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Relativistic quantum theory (Berestetskij et al., 1991) ...: We describe a pointwise,
structureless, elementary, free particle by a finite dimensional irreducible unitary rep-
resentation of its group symmetries (the Galileo group in the non-relativistic case and
the Poincaré group in the relativistic case, extended to the parity transformation). The
invariants of the group are the mass and the spin. The wave functions of the particles
are in bijective correspondence with the vectors of such representations, and the scalar
product for such vectors is expressible in terms of wave functions. We determine the
wave equation satisfied by the particles. In the relativistic case, the locality requirement,
forces the introduction of “negative energy” solutions. It is an experimental fact that the
number of particles may change in physical processes. Then, there exist transitions be-
tween states with different number of particles. We will present a formalism that allows
to describe systems of many free particles, used in any many-body theory, relativistic
or not, and known as Fock method. It allows to describe many particles states with
the correct statistics and to introduce operators that change the number of particles
(creation and annihilation operators). We will introduce the free field operators, and we
will interpret in terms of field operators the negative energy solutions of the equations
of free motion. We will denote as “antiparticles” the negative energy particles with a
non-hermitian field operator. We construct the representation of the group on the many
free particles states. And we prove the spin-statistics theorem which states that, as a
consequence of Lorentz invariance and of locality, half integer spin particles must obey
to Fermi statistics and integer spin particles must obey to Bose statistics.
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I. DEFINITION OF INVARIANCE

A reference frame is defined by a set of operative rules to measure physical quantities.
The same physical phenomenon can be observed from two different reference frames. In order for the two reference

frames to be defined, the transformation between the quantities measured in the two frames must be known.
In a given reference frame a phenomenon obeys certain physical laws. A physical law is a relationship which poses

conditions on the quantities measured at a given instant.
The frames are said to be equivalent respect to a class of phenomena if:

a) Any physical situation realizable in one can also be realizable in the other.

b) The time evolution laws are the same in the two frames.

The equivalence between frames produced by the invariance is an equivalence relationship in the mathematical
sense: Given R,R′, R′′ three frames; R is equivalent to R, if R is equivalent to R′ then R′ is equivalent to R; if R is
equivalent to R′ and R′ is equivalent to R′′ then R is equivalent to R′′.
The transformation laws between quantities in equivalent frames form a group:

a) The identity transformation exists: The one between any frame and itself.

b) Given any transformation, an inverse transformation exists which is itself an equivalence relationship respect to
the class of phenomena in exam.

c) The product of two equivalence relationships, defined as the application in succession and ordered of two
transformations, is still an equivalence relationship.

The equivalence of a class of frames relative to a set of phenomena is called invariance of such phenomena relative
to the group of transformations between the frames.

A. Conventions

Through the note we will conform to the following conventions:
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1. Units

We will always use relativistic units with ~ = 1, c = 1. In these units, we have for the elementary charge e2/4π =
1/137.

2. Fourier transform

The tridimensional Fourier transform is

f(p) =

∫
f(q)e−iq·p dq, (1.1)

f(q) =

∫
f(p)eiq·p

dp

(2π)3
, (1.2)

and analogously for the four-dimensional case.

3. Operators

We will not introduce a different symbol for the operators on the Hilbert space and their eigenvalues. The reader
should understand the difference from the context of the various equations introduced.

II. INVARIANCE IN QUANTUM MECHANICS

In quantum mechanics the invariance respect to a change of reference frame is defined as follows:

a) The possible states in the two frames are the vectors of a same Hilbert space. The observables are the same.
The transformation law is a mapping of the Hilbert space onto itself.

b) Starting from the same initial state the time evolution is the same in the two frames.

The invariance transformations are a group. So an invariance transformation is a realization of the group on an
Hilbert space.
Let |a〉 be a state, in a certain frame, defined by the simultaneous measure of a complete set of commuting

observables. Any vector of the form xa|a〉 where xa is an arbitrary phase factor, is an eigenstate of the same
observables with the same eigenvalues. So it represents the same physical state. The phase is not observable. A
measurement on |a〉 means to observe the probability that |a〉 contains a state |b〉 defined by the measure instruments.
What one measures is

Pab = |〈b|a〉|2, (2.1)

where the phases xa and xb cancel. A vector of the Hilbert space modulo a phase is called a “ray” of the Hilbert
space and will be denoted |{a}〉.
Wigner theorem: Given a bijective transformation between rays in a Hilbert space |{s}〉 → |{s′}〉 such that

|〈{s′2}|{s′1}〉|2 = |〈{s2}|{s1}〉|2 ∀|{s1}〉, |{s2}〉 (2.2)

it is always possible to choose the phases in such a way that the transformation is realized on the Hilbert space vectors
as a unitary or antiunitary transformation.
Proof:

1. Let |en〉 be an orthonormal complete base of the Hilbert space and let |{en}〉 be the correspondent rays. The
transformed rays are orthonormal

〈ei|ej〉 = δij =⇒ |〈{e′i}|{e′j}〉|2 = δij (2.3)

Let us choose in an arbitrary way a set of phases on the rays |{e′i}〉, i.e. a set of vectors |e′i〉 that represent the
states. Then

〈e′i|e′j〉 = δij , (2.4)
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The set of vectors so obtained is also a complete base of the Hilbert space. In fact, if there exists a vector |v′〉
such that 〈v′|v′〉 6= 0 and 〈v′|e′n〉 = 0 ∀n, then, by hypothesis, there would exist a vector |v〉 such that 〈v|v〉 6= 0
and 〈v|en〉 = 0 ∀n, against the hypothesis of completeness of the base |en〉.

2. Let |Fk〉 = |e1〉+ |ek〉. The generic representative of the transformed ray |{F ′
k}〉 will be

|F ′
k〉 = xk(|e′1〉+ yk|e′k〉), (2.5)

with xk and yk phases factors. In fact

|〈Fk|en〉| = δn1 + δnk =⇒ |〈F ′
k|e′n〉| = δn1 + δnk. (2.6)

Next I can define the following S transformation

|Se1〉 = |e′1〉 |Sek〉 = yk|e′k〉 (2.7)

|SFk〉 =
1

xk
|F ′

k〉 = |e′1〉+ yk|e′k〉. (2.8)

With this choice

|SFk〉 = |Se1〉+ |Sek〉. (2.9)

In other words we realized the transformation S as a linear transformation on vectors of kind |Fk〉. Let us next
extend this construction to all vectors of the Hilbert space.

3. Consider a generic vector

|v〉 =
∑

n

an|en〉. (2.10)

Let us assume, without loss of generality, a1 real. The correspondent ray |{v}〉 will be transformed into a ray
|{v′}〉 with the following generic representative

|v′〉 =
∑

n

a′n|e′n〉, (2.11)

and since by hypothesis

|〈v|en〉|2 = |〈v′|e′n〉|2, (2.12)

we have

|a′n| = |an|. (2.13)

We define

|Se1〉 = |e′1〉, (2.14)

|Sen〉 = yn|e′n〉 ∀n 6= 1, (2.15)

with yn some phase factors, so that for any vector belonging to the transformed ray |{v′}〉

|v′〉 = x

{
a1|Se1〉+

∞∑

n=2

a′n
yn
|Sen〉

}
, (2.16)

with x a phase factor. We then define

|Sv〉 = 1

x
|v′〉. (2.17)

By hypothesis it must be

|〈Fk|v〉|2 = |a1 + ak|2 = |〈SFk|Sv〉|2 =

∣∣∣∣a1 +
a′k
yk

∣∣∣∣
2

. (2.18)
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Since we also have |ak| = |a′k| we require

Re(a1ak) = Re

(
a1
a′k
yk

)
. (2.19)

Then there are only two possibilities:

i. ak = a′k/yk

ii. ak = (a′k/yk)
∗

or

i. |Sv〉 = S(
∑

n an|en〉) =
∑

n an|Sen〉
ii. |Sv〉 = S(

∑
n an|en〉) =

∑
n a

∗
n|Sen〉

In the first case the operator S is linear, in the second is antilinear. We also have

i. 〈Sv1|Sv2〉 = 〈v1|v2〉 ∀|v1〉, |v2〉
ii. 〈Sv1|Sv2〉 = 〈v2|v1〉 ∀|v1〉, |v2〉

In the first case S is unitary, in the second it is antiunitary.

