Γ ≫ 1) would occur either for
sufficiently low temperatures or sufficiently high densities.

1In the quantum system (the Jellium) ro is usually expressed in units of the Bohr radius
(aB = h̄2/me2) and called rs = ro/aB .

2In the quantum system the coupling constant is rs = (e2/ro)(h̄
2/mr2o)

−1 itself.



Such phase transition was first experimentally observed by Grimes and
Adams [3] in the system of electrons trapped on the surface of liquid Helium
(in accord with the predictions of Crandall and Williams [4]). They found
that the Coulomb liquid crystallized into a triangular lattice in corrispon-
dence of a value for the coupling constant of Γ = 137± 15 in agreement with
the previous Monte Carlo calculation by Gann, Chakravarty, and Chester
[5].

0.3 The statistical physics problem

The theoretical possibility of crystalline order is notoriously related to poor
clustering of particle correlations and has drawn considerable attention for
Coulomb system in low dimensionalities.

Given a physical system with short-range forces and a continuous sym-
metry, if the ground state is not invariant under the symmetry the Goldstone
theorem states that the system possesses excitations of arbitrarily low energy
[6].

In non-zero temperature classical system what is important in connection
with symmetry breakdown are the clustering properties (the law of the decay)
of the correlations between the particles. In this case one may then refor-
mulate the Goldestone theoream as follows: given a system with short-range
forces and a continuous symmetry group, if the thermodynamic equilibrium
state is not invariant under the symmetry then the system does not possesses
exponential clustering (but a non-integrable clustering [7]).

In contrast to what happen for systems of classical particles interacting
via short-range potentials, where crystallinity is ruled out by the original
Mermin argument in one or two dimensions [8, 9], matters are not so trans-
parent in the case of long-range interactions (e.g.Coulomb).

Purpose of this project is to show how in a 2D-OCP Goldstone’s theory
manifest itself through the statement that a symmetry breakdown of trans-
lational invariance (appearance of a crystalline phase with positional long-
range order) is destroyed by the transverse sound like phonons if the two
point correlation functions decay faster than |r1 − r2|−1/2 as |r1 − r2| → ∞.

Requardt and Wagner [10] proved this property using the Bogoliubov
inequality (a modified version of the original Mermin inequality) improoving
and presumably optimizing various known bounds. Their strategy was to



introduce an external locolizing one body potential αVext(r) with peaks at
the sites of a given lattice in order to start with the system with broken
translational invariance and to take first the thermodynamic limit 3 and let
afterwards α → 0. In section 0.5 I will briefly retrace their argument.

It’s worth mentioning that the situation is here analogous to the Ising
model on a lattice where in order to prove or disprove a symmetry break-
down of the state at low T (existence of spontaneous magnetization), the
Hamiltonian symmetry should be broken introducing a small external mag-
netic field h ≥ 0 at every lattice point, computing the magnetization, and
removing the field afterwards.

A simple argument that can be used to realize that the transverse phonons
are the ones which matter is due to Peierls [12, 13]. Start from the assumption
that a crystal of electrons exists. Calculate the mean sqare particle displace-
ment around the equilibrium position whitin the harmonic approximation,
namely

⟨u2⟩ = h̄

πNm

2∑
i=1

∑
k

(
ni(k) +

1

2

)
ωi(k) , (1)

where ni(k) is the Bose occupation number of the i-th phonon polarization
of frequancy ωi(k) and in-plane wave vector k. So that (1) can be rewrittem
as

⟨u2⟩ = h̄

2πNm

2∑
i=1

∑
k

coth[βh̄ωi(k)/2]

ωi(k)
. (2)

In the long wavelenght limit (kro ≪ 1) the system behaves as if it were weakly
coupled. In such a limit the longitudinal excitation mode frequency ω1(k)

(the plasmon) turns out to be equal to
√
ρv(k)k2/m ∝ k1/2 to leading order

in k while the transverse one behaves as ω2(k) ∝ k. Using this asympotic
behaviours in equation (2) one can immediately check that if the contribution
to the mean sqare displacement due to the plasmon remains finite the one due
the the transverse phonon diverge logarithmically at any finite temperature.
So whitin the harmonic approximation one cannot assume the existence of
an electron crystal.

3This is an uncontrollable point of their treatment. Notice that for the 2D-OCP the
correlation functions have been calculated exacty in the thermodynamic limit only for the
system with logarithmic interparticle potential and at Γ = 2 by Jancovici [11].