III. INVARIANCE AND TIME EVOLUTION

The requirement b) for invariance tells us that the evolution of the transformed must coincide with the transfor-
mation of the evolved

U(t, t′)S(t′)|ψ〉 = S(t)U(t, t′)|ψ〉, (3.1)

where U(t, t′) is the time evolution operator. Since |ψ〉 is arbitrary we must have

S†(t)U(t, t′)S(t′) = U(t, t′). (3.2)

If the Hamiltonian H is independent of time

U(t, t′) = e−iH(t−t′), (3.3)

and we require

S(t) = e−iH(t−t′)S(t′)eiH(t−t′). (3.4)

IV. GALILEAN RELATIVITY

We require invariance under translations, rotations, and velocity transformations for pointwise non relativistic
particles.

A. Spatial translations

Let us consider a reference frame R′ translated by a relative to the frame R. If the spatial translations are a
symmetry of the system it must exist a unitary transformation U(a) which relates the dynamical variables q′ and p′

in R′ to the variables q and p in R. The transformation law must be

q′ = q− a, (4.1)

p′ = p. (4.2)

It is easy to see that the unitary operator exists and is

U(a) = eia·p. (4.3)
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Since the transformation is unitary the commutation relations do not change

[q′i, p
′
j] = [qi, pj ] = iδij , (4.4)

[q′i, q
′
j] = [qi, qj ] = 0, (4.5)

[p′i, p
′
j] = [pi, pj ] = 0, (4.6)

where q = U(a)†qU(a) and p = U(a)†pU(a). Moreover from Hadamard lemma (A11) follows immediately that Eqs.
(4.1)-(4.2) are satisfied.
The invariance of the time evolution between two frames R and R′ imposes

U †(a, t)e−iH(t−t′)U(a, t′) = e−iH(t−t′), (4.7)

which means

[p, H ] = 0. (4.8)

In other words, the momentum is a constant of motion. We can also write

∂H

∂q
= 0. (4.9)

B. Rotations

A rotation is defined by a versor n̂ which indicates the axis of rotation and an angle θ. We define θθθ = θn̂. The
angles are taken as positive for anti-clockwise rotations. Let us consider a frame R′ rotated by θθθ relative to frame R.
The component of a vector v will change according to

v′i = R(θθθ)ijvj , (4.10)

where R(θθθ) is the rotation matrix. For infinitesimal transformations

δv = v′ − v ≈ −θθθ ∧ v. (4.11)

If the quantum system is invariant under rotations it must be possible to construct a unitary transformation on the
Hilbert space which realizes the transformation and commutes with the time evolution. Let us then consider the
angular momentum

J = q ∧ p. (4.12)

It is easy to verify that for v = q or v = p we have

[θθθ · J,v] = −iθθθ ∧ v. (4.13)

Then the transformation we are looking for is

U(θθθ) = eiθθθ·J, (4.14)

as can be readily verified for infinitesimal transformations

v′ = U †(θθθ)vU(θθθ) ≈ v − i[θθθ · J,v] = v − θθθ ∧ v. (4.15)

The transformation commutes with the time evolution if

[J, H ] = 0 (4.16)

which means that H must be a scalar and the angular momentum a constant of motion. Since the transformation is
unitary it preserves the commutation relations.
If the particle has a spin the generator of the rotations is the total angular momentum

J = q ∧ p+ s. (4.17)
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C. Galilean transformations

If we go from a frame R to a frame R′ moving relative to R with a constant speed v we must have

q′ = q− tv, (4.18)

p′ = p−mv. (4.19)

It is easy to verify that these laws of transformation are induced by the unitary operator

U(t,v) = ei(pt−qm)·v, (4.20)

so that

U †(t,v)qU(t,v) = q− tv, (4.21)

U †(t,v)pU(t,v) = p−mv. (4.22)

If the Galilean transformation has to be an invariance we must also require

U(t,v) = e−iH(t−t′)U(t′,v)eiH(t−t′), (4.23)

or

tp−mq = e−iH(t−t′)(t′p−mq)eiH(t−t′). (4.24)

If the system is invariant under translations [p, H ] = 0, so

(t− t′)p = mq−me−iH(t−t′)qeiH(t−t′). (4.25)

For infinitesimal time differences we get

p

m
= i[H,q] =

∂H

∂p
. (4.26)

So

H =
p2

2m
. (4.27)

D. Galileo group

We analyzed the symmetries under translations, rotations, and Galileo transformations for a non relativistic system.
The corresponding unitary transformations are

U(a) = eia·p, (4.28)

U(θθθ) = eiθθθ·J, (4.29)

U(v) = e−iv·K K = mq− tp (4.30)

The group corresponding to the set of these transformations is called “Galileo group” and the corresponding invariance
“galilean invariance”.
From the canonical commutation relationships, the following algebra for the group generators, follows

[pµ, pν ] = 0 P0 = H (4.31)

[J, H ] = 0 [Ji, pj ] = iǫijkpk (4.32)

[Ji, Jj ] = iǫijkJk [Ji,Kj ] = iǫijkKk (4.33)

[Ki,Kj] = 0 [Ki, pj ] = imδij [Ki, H ] = ipi (4.34)

In the Hilbert space of the physical system is then defined an unitary representation of the group that transforms the
spec into itself.
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If this representation is reducible it is possible to write the Hilbert space as a direct sum of one or more orthogonal
Hilbert spaces each one transforming in itself. The generators are written as sum of the generators acting in each
subspace and generators acting on different irreducible subspaces commute. The states in each subspace evolve with
their Hamiltonian each in states belonging to the same subspace.
A physical system can then be written as a sum of irreducible representations of the Galileo group.
The simplest case is a particle without internal structure. In this case the only internal variable is the spin which

commutes with the orbital variables. A complete set of state is

|p〉|s, sz〉. (4.35)

Assuming the usual metric

〈p′|p〉 = (2π)3δ3(p− p′), (4.36)

〈s′z |sz〉 = δs′zsz (4.37)

these states constitute an irreducible representation of the Galileo group if the states |sz〉 are an irreducible represen-
tation of internal rotations. Let us show this explicitly:

p|p〉 = p|p〉, (4.38)

peiθθθ·J|p〉 = eiθθθ·Je−iθθθ·Jpeiθθθ·J|p〉
= R(θθθ)peiθθθ·J|p〉, (4.39)

where p on the right hand side denotes the momentum operator acting on the eigenstate |p〉 and on the left denotes
the eigenvalue. The eigenvalues of the rotated state is the rotated momentum. In the same way:

pe−iv·K|p〉 = e−iv·Keiv·Kpe−iv·K|p〉
= (p−mv)e−iv·K|p〉, (4.40)

so

eiθθθ·J|p〉 = |R(θθθ)p〉, (4.41)

e−iv·K|p〉 = |p−mv〉, (4.42)

and we see that starting from any vector |p〉 it is possible to reach any other vector |p′〉 through successive applications
of rotations or of Galileo transformations. The internal degrees of freedom only transform by rotations independently.
So a pointwise free particle is described by an irreducible unitary representation of the Galileo group.

E. Parity invariance

The parity transformation is defined by

p→ −p q→ −q s→ s (4.43)

This is a canonical transformation since it does not change the commutation relations. The transformation operator
is

UP = ei
π
2 (p+iq)·(p−iq). (4.44)

The parity transformation has square 1

UP = U−1
P = U †

P . (4.45)

If the parity transformation is an invariance we must have

U−1
P HUP = H (4.46)

or

[UP , H ] = 0. (4.47)
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Let us now prove Eq. (4.44) in the one-dimensional case

UP = ei
π
2 (p2+q2−1). (4.48)

Apart from a phase this operator coincides with the time evolution operator of a harmonic oscillator of mass 1 and
ω = 1 from time t = 0 to time t = π. The Heisenberg equations for

q(t) = eiHtq(0)e−iHt, (4.49)

p(t) = eiHtp(0)e−iHt, (4.50)

are

q̇ = i[H, q], (4.51)

ṗ = i[H, p], (4.52)

with H = (p2 + q2)/2. They have solution

q(t) = q cos t+ p sin t, (4.53)

p(t) = p cos t− q sin t. (4.54)

It follows for t = π

q(π) = U †
P qUP = −q, (4.55)

p(π) = U †
P pUP = −p, (4.56)

which is what we wanted.