0.4 What do we know about the homoge-

neous phase

For a homogeneous fluid confined to a single layer it is known that while the
charge sum rule suffices to ensure that the structure factor S(k) vanishes as
k → 0, a dipole moment arising from the three-body correlation function
ensures that S(k)/k is a finite constant in the same long wavelenght limit.
Bearing in mind the possibility of other singularities [14] arising at finite k
the conclusion is that the pair correlation functions, indipendently from the
thermodynamic parameters (ρ and T ), cannot decay asymptotically faster
than r−3 at large r [15]. This property shows in particular, the importance
of dimensionality, keeping in mind how in the 3D-OCP the decay must be
faster than any inverse power (due to the restablished harmonicity of the
potential).

Moreover in the weak coupling regime Γ ≪ 1 (high T or low ρ), either
the mean field approximation (derived in early work by Fetter [16] within
a hydrodinamic approach which reduces in the static case to the Debye-
Huc̈kel approximation) or the Gaussian approximation (or Random Phase
Approximation [17]) predict a clustering 1/r3. This result and the one of
Requardt and Wagner that I’ m going illustrate in the next section are in
accord with the Wigner ansatz: if there has to be a phase transition this has
to accour in the strong coupling regime Γ ≫ 1.
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0.5 The Requardt and Wagner argument

I’ ll decompose all vectors into their in-plane and z components, with the
notations R ≡ (r, z) and K ≡ (k, kz). If the N electrons are supposed to
form a crystal with Bravais lattice L generated by (a1, a2) (L⋆ will be the
reciprocal lattice generated by (b1,b2) with bi · aj = 2πδi,j) I can take a
plane Λ of sides La1 and La2, and wrap it around a torus to ensure periodic
boundary conditions. As anticipated the electrons localization is achieved by
introducing a periodic external potential with periods a1 and a2. Taking the
thermodynamic limit of the system (N → ∞ and Λ → ∞) this potential will
ensure an equilibrium state nontrivially periodic.

The condition for crystallinity (long range order) is that the one-body
density, namely

ρ(r) = ⟨
N∑
i=1

δ(r− ri)⟩ , (3)

where ⟨· · ·⟩ denotes the canonical equilibrium average and ri is the position
of the i-th particle, be a (nonconstant) periodic function with periods a1

and a2. In the finite system one can define the Fourier transform of ρ(r) as
follows 4

ρ(k) =
1

N

∫
Λ
ρ(r)e−ikrd2r (4)

=
1

N
⟨
∑
i

e−ikri⟩ , (5)

where k is a vector consistent with the periodic boundary conditions, i.e.
k ∈ L⋆/L (k = (n1/L)b1 + (n2/L)b2 with n1 and n2 two integers). the
existence of a nontrivial periodic equilibrium state then, means that ρ(K) ̸= 0
for at least one non-zero vector K of the reciprocal lattice. Notice that since
I’ m assuming that in the thermodynamic limit, the equilibrium state and
his correlation functions have the periodicity of the Bravais lattice one can
also write in that limit

ρ(r) = ρ
∑
K
ρ(K)eiKr , (6)

4Implying ρ(r)/ρ =
∑

k ρ(k) exp(ikr).



where the sum is now over all the reciprocal lattice vectors K and the Fourier
coefficients are given by

ρ(K) =
1

ρCo

∫
Co

d2rρ(r)e−iKr , (7)

where Co = Λ/L2 is the area of the primitive cell.

0.5.1 Potential energy

Take the dielectric constant of the medium to be one so that image forces are
absent. The particles on the plane z = 0 interact via the Coulomb potential
e2ϕ(R) = e2(r2 + z2)−1/2 with Fourier transform ϕ(K) = (2π/k) exp(−k|z|).

The total potential energy of the 2D-OCP subject to the external poten-
tial αVext(r) can be written as

U =
1

2

∫
Λ
d2r

(∑
i

δ(r− ri)−
N

Λ

)
e2ϕ(r, 0) (8)

− 1

2

∫
Λ
d2r

∑
i

δ(r− ri) e
2ϕ(|r− ri|, 0) (9)

+ α
∫
Λ
d2r

(∑
i

δ(r− ri)−
N

Λ

)
Vext(r) , (10)

where the second (formally infinite) integral represents the self-energy coun-
terterm occurring in the electrodynamics of ideal point particles and the last
integral is the contribution from the external potential. Extracting from U
the terms with explicit dependence on the particles position one gets

U(r1, r2, . . . , rN) = Uo +
1

2

∑
i ̸=j

1

Λ

∑
k ̸=0

2πe2

k
eik(ri−rj) + α

∑
i

Vext(ri) . (11)

where k ∈ L⋆/L.