F. Time reversal

The time reversal acts as follows

q→ q p→ −p s→ −s t→ −t (4.57)

This transformation cannot be realized by a unitary operator because in such case the commutation relations would
be preserved. Instead we want, in one dimension,

[q, p] = i→ [q,−p] = −i (4.58)

If the transformation is antiunitary this is possible:

[q′, p′] = U †
T [q, p]UT = U †

T iUT = −i. (4.59)

An antilinear operator is defined by

T |s1〉 = |Ts1〉 T |s2〉 = |Ts2〉 (4.60)

T (a|s1〉+ b|s2〉) = a∗T |s1〉+ b∗T |s2〉. (4.61)

For a linear operator O

〈a|Ob〉 = 〈O†a|b〉 = 〈b|O†a〉∗, (4.62)

and the operator is Hermitian if

〈a|Ob〉 = 〈Oa|b〉. (4.63)

For an antilinear operator T

〈a|Tb〉 = 〈b|T †a〉, (4.64)
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which is antilinear in |a〉 and in |b〉. An antilinear operator is antiunitary if

TT † = T †T = 1, (4.65)

or

〈a|T †Tb〉 = 〈Tb|Ta〉 = 〈a|b〉. (4.66)

The transformed of O under T

O′ = T †OT, (4.67)

is still linear and

〈b|T †OTa〉 = 〈OTa|Tb〉 = 〈Ta|O†Tb〉. (4.68)

In particular for O = i we find

T †iT = T iT † = −i. (4.69)

The time reversal is realizable with an antiunitary operator:

T †qT = q T †pT = −p T †sT = −s (4.70)

Moreover, in order to have invariance, we must require

T †HT = H. (4.71)

If O is an observable

〈b|OTa〉 = 〈b|TT †OTa〉 = 〈T †OTa|T †b〉. (4.72)

So if T †OT = ±O we have

〈b|OTa〉 = ±〈Oa|T †b〉. (4.73)

For eigenstates of O, O|a〉 = Oa|a〉, we have

〈b|OTa〉 = ±Oa〈a|T †b〉 = ±Oa〈b|Ta〉, (4.74)

which means that |Ta〉 is an eigenstate of O with the transformed eigenvalue.
So for a state |a〉 = |p, sz〉 we have

|Ta〉 = | − p,−sz〉, (4.75)

modulo a phase.
For a spinless particle with canonical variables q and p the time reversal is realized through

〈q|Ta〉 = ψTa(q) = ψ∗
a(q) = 〈q|a〉∗, (4.76)

on wave functions in coordinate representation. In fact we have

〈a|T †pTb〉 = 〈pTb|Ta〉 =
∫
ψb(q)(−i∇∇∇)ψ∗

a(q) dq = −
∫
ψ∗
a(q)(−i∇∇∇)ψb(q) dq = −〈a|pb〉, (4.77)

where we used an integration by parts. Analogously we verify

〈a|T †qTb〉 = 〈qTb|Ta〉 = 〈a|qb〉. (4.78)

The Hamiltonian is an Hermitian function of q and p. In the coordinate representation, q is a real variable and
p = −i∇∇∇. The transformation p → −p is equivalent to a complex conjugation. We will have invariance under T if
H(q,p) = H(q,−p) or if H is real. A Hamiltonian of the form

H =
p2

2m
+ V (q), (4.79)
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is invariant under T .
If the particle has spin, it is described by 2s+ 1 functions of q

ψ(q) =




ψ1(q)
...

ψ2s+1(q)


 . (4.80)

The spin is represented by three matrices ΣΣΣ = (Σ1,Σ2,Σ3) independent from q. We now take

ψTa(q) = Uψ∗
a(q), (4.81)

with U an unitary matrix independent from q and acting on spin space. To have the correct spin transformations we
must have

〈a|T †sTb〉 = 〈sTb|Ta〉 = −〈a|sb〉, (4.82)

or

−
∫
ψ†
aΣΣΣψb =

∫
ψTr
b U †ΣΣΣUψ∗

a, (4.83)

which means

UTrΣΣΣTrU †Tr = −ΣΣΣ, (4.84)

and taking the complex conjugate, since ΣΣΣ† =ΣΣΣ, we find

U †ΣΣΣU = −ΣΣΣ∗. (4.85)

With the usual choice of phases in the angular momentum representation Σ1 and Σ3 are real matrices and Σ2 is pure
imaginary.
For example for spin 1/2 particles

Σ3 =
1

2

(
1 0
0 −1

)
Σ1 =

1

2

(
0 1
1 0

)
Σ2 =

1

2

(
0 i
−i 0

)
(4.86)

Then apart from an unessential phase we find

U = eiπΣ2 , (4.87)

a rotation of π around the 2 axis, which changes sign to Σ1 and Σ3. In conclusions we have

ψTa = eiπΣ2ψ∗
a. (4.88)

V. EINSTEIN RELATIVITY

The invariance under the Galileo group is valid in the limit of small velocities. But, actually, physics is invariant
under Lorentz transformations in addition to spatial translations. This invariance is known as Einstein relativity.
The Lorentz group is defined as the group of linear transformations which leaves invariant the quadratic form

ds2 = dt2 − dx2. (5.1)

Let dx = (dx0, dx1, dx2, dx3) = (dt, dx) we can write

ds2 = gµνdx
µdxν , (5.2)

where Einstein summation convention is used with

gµν = gµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 gµνgνα = δµα (5.3)
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The Lorentz transformations are defined as the linear transformations

dx′µ = Λµ
νdx

ν , (5.4)

such that

gµνdx
′µdx′ν = gµνΛ

µ
αΛ

ν
βdx

αdxβ . (5.5)

Due to the arbitrariness of dxµ we have

gµν = gαβΛ
α
µΛ

β
ν , (5.6)

or

g = ΛΛΛTrgΛΛΛ, (5.7)

which defines the Lorentz group. Taking the 00 component in Eq. (5.6)

1 = gαβΛ
α
0Λ

β
0 = (Λ0

0)
2 −

∑

i

(Λi
0)

2, (5.8)

or

(Λ0
0)

2 ≥ 1, (5.9)

or

Λ0
0 ≥ 1 or Λ0

0 ≤ −1. (5.10)

Taking the determinant in Eq. (5.6) follows

(detΛΛΛ)2 = 1, (5.11)

or

detΛΛΛ = ±1. (5.12)

The transformations obtained continuously from the identity have Λ0
0 ≥ 1 and detΛΛΛ = 1 and constitute the proper

Lorentz group. The transformations with Λ0
0 ≥ 1 and detΛΛΛ = −1 can be written as the product of the parity

P : x→ −x times a proper transformation. The ones with Λ0
0 ≤ −1 and detΛΛΛ = 1 as a product of the time reversal

T : x0 → −x0 times the proper transformations. The ones with Λ0
0 ≤ 1 and detΛΛΛ = −1 as PT times a proper

transformation.
An infinitesimal proper transformation

Λµ
µ′ = δµµ′ +Ωµ

µ′ , (5.13)

must satisfy Eq. (5.6). So

gµ′ν′ = gµ′ν′ +Ωµ
µ′gµν′ + Ων

ν′gνµ′ +O(ΩΩΩ2). (5.14)

Let

Ωµν = gµαΩ
α
ν , (5.15)

then we must have

Ωµν = −Ωνµ. (5.16)