0.5.2 Mermin inequality

Define one body functions of the in-plane position r by

ψ(r) = ei(k+K)r , (12)



and

φ(r) = eikr , (13)

where K ∈ L⋆, K ≠ 0 and as usual k ∈ L⋆/L so that ψ(r) and φ(r) obey
periodic boundary conditions on the perimeter of the 2D-OCP. Choose next

A =
∑
i

ψ(ri) , (14)

B = eβU(r1,...,rN )
∑
j

(et · ∇j)[φ(rj)e
−βU(r1,...,rN )] , (15)

where (et · ∇j) denotes the derivative with respect to rj along the versor et.
By plugging A and B into the Schwartz inequality

⟨|A|2⟩ ≥ |⟨A∗B⟩|2

⟨|B|2⟩
, (16)

and performing an integration by parts in the numerator on the right hand
side and two in the denominator (in all of which the line integral terms vanish
due to the periodic boundary conditions) one obtain to Mermin inequality

S(k+K) ≥ [(k+K) · et]2|ρ(K)|
(k · et) +Dtt(k)

, (17)

where

S(q)− 1 =
1

N
⟨
∑
i ̸=j

eiq(ri−rj)⟩ −Nδ(q) , (18)

and

Dtt(k) =
β

N
⟨
∑
i ̸=j

eiq(ri−rj)(et · ∇j)(et · ∇i)U(ri, . . . , rj)⟩ . (19)

Using the expression for the total potential energy (11) into (19) one gets

Dtt(k) =
β

Λ

∑
p ̸=0

ϕ(p, 0)(p · et)2[S(p− k)− S(p)] (20)

+ βρ
∑
p ̸=0

ϕ(p, 0)(p · et)2[δ(p− k)− δ(p)] (21)

+
α

N
β

N∑
i=1

⟨(et∇i)
2Vext(ri)⟩ . (22)



This is apparently a very complicated term but can be greatly simplified
by: (i) restricting ourselves to treat only the transverse soundlike phonons
(remember section (0.3)), (k · et) = 0, so that the second sum in (20)
vanishes; (ii) taking the thermodynamic limit. In this limit the particle-
background interaction, which is of order ρe2/L, vanishes, making unre-
stricted the first sum in (20). Moreover, rewriting the last term of (20)
as [β

∫
Λ ρ(r)(et∇)2Vext(r)d

2r]α/N is apparent how this term vanisheswhen
one takes first the thermodynamic limit and after letting α → 0.

The final expression for Dtt becomes

Dtt(k) = βρ
∑
p

ϕ(p, 0)(p · et)2[S(p− k)− S(p)] , (23)

and the Mermin inequality becomes

S(k+K) ≥ [K · et]2|ρ(K)|
Dtt(k)

, (24)

0.5.3 Clustering hypothesis

To give some physical insight to the meaning of the structure factor S(q) is
useful to show its relationship to the radial distribution function

ρg(r) ≡ 1

N

∫
Λ
dr′ ρ(2)(r′, r′ − r) (25)

=
1

N
⟨
∑
i ̸=j

δ(ri − rj − r)⟩ . (26)

Calling S(r) the Fourier transform of the structure factor one gets

S(r) = ρg(r)− ρ+ δ(r) . (27)

This identity offer a simple electrostatic interpretation: immagine to fix a
charge at the origin, then S(r) represents the total charge density on the plane
which is made up by the fixed charge (δ(r)), the neutralizing background
(−ρ), and the “electronic cloud” screening the fixed charge (ρg(r)). So that,
for example, the property of the two body correlation function ρ(2)(r1, r2), to
be equal to N times the particle density, when integrated over r1 or r2 on all
Λ, is generally called charge or electroneutrality sum rule and expressed as∫

Λ
ρ[g(r)− 1]d2r ≡

∫
Λ
ρh(r)d2r = −1 . (28)



I will show now following Requardt and Wagner, that since our system ex-
hibit crystalline order in the thermodynamic limit, h(r) is asymptotically
nontrivially periodic as r → ∞ (in particular not decaying) in this limit.
Write