The group has 6 parameters as the number of components of an antisymmetric 4× 4 matrix. The most general 4× 4
antisymmetric matrix can be written as

Ωµν =
1

2

∑

ρσ

ω(ρσ)M
(ρσ)
µν , (5.17)

M (ρσ)
µν = δρµδ

σ
ν − δρνδσµ = −M (σρ)

µν . (5.18)
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We write
(
M (ρσ)

)µ
ν
= gµαM (ρσ)

αν , (5.19)

so

Ωµ
ν = gµαΩαν = gµα

1

2
ω(ρσ)M

(ρσ)
µν =

1

2
ω(ρσ)

(
M (ρσ)

)µ
ν
. (5.20)

The matrices M (µν) satisfy the following algebra

[M (αβ),M (µν)] = −
(
gαµM (βν) + gβνM (αµ) − gβµM (αν) − gανM (βµ)

)
. (5.21)

We can then introduce

J (µν) ≡ −iM (µν), (5.22)

and

J i = −1

2
ǫ0ijkJ

(jk), (5.23)

Ki = J (0i), (5.24)

where ǫµ0µ1µ2µ3 is the Levi-Civita symbol with ǫ0123 = 1 1. Then Eq. (5.21) is rewritten as

[J i, Jj ] = iǫijkJ
k, (5.28)

[J i,Kj] = iǫijkK
k, (5.29)

[Ki,Kj] = −iǫijkJk. (5.30)

The generators J i are the rotations generators, which constitute a subgroup of the Lorentz transformations. The Ki

are the generators of the velocity (v) transformations and are vectors, as follows from their commutation relations
with the J i. The infinitesimal transformations are then

ΛΛΛ = 1 + i(θθθ · J−ααα ·K). (5.31)

The finite ones are

ΛΛΛ = e
i
2

∑
αβ J(αβ)ω(αβ) = ei(θθθ·J−ααα·K) v = (tanhα1, tanhα2, tanhα3), (5.32)

where θθθ is the rotation angle vector and ααα is the rapidity vector.
Under the Lorentz group the generators of the translations pµ must transform as four-vectors

[J (µν), pα] = i(gµαpν − gανpµ), (5.33)

or

[J, p0] = −δp0 = −Jp0 = 0, (5.34)

which expresses the conservation of angular momentum, and

[J i, pj ] = −δpj = −J ipj = iǫijkp
k, (5.35)

1 For any antisymmetric tensor Fµν it is possible to use a decomposition of the following kind: Fµν = (P,A) with

A1 = −F 23 A2 = −F 31 A3 = −F 12 (5.25)

P 1 = F 01 P 2 = F 02 P 3 = F 03 (5.26)

For the product of two tensors of this kind we have

1

2
F

(1)
µν F (2)µν = A(1) ·A(2) −P(1) ·P(2). (5.27)
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which tells us that p is a vector. On the momenta the generators of the velocity transformations act as follows

[Ki, p0] = −δp0 = −Kip0 = ig00pi, (5.36)

[Ki, pj ] = −δpj = −Kipj = −igijp0. (5.37)

The invariance under translations is written as

[pµ, pν ] = 0. (5.38)

The commutation relations between the generators are then

[pµ, pν ] = 0, (5.39)

[J (µν), pα] = i(gµαpν − gανpµ), (5.40)

[J (αβ), J (µν)] = i
(
gαµJ (βν) + gβνJ (αµ) − gβµJ (αν) − gανJ (βµ)

)
. (5.41)

They define the Lie algebra of a 10 parameters group known as the Poincaré group.
The Poincaré group is defined by the transformation laws

(Λ, a) : x→ x′ = ΛΛΛx− a, (5.42)

where a is a translation and Λ is a Lorentz transformation. We immediately find the multiplication properties of the
group as

(Λ1, a)(Λ2, b) = (Λ1Λ2,−Λ1b− a), (5.43)

from which immediately follows that the translations are an abelian invariant subgroup. In fact applying repetitively
Eq. (5.43) we find that the transformed by similitude of a translation (1, a),

(Λ, c)(1, a)(Λ−1,−c) = (1,Λ(c− a)− c), (5.44)

is still a translation.
By Wigner theorem the states of a physical system are the basis of a unitary representation of the Poincaré group.

An elementary system will be described by an irreducible representation of the Poincaré group.
We note that

J± =
J± iK

2
, (5.45)

obey the following commutation relations

[J i
+, J

j
+] = iǫijkJ

k
+, (5.46)

[J i
−, J

j
−] = iǫijkJ

k
−, (5.47)

[J i
+, J

j
−] = 0. (5.48)

So the generators of J+ and J− obey to the algebra SU(2)⊗SU(2). Let us show now that an irreducible representation
of the Poincaré group, i.e. an elementary particle, is determined by the mass and the spin.
An irreducible representation is characterized by the value of the invariants, i.e. of the operators built with the

generators of the group that commute with all the group generators. We then define

Γµ =
1

2
ǫµαβσJ

(αβ)pσ, (5.49)

Γµp
µ = 0, (5.50)

gµ = J (µν)pν , (5.51)

gµpµ = 0. (5.52)

One can prove (Shirokov, 1958a,b, 1959) 2 that

p2J (µν) = gµpν − gνpµ − ǫσµνλΓσpλ. (5.54)

2 One can use the identity

ǫσµνλǫσαβρ = det





δµα δ
µ
β

δµρ
δνα δνβ δνρ
δλα δλβ δλρ



 , (5.53)

and the definition of Γσ to calculate the product ǫσµνλΓσpλ.
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This tells us that J (µν) can be expressed in terms of pµ,Γµ, and gµ if p2 = pµp
µ 6= 0.

Moreover we have

[Γµ,Γν ] = iǫρµνλΓ
ρpλ, (5.55)

[gµ,Γσ] = −iΓµpσ, (5.56)

[gµ, pν ] = i(gµνp
2 − pµpν), (5.57)

[gµ, gν ] = −i(gµpν − gνpµ − ǫσµνλΓσpλ) (5.58)

[pµ,Γσ] = 0. (5.59)

An invariant should be constructed with the vectors pµ,Γµ, and gµ. Recalling that gµp
µ = 0 and Γµp

µ = 0 the only
independent invariants under the Lorentz group are

p2,Γ2, g2,Γµg
µ. (5.60)

But g2 and Γµg
µ do not commute with translations. Then the representation is determined by p2,Γ2, and by the sign

of p0, which is also invariant under the proper Lorentz group and commutes with translations, if p2 ≥ 0.
The physical interpretation of the two invariants is obvious:

i. For the invariant p2 we have 4 cases

p2 > 0, (5.61)

p2 = 0 p 6= 0, (5.62)

p2 = 0 p = 0, (5.63)

p2 < 0. (5.64)

Since p2 = m2 we will be interested only in the first two cases. In these two cases, for the representations of the
proper group (Λ0

0 ≥ 0 and detΛ = 1) we will have another invariant, namely the sign of p0.

ii. The invariant Γ2 can be calculated in the reference frame where p = 0. In such a frame

Γ = (Γ0,Γ1,Γ2,Γ3) = (Γ0,ΓΓΓ) = (0,mJ) Γ2 = −m2J(J + 1). (5.65)

The modulus of J in the rest frame is by definition the particle spin, so Γ2 = −m2s(s+ 1)

Then the representation is determined by the mass m and by the spin s, exactly as in the nonrelativistic happens for
the Galileo group.

A. The irreducible unitary representation of the Poincaré group

We want now to explicitly construct the irreducible unitary representations of the Poincaré group.

1. Massive particles

We can build a base of the Hilbert space which diagonalizes simultaneously the components pµ of the four-
momentum, which commute among themselves, and other observables which we will denote by now with σ. The
vector of the base will have the form |p, σ〉 with

pi|p, σ〉 = pi|p, σ〉 p0|p, σ〉 = sgn(p0)p0|p, σ〉, (5.66)

with p0 = p0 ≡
√
p2 +m2 and p = (p1, p2, p3) = (−p1,−p2,−p3). We will call U(Λ) the unitary operators which

represents the generic Lorentz transformation ΛΛΛ. We will have

U(Λ)|p, σ〉 =
∑

σ′

R(Λ,p)σσ′ |Λp, σ′〉. (5.67)

In fact, using the group algebra we have

U †(Λ)pµU(Λ) = Λν
µpν , (5.68)
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then

pµU(Λ)|p, σ〉 = U(Λ)U †(Λ)pµU(Λ)|p, σ〉
= Λν

µpνU(Λ)|p, σ〉. (5.69)

So U(Λ)|p, σ〉 belongs to the eigenvalue (ΛΛΛp)µ of the four-momentum. And this proves Eq. (5.67). The Lorentz
invariant measure, for momentum p = (p0, p1, p2, p3) = (p0,p), is

dΩp =
d4p

(2π)3
δ(
√
p2 −m)θ(p0) =

d3p

(2π)32p0
. (5.70)

One can easily verify that with the invariant normalization

〈p′, σ′|p, σ〉 = (2π)32p0δ(p− p′)δσσ′ , (5.71)

the matrix R(Λ,p)σσ′ in Eq. (5.67) is unitary due to the unitarity of U(Λ).
The operator Γµ commutes with all the components of pµ. Then when applied to the state |p, σ〉 it can only mix

it with states of the same p.
Let us start by considering the case p2 = m2 > 0 with p = 0, |0, σ〉, for which

p|0, σ〉 = 0 p0|0, σ〉 = sgn(p0)m|0, σ〉. (5.72)

On this subspace Γµ = 1
2ǫµαβγJ

(αβ)pγ can be easily calculated

Γ0 = 0 ΓΓΓ = mJ ≡ ms. (5.73)

The angular momentum of the rest frame is called spin by definition. The dimension of the subspace is 2s+ 1.
For the variable σ we can take the eigenvalue of one of the spin component, i.e. s3.
If U(Λp) is a Lorentz transformation which brings the momentum from 0 to a certain value p, since Γµ is a

four-vector, we will have

U †(Λp)Γ
µU(Λp) = (Λp)

µ
νΓ

ν . (5.74)

If we call Γ̄µ
σ′σ the representative of the Γµ on the subspace |0, σ〉 we will have

ΓµU(Λp)|0, σ〉 = U(Λp)U
†(Λp)Γ

µU(Λp)|0, σ〉
= U(Λp)(Λp)

µ
νΓ

ν |0, σ〉
= (Λp)

µ
νΓ̄

ν
σ′σU(Λp)|0, σ〉. (5.75)

Then (Λp)
µ
νΓ̄

ν
σ′σ is the representative of Γµ on the subspace |p, σ〉, in the representation in which the base vectors

are |p, σ〉 = U(Λp)|0, σ〉.
The Lorentz transformation U(Λp) which brings the momentum from 0 to p is not univocally defined: it is

indetermined on the right by a transformation of the small group 3 of the initial momentum 0 and on the left by a
transformation of the small group of the final momentum p.
For each choice of these transformations we will have a choice of the base vectors U(Λp)|0, σ〉 and of the represen-

tative of Γµ. We will adopt, in the following, a standard choice for U(Λp). Namely a simple velocity transformation
e−iααα·K in the p direction, which sends the momentum from 0 to p. The base vectors are then

|p, σ〉 = U(Λp)|0, σ〉 = e−iααα·K|0, σ〉, (5.76)

and

Γµ(p) = (Λp)
µ
νΓ

ν(0) =

(
p · s,ms+

(p · s)p
p0 +m

)
. (5.77)

3 The small group of p is the subgroup of the transformations which leaves p unchanged.
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This can be proved as follows. We can write for a general velocity transformation

ΛΛΛp =

(
γ −γβββTr

−γβββ 1+ (γ − 1)ββββββTr/β2

)
γ =

1√
1− β2

, (5.78)

with

−γβββ =
p

m
=⇒ γ =

p0
m

and (γ − 1)/β2 =
p20

m(p0 +m)
(5.79)

The transformation we are looking for is then

(Λp)
µ
ν = δµν −

1

p0 +m

[
mδµ0δ

0
ν + δµ0pν +

pµpν
m
− δ0νpµ

(
1 + 2

p0
m

)]
, (5.80)

from which we immediately find Eq. (5.77).
To complete the construction of the representation we could now look for the representative of gµ defined in (5.51),

using the commutation relations (5.55)-(5.59), and construct the representative of the generic J (µν) using Eq. (5.54).
Alternatively we may proceed as follows:

a) Let us first consider the rotations. If Λ is a rotation Rθθθ

U(Rθθθ)|p, σ〉 = U(Rθθθ)U(Λp)U
†(Rθθθ)U(Rθθθ)|0, σ〉. (5.81)

We know that

U(Λp) = e−iααα·K, (5.82)

and since

U †(Rθθθ)KU(Rθθθ) = RθθθK, (5.83)

we have

U(Rθθθ)U(Λp)U
†(Rθθθ) = e−i(Rθθθααα)·K, (5.84)

and

U(Rθθθ)|p, σ〉 =
(
eiθθθ·s

)
σ′σ
|Rθθθp, σ

′〉. (5.85)

b) For a Lorentz transformation sending p into p′

U(Λ)|p, σ〉 = U(Λp′)U †(Λp′)U(Λ)U(Λp)|0, σ〉. (5.86)

The matrix U †(Λp′)U(Λ)U(Λp) belongs to the small group of p = 0, i.e. it is a rotation R(Λ,p) in the subspace
|0, σ〉. To determine it we just need to calculate

ΛΛΛ−1
p′ ΛΛΛΛΛΛp, (5.87)

using the formula (5.80) and the explicit one (5.78). If we call R(Λ,p)σ′σ the representative of such a rotation
in the space |0, σ〉 we will have

U(Λ)|p, σ〉 = R(Λ,p)σ′σ|Λp, σ〉. (5.88)

Explicitly, if Λ is a velocity transformation with velocity β in the direction n̂, we find

(ΛΛΛ−1
p′ ΛΛΛΛΛΛp, )

µ
ν =

(
R̄0

0 R̄0
j

R̄i
0 R̄i

j

)

=




p′0
m

−
p′j
m

−p
′
i

m
δik +

p′ip
′
k

m(p′0 +m)



(

γ −γβnl

−γβnk δkl + (γ − 1)nknl

)

p0
m

pj
mpl

m
δlj +

plpj
m(p0 +m)


 .(5.89)
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To first order in β

p′0 = γpo − γβn̂ · p = p0 − βββ · p+O(β2), (5.90)

p′ = −γβn̂p0 + p+ (γ − 1)n̂(n̂ · p) = p− βββp0 +O(β2), (5.91)

and

R̄i
j = δij +

β

p0 +m
(nipj − pinj) +O(β2). (5.92)

Recalling that in the vector representation (J i)jk = iǫjik and using ǫijkǫilm = δjlδkm − δjmδkl we finally find

R ≈ 1− i βββ ∧ p

p0 +m
· J. (5.93)

The finite transformation R(Λ,p) is then of the following form

R(Λ,p) = e
−i βββ∧p

p0+m
·J
. (5.94)

This rotation is called the Wigner rotation.