ρh(r) =
1

N

∫
Λ
d2r′ ρ(2)(r′, r′ − r)− ρ (29)

=
1

N

∫
Λ
d2r′ ρ

(2)
T (r′, r′ − r) +

1

N

∫
Λ
d2r′ ρ(r′)ρ(r′ − r)− ρ . (30)

and let Λ → ∞. In the state at thermodynamic equilibrium (in a pure

phase) the truncated correlation function ρ
(2)
T (r1, r2) has to decay to zero in

the difference variable (r1−r2) on a priori grounds. The second term in (29)
aquire the form (Co is the unit cell)

1

ρCo

∫
Co

d2r′ ρ(r′)ρ(r′ − r)− ρ (31)

= ρ
∑
K≠0

|ρ(K)|2e−iKr , (32)

with K ∈ L⋆ (see equations (6) and (7)). If the equilibrium state is nontriv-
ially periodic (i.e. ρ(K) ̸= 0 for at least one K ̸= 0), one can infer that ρh(r)
is asymptotically nontrivially periodic as r → ∞.

Following Requardt and Wagner one can then split off in ρh(r) the term
asymptotically oscillating in the thermodynamic limit,

ρh(o) =
1

N

∫
Λ
d2r′ ρ(r′)ρ(r′ − r)− ρ , (33)

and assume that the remaining part, ρh(d)(r), can be bound uniformly in Λ
both like

|ρh(d)(r)| ≤ C1 andX |ρh(d)(r)| ≤ C2

r1/2+ε
ε > 0 . (34)

0.5.4 Small wavelength limit in Mermin inequality

Rewriting in real space Dtt(k) defined in (23) one gets

Dtt(k) = βρ
∫
Λ
d2r h(r)[1− cos(kr)](et · ∇)2ϕΛ(r) , (35)



with the effective potential ϕΛ(r) = 1
Λ

∑
p∈L⋆/L ϕ(p) exp(ipr). Call D

(o)
tt (k),

Dtt(k) calculated using h(o) instead of h, and D
(d)
tt (k), Dtt(k) calculated using

h(d). It can be easily shown (see original article) that in the thermodynamic
limit the large wavelength (k → 0) behaviour of such functions is, uniformly
in Λ, as follows

D
(o)
tt (k) ∝ k2 , (36)

and under the clustering assumption (34)

D
(d)
tt (k) ∝ k3/2 . (37)

The conclusion is that in the thermodynamic limit the Mermin inequality
(24) becomes

S(k+K) ≥ const (K · et)2|ρ(K)|2 1

k3/2
. (38)

I’ m now able to show, using (38), that the poor decay of (34) is still
too fast to allow the existence of a ρ(K) ̸= 0 for a K ≠ 0. To this end
one starts extracting from the structure factor S(k+K) (recall that S(r) =
1 + ρh(o)(r) + ρh(d)(r)) the delta functions coming from the oscillating part
of 1 + ρh(r), namely

S(o)(k+K) = 2πδ(k+K) + 2πρ
∑
K′ ̸=0

|ρ(K′)|2δ(k −K′ +K) . (39)

This part evidently does not contribute in (38).
One then introduces a smooth non-negative cutoff function fε(k), local-

ized in an ε−neighborhood of k = 0. Since the usual Mermin argument relies
on nonintegrable singularities, one rewrites (38), with S(d) = S − S(o), as

S(d)(k+K)
fε(k)

k1/2
≥ const (K · et)2|ρ(K)|2fε(k)

k2
. (40)

Integrating now with respect to k, one gets on the left hand side∫
d2k S(d)(k+K)

fε(k)

k1/2
=
∫
d2r eiKrh(d)(r)F (r) (41)

≤
∫
r≥Ro

d2r
1

r1/2+ε

1

r3/2
<∞ (42)



where F , the Fourier transform of fε(k)/k
1/2, behaves as r−3/2 for large r.

On the other hand, equation (40) was built in such a way that an integration
with respect to k would lead to an infinite right hand side if |ρ(K)| ̸= 0
for some K ≠ 0. In other words cristallinity is incompatible with a decay
|h(d)(r)| ∝ r−(1/2+ε), for ε > 0. Since the decay of h(d)(r) as r → ∞ is the

same as the asymptotic behaviour of ρ
(2)
T (r1 + r2) in the difference variable

(r1−r2) one can say that cristallinity is incompatible with a clustering faster
then 1/r1/2.
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