The transformations on the wave functions can be determined from the one on the states. The generic |φ〉 is written
as

|φ〉 =
∫
dΩp ϕσ(p)|p, σ〉, (5.95)

and the scalar product

〈φ′|φ〉 =
∫
dΩp ϕ

′∗(p)ϕ(p). (5.96)

Under a transformation U(Λ, a)

|Λφ〉 = U(Λ, a)|φ〉 =
∫
dΩp e

−ipaϕσ(p)R(Λ,p)σ′σ|Λp, σ′〉. (5.97)

Changing variables from p to Λ−1p and using the fact that the measure is invariant we find

|Λφ〉 =
∫
dΩp e

−i(Λ−1p)aRσ′σϕσ(Λ
−1p)|p, σ′〉, (5.98)

or

(Λϕ)σ(p) = Rσσ′ϕσ′(Λ−1p). (5.99)

The matrix R is given by Eq. (5.85) for the rotations and by Eq. (5.89) for the velocity transformations and is
unitary respect to the metric 〈φ′|φ〉.
For an infinitesimal transformation Eq. (5.99) gives the form of the generators:

a) For an infinitesimal rotation of an angle θθθ

Λ−1p ≈ p+ θθθ ∧ p R ≈ 1 + iθθθ · s, (5.100)

so

δϕσ ≡ (Λϕσ)− ϕσ ≈ iθθθ · sσσ′ϕσ′ + (θθθ ∧ p)
∂

∂p
ϕσ. (5.101)

The generator is defined by δϕ = i(θθθ · J)ϕ so

J = s− ip ∧ ∂

∂p
. (5.102)
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b) For a velocity transformation

Λ−1p ≈ p+ βp0 R ≈ 1− i βββ ∧ p

p0 +m
· s, (5.103)

so

δϕσ ≈ −i(βββ ·K)ϕσ = −i βββ ∧ p

p0 +m
· sσσ′ϕσ′ + βββ · p0

∂

∂p
ϕσ, (5.104)

or

K =
p ∧ s

p0 +m
+ ip0

∂

∂p
. (5.105)

One can verify that the generators J and K satisfy the algebra of the group. This completes the construction of
the representation of the group on the Hilbert space of the multiplets of functions ϕ(p) with the metric of Eq. (5.96).

2. The Elicity

We just saw that states can be taken as simultaneous eigenstates of p2 and Γ2 and accordingly labeled as |m, s, . . .〉,
with

p2|m, s, . . .〉 = m2|m, s, . . .〉, (5.106)

Γ2|m, s, . . .〉 = −ms(s+ 1)|m, s, . . .〉. (5.107)

What are the additional quantum numbers we can use to label the states? They must be eigenvalues of operators
which commute with each other. So we are free to consider states of definite four-momentum pµ. Since the mass
is already fixed, it is only necessary to specify in addition the three-momentum p, the energy being determined by
p0 =

√
m2 + p2. We cannot simultaneously give definite value for the third component of the angular momentum

operator J3 because J and p do not commute. However there is an angular momentum operator which commutes
with p, namely the elicity. This operator is the component of the spin along the direction of the momentum, J ·p/|p|,
and its eigenvalues are labeled a. Thus the complete specification of the momentum eigenstates of a massive particle
is |m, s;p, a〉 with

pµ|m, s;p, a〉 = pµ|m, s;p, a〉, (5.108)

J · p
|p| |m, s;p, a〉 = a|m, s;p, a〉. (5.109)

3. Massless particles

Let us consider the base |p, σ〉. For p2 = 0 it does not exist a rest frame. We will take as the standard state the
state with

pµ = (p̄, 0, 0, p̄), (5.110)

with p̄ chosen arbitrarily. We will call |p̄, σ〉 the corresponding subspace. We will assume sgn(p0) = 1. The discussion
for sgn(p0) = −1 is analogous.
On the states |p̄, σ〉, Γµ acts mixing them, since it commutes with pµ. The condition Γµpµ = 0 gives

p̄(Γ0 − Γ3) = 0. (5.111)

We will define

Γ0 = p̄Γ̃ Γ± = Γ1 ± Γ2. (5.112)

The the commutation rule

[Γµ,Γν ] = iǫµνρλΓ
ρpλ, (5.113)
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gives

[Γ±, Γ̃] = ∓Γ±, (5.114)

[Γ+,Γ−] = 0, (5.115)

[Γ2, Γ̃] = 0, (5.116)

[Γ2,Γ±] = 0. (5.117)

Moreover

Γ2 = Γ+Γ−, (5.118)

since Γ2
0 − Γ2

3 = 0.
In a unitary representation Γ+ = (Γ−)†. If we diagonalize Γ̃,

Γ̃|p̄, a〉 = a|p̄, a〉, (5.119)

from Eq. (5.114) the operators Γ+ and Γ− are the operators of highering and lowering of a respectively. Their
representative is then

(Γ+)mn = bnδm,n+1, (5.120)

(Γ−)mn = b∗mδn,m+1. (5.121)

(5.122)

Then Eq. (5.118) imposes Γ2 = |bn|2 = α2, independent from n. If α 6= 0 the Γµ representation is infinite
dimensional. In order to have a finite number of states of fixed spin and momentum it must be α = 0. This implies
Γ+ = Γ− = 0 and, by Eq. (5.118), Γ2 = 0. So we can say that

Γµ = Γ̃pµ. (5.123)

The physical significance of Γ̃ can be obtained from the definition (5.49) of Γµ

Γ̃ =
J · p
|p| . (5.124)

Γ̃ is the projection of the spin on the direction of motion, i.e. the elicity.
From Eq. (5.123) follows that Γ̃ is an invariant. For a massless particle the elicity is a Poincaré invariant. The

representation is one dimensional. The elicity is a pseudoscalar: A representation with a fixed elicity defines a system
which is not invariant under parity because the transformed state has opposite elicity and is not a possible state. The
invariance under parity requires the direct sum of the representations with opposite elicity. The photon exists in the
two states of elicity ±1.
We will define the generic state |p〉 with |p| = |p̄| through a rotation starting from the state |p̄〉. The rotation

sending p̄ into p is undetermined on the right for a rotation around the direction of p̄ and on the left for a rotation
around the direction of p. We will choose |p〉 adopting a standard convention for the Euler angles that define it, i.e.

Rp = Rz(ϕ)Ry(θ)Rz(−ϕ), (5.125)

where θ and ϕ are the polar angles of p. This convention is equivalent to define Rp as a rotation of θ around n3 ∧ p̂,
with n3 the versor along the 3 axis and p̂ = p/|p|.
With this convention

|p〉 = U(Rp)|p̄〉. (5.126)

It is easy to verify that |p〉 has the same elicity, a, of |p̄〉. In fact

J · p
|p| |p〉 = U(Rp)U

−1(Rp)
J · p
|p| U(Rp)|p̄〉 = U(Rp)

J · p
|p| |p̄〉 = a|p〉. (5.127)

We will define the state |p̄′〉 with p̄′µ of the form (5.110) and p̄′ 6= p̄ through the transformation

|p̄′〉 = U(Λp̄′)|p̄〉, (5.128)
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where U(Λp̄′) is a pure velocity transformation along the 3 axis which sends p̄ into p̄′ without rotations around p̄ or
p̄′. The rotated states of |p̄′〉 will be defined with the convention (5.126).
Once fixed the base in this way let us now construct the representation. If U(Λ) is the representative of the generic

Lorentz transformation sending p into p′

U(Λ)|p〉 = U(Λ)U(Rp)|p̄〉 = U(Rp′)U †(Rp′)U(Λ)U(Rp)U
†(Λp̄′)U(Λp̄′)|p̄′〉. (5.129)

It is easy to see that

U = R−1
p′ ΛRpΛ

−1
p̄′ , (5.130)

is a transformation that leaves p̄′µ unchanged, i.e. an element of the small group of p̄′µ. The algebra of such a

group is formed by the generators ǫµνρσJ
(νρ)p̄′σ, i.e. J · p̄′/|p̄′|,Γ+,Γ−. Now Γ+ and Γ− are identically zero in the

representation under exam, thus U is a rotation around the 3 axis of a well defined angle ϕ̄.
A rotation of an angle ϕ̄ around the 3 axis is represented by

R3(ϕ̄)|p̄′〉 = eiaϕ̄|p̄′〉, (5.131)

where a is the elicity. Then Eq. (5.129) becomes

U(Λ)|p〉 = eiaϕ̄|Λp〉. (5.132)

If Λ is an infinitesimal rotation of parameter δθθθ we find

1 + iϕ̄J3 ≈ eiθJ·(n3∧p̂)(1 + iδθθθ · J)e−iθJ·(n3∧p̂′)

≈ 1 + iδθθθ · J− θ[J · (n3 ∧ p̂), δθθθ · J]
≈ 1 + iδθθθ · J− iθ[(J · p̂)δθ3 − J3(p̂ · δθθθ)], (5.133)

where in the first equality we used the fact that Λp̄′ = 1, in the second the fact that for infinitesimal rotations we
may choose p′ ≈ p in the second exponential, and in the third the use of the infinitesimal rotations. We then find

ϕ̄ = δθ3(1− p̂3θ) + δθθθ · p̂θ, (5.134)

and choosing θ = |p|/(|p|+ p3)

ϕ̄ = δθθθ · p+ |p|n3

|p|+ p3
. (5.135)

Analogously if Λ is an infinitesimal Lorentz transformation of parameter δβββ we find

ϕ̄ =
δβ1p2 − δβ2p1
|p|+ p3

. (5.136)

The generic state of the particle is written as

|Φ〉 =
∫
dΩp Φ(p)|p〉, (5.137)

with the scalar product

〈Φ′|Φ〉 =
∫
dΩp Φ′∗(p)Φ(p). (5.138)

For a generic Lorentz transformation

U(Λ)|Φ〉 =
∫
dΩp Φ(p)eiaϕ̄(Λ,p)|Λp〉 =

∫
dΩp Φ(Λ−1p)eiaϕ̄(Λ,Λ−1p)|p〉. (5.139)

The generators on the space of the Φ(p) functions are

J = −ip ∧ ∂

∂p
+ s, (5.140)

K = ip0
∂

∂p
+χχχ, (5.141)
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with

s1 = a
p1

|p|+ p3
s2 = a

p2
|p|+ p3

s3 = a, (5.142)

χ1 = a
p2

|p|+ p3
χ2 = −a p1

|p|+ p3
χ3 = 0. (5.143)

This generators obey the commutation relations of the algebra (5.28)-(5.30) and are hermitian with the metric (5.138).
This completes the construction of the group representation on the Hilbert space of functions Φ(p) for a zero mass

particle.

4. The Wigner rotation

We here want to calculate explicitly the Wigner rotation for a finite Lorentz transformation, for a massive particle.
The velocity transformation is written as

U(Λ) = e−iK·y, (5.144)

with

K = ip0
∂

∂p
+

p ∧ s

p0 +m
. (5.145)

For zero spin

ey·p0
∂
∂pϕ(p) = ϕ(Λ−1p). (5.146)

For non-zero spin

U(Λ)ϕ(p) = ey·p0
∂
∂p

−iy· p∧s

p0+mϕ(p), (5.147)

where ϕ has 2s+ 1 components. The operator U(Λ) is the exponential of two operators which do not commute.
In general given two operators A and B one has

eA+B = eA
∞∑

n=0

∫ 1

0

dx1 · · · dxn T (B(x1) · · ·B(xn)), (5.148)

where B(x) = e−xABexA and T is the usual time ordered product

T (B(x1) · · ·B(xn)) =
1

n!

∑

permutations
of {ik}

θ(xi1 − xi2 ) · · · θ(xin−1 − xn)B(x1) · · ·B(xn). (5.149)

If A and B commute B(x) = B and Eq. (5.148) gives eA+B = eAeB. Eq. (5.148) can be proved observing that
U(λ) = eλ(A+B) obeys the equation

d

dλ
U(λ) = (A+B)U(λ) U(0) = 1. (5.150)

Let

W (λ) = eλA
∞∑

n=0

∫ λ

0

dx1 · · · dxn T (B(x1) · · ·B(xn)). (5.151)

One easily verifies that

d

dλ
W (λ) = (A+B)W (λ) (5.152)

with W (0) = 1. The we must have U(λ) =W (λ) and for λ = 1 Eq. (5.148) is recovered.
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Let now

A = y · p0
∂

∂p
B = −iy · p ∧ s

p0 +m
. (5.153)

We will have

B(x) = e−xy·p0
∂
∂pB(p)exy·p0

∂
∂p = B(λ−1

−xp), (5.154)

where Λx is the Lorentz transformation with parameter xy. In the numerator of B, due to the vector products, only
enters the component of p orthogonal to y and this is invariant under the transformation. So

B(x) = −iy · p ∧ s

Λ−1
−xp0 +m

. (5.155)

The B(x) all commute with themselves and

∫ 1

0

dx1 · · · dxn T (B(x1) · · ·B(xn)) =
1

n!

[∫ 1

0

B(x) dx

]n
, (5.156)

and

U(Λ) = ey·p0
∂
∂p e

∫
1
0
b(x) dx, (5.157)

Moreover

U(Λ)ϕ(p) = e
−iy·

∫
1
0
dx

p∧s

Λ
−1
1−x

p0+mϕ(Λ−1p), (5.158)

Then the Wigner rotation is

e
is·(p∧y)

∫
1
0

dx

Λ
−1
1−x

p0+m . (5.159)

The integral can easily be evaluated if we parametrize pµ in the form p⊥, p0 = mt cosh y0, p‖ = mt sinh y0, and

mt =
√
m2 + p2

⊥. Using this parametrization we find

∫ 1

0

dx

Λ−1
1−xp0 +m

=

∫ 1

0

dx

mt cosh[y0 + y(1− x)] +m

=
1

y

∫ y

0

dz

mt cosh(y0 + z) +m

=
1

yp⊥
ϕ,

ϕ = arcsin

[
mt +m cosh(y0 + z)

m+mt cosh(y0 + z)

]z=y

z=0

, (5.160)

is the angle of the Wigner rotation.

5. Discrete transformations

We want now to discuss the discrete transformations, specifically the spatial inversion and the time reversal.
The spatial inversion Π sends

p→ −p J→ J K→ −K. (5.161)

We immediately find a representation

Π|p〉 = η| − p〉, (5.162)
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and on the wave functions

ϕa(p)→ −ηϕa(−p), (5.163)

where η is a phase factor which must be ±1 since Π2 = 1. It is easy to show that the transformation (5.163) is unitary

〈Πa′|Πa〉 =

∫
dΩpϕ

′†
a (−p)ϕa(−p)

=

∫
dΩpϕ

′†
a (p)ϕa(p) = 〈a′|a〉, (5.164)

Moreover 〈Πa′|pΠa〉 = −〈a′|pa〉 or

Π†pΠ = −p, (5.165)

and

Π†JΠ = J, (5.166)

Π†KΠ = −K, (5.167)

since we assumed η independent of p.
A representation of the time reversal T is in terms of the antiunitary operator

ϕ(p)→ ηTCϕ
∗(−p), (5.168)

where the unitary matrix C is defined in Section IV.F and ηT is a phase independent of p. So that

〈a′|T †pTa〉 = 〈Ta|pTa′〉 =
∫
dΩpϕ

Tr
a (−p)pϕ∗

a′(−p)

= −
∫
dΩpϕ

†
a′(p)pϕa(p) = −〈a′|pa〉 (5.169)

or

T †pT = −p, (5.170)

Similarly

〈a′|T †JTa〉 = 〈Ta|JTa′〉 =
∫
dΩpϕ

Tr
a (−p)C∗

(
−ip ∧ ∂

∂p
+ s

)
CTrϕ∗

a′(−p)

=

∫
dΩpϕ

†
a′(−p)

(
ip ∧ ∂

∂p
− s

)
ϕa(−p), (5.171)

where we integrated by parts and used CsTrC† = Cs∗C† = −s (see Eq. (4.85)). So 〈Ta|JTa′〉 = −〈a′|Ja〉 or

T †JT = −J. (5.172)

Similarly

T †KT = K. (5.173)

B. Wave functions in coordinate space

In relativistic mechanics the coordinates, x = (x0, x1, x2, x3) = (t,x), play a privileged role. The constant speed of
light principle, together with the relativity principle, implies that a signal cannot propagate at a speed greater than c.
This implies, for example, that the regions with x2 < 0 are causally disconnected from the events at x = (0,0). This
statement is simple in coordinate space but it does not have an equally explicit expression in other representations.
It is then convenient to associate to a state a wave function ψ(x) which describes the state point by point in

space-time. For the description to be effectively linked to the point event it is necessary that ψ(x) transforms locally.
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For a Lorentz transformations Λ this means

ψ(x)
Λ−→ ψ′(x) = S(Λ)ψ(Λ−1x), (5.174)

or

ψ′(Λx) = S(Λ)ψ(x), (5.175)

where S(Λ) does not depend on the point and it is a representation of the Lorentz group.
For a translation, a, we require

ψ(x)
a−→ ψ′(x) = ψ(x+ a). (5.176)

Introducing

pµψ(x) = i
∂

∂xµ
ψ(x), (5.177)

the momentum eigenstate ψp(x) can be written as follows

ψp(x) = e−ipxψp(0), (5.178)

where in the exponent we use the simplified notation px ≡ pµxµ.
If the time evolution is local we will need that ψ(x) obeys to a partial differential equation with derivatives of finite

order. In what follows we will try to build local wave functions for spin 0, 1/2, 1 particles. Of course the states of these
particles are defined by the unitary irreducible representations of the Poincaré group. Our wave functions will have
to be in bijective correspondence with the vectors of such representations, and the scalar product for such vectors
will have to be expressible in terms of wave functions. Relative to this metric of the Hilbert space the symmetry
transformations on the ψ(x) will have to be unitary. We will verify that the representations of the Lorentz group
S(Λ) will necessarily be finite dimensional.
We conclude observing that

ψ′(0) = S(Λ)ψ(0), (5.179)

in fact Λ is the small group of point x = 0. If we call U(Λ) the unitary operator which represents the Lorentz
transformation Λ we will have

U(Λ)ψ(x) = U(Λ)e−ipxψ(0) = U(Λ)e−ipxU−1(Λ)U(Λ)ψ(0), (5.180)

but

U(Λ)e−ipxU−1(Λ) = e−i(Λp)x = e−ip(Λ−1x), (5.181)

and, since U(Λ)ψ(0) = S(Λ)ψ(0),

U(Λ)ψ(x) = e−ip(Λ−1x)S(Λ)ψ(0) = S(Λ)ψ(Λ−1x). (5.182)

VI. THE RELATIVISTIC WAVE EQUATIONS

In Section V we introduced the Poincaré group and showed that a structureless particle is described by a unitary
irreducible representation of this group identified by the mass and by the spin. We will now find the relativistic wave
equations of free motion for these particles.

A. Particles of spin 0

For a spin 0 particle any given state |s〉 can be represented as

|s〉 =
∫
dΩpϕs(p)|p〉, (6.1)
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ϕs(p) = 〈p|s〉 is the wave function in the representation were the momenta are diagonal. The wave function associated
to the state |p〉, ψp(x), must have the form (5.178). By the superposition principle

〈x|s〉 = ψs(x) =

∫
dΩpϕs(p)e

−ipxψp(0). (6.2)

To determine ψp(0) let us consider the effect of a Lorentz transformation

|s〉 Λ−→
∫
dΩp ϕs(p)|Λp〉 =

∫
dΩp ϕs(Λ

−1p)|p〉, (6.3)

and on the wave function

ψs(x)
Λ−→
∫
dΩp ϕs(Λ

−1p)e−ipxψp(0) =

∫
dΩp ϕs(p)e

−ip(Λ−1x)ψΛp(0). (6.4)

This transformation is certainly local if ψΛp(0) = ψp(0). This means that ψp(0) must be an invariant constructed
with pµ. Since p

2 = m2, such an invariant must be a constant, that can be chosen equal to 1.
So

ψs(x) =

∫
dΩp ϕs(p)e

−ipx. (6.5)

Under translation

ψs(x)
a−→ ψ′(x) = ψs(x+ a). (6.6)

Under Lorentz transformation

ψs(x)
Λ−→ ψ′(x) = ψs(Λ

−1x). (6.7)

The function ψs(x) in Eq. (6.5) transforms locally and the requirement p2 = m2 implies that it obeys the Klein-Gordon
equation

(� +m2)ψs(x) = 0, (6.8)

where

� =
∂2

∂t2
−

3∑

i=1

∂2

∂xi
2 , (6.9)

is the d’ Alambert operator. Eq. (6.8) is invariant under transformations of the Poincaré group.
Not all solutions of Eq. (6.8) are of kind (6.5). Eq. (6.8) admits also solutions with negative energy. As a matter

of fact the wave function of Eq. (6.5) obeys to the following equation

(
i
∂

∂x0
−
√
m2 −∇∇∇2

)
ψs(x) = 0, (6.10)

which is non-local. The requirement for a local equation imposes to have negative energy solutions as well.
The general solution of Eq. (6.8) can be easily obtained working in Fourier space

ψs(x) =

∫
d4p

(2π)4
e−ipxψ̃s(p). (6.11)

Then Eq. (6.8) becomes

(p2 −m2)ψ̃s(p) = 0, (6.12)

or

ψ̃s(p) = ϕs(p)2πδ(p
2 −m2). (6.13)
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Integrating over p0 in Eq. (6.11)

ψs(x) =

∫
d3p

(2π)32p0

[
ϕs(p, p0)e

−ipx + ϕs(p,−p0)eip0x
0+ip·r

]
. (6.14)

We then define

ϕs(p, p0) = ϕ+
s (p), (6.15)

ϕs(p,−p0) = ϕ−
s (−p), (6.16)

so that

ψs(x) =

∫
dΩp

[
ϕ+
s (p)e

−ipx + ϕ−
s (p)e

ipx
]
. (6.17)

A natural scalar product can be introduced as follows. Given two solutions of the Klein-Gordon equation (6.8), ψa(x)
and ψb(x), the quantity

J (a,b)
µ (x) = iψ∗

a

↔

∂ µ ψb = i [ψ∗
a∂µψb − (∂µψ

∗
a)ψb] , (6.18)

where ∂µ ≡ ∂/∂xµ, is conserved, i.e.

∂µJ (a,b)
µ (x) = 0. (6.19)

Then, due to Gauss theorem, if the ψ go to zero sufficiently rapidly at spatial infinity, the integral extended to an
hypersurface of spatial kind extended to infinity,

∫
dσµJ (a,b)

µ (x), (6.20)

is independent from the surface (dσµ is the oriented normal). It can be calculated on a surface x0 = constant

∫
dσµJ (a,b)

µ (x) =

∫
dxJ

(a,b)
0 (t,x). (6.21)

We will define the scalar product 〈a|b〉 through

〈a|b〉 =

∫
dσµJ (a,b)

µ (x)

=

∫
dΩp

[
ϕ+
a

∗
(p)ϕ+

b (p)− ϕ−
a

∗
(p)ϕ−

b (p)
]
. (6.22)

The generators of the group in this representation are

pµ = i
∂

∂xµ
,

J (µν) = −i
(
xµ

∂

∂xν
− xν ∂

∂xµ

)
, (6.23)

which are hermitians under the metric of Eq. (6.22).
The Eq. (6.10) satisfied by these wave functions is non-local. In order to have a local equation, like (6.8), it is

necessary to put together positive and negative energy solutions. Actually, the Klein-Gordon Eq. (6.8) is second order
in the temporal derivative, while, once the Hamiltonian is known, the evolution equation should be of the first order.

B. Particles of spin 1/2

The irreducible representations of the Poincaré group corresponding to particles of mass m and spin 1/2 are in
correspondence with vectors |r,p〉, where r is the eigenvalue of one component of the spin in the rest frame.
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Any state |a〉 of the Hilbert space generated like so is of the following form

|a〉 =
∫
dΩp

2∑

r=1

ϕa(r,p)|r,p〉. (6.24)

The infinitesimal transformations of the Lorentz group are

ϕa(r,p)→ ϕΛa(r,p) =

[
1 + iθθθ ·

(
1

i
p ∧ ∂

∂p
+ s

)
− iααα ·

(
ip0

∂

∂p
+

p ∧ s

p0 +m

)]

rr′
ϕa(r

′,p). (6.25)

We will now construct local wave functions for these states. The locality under translations fixes the form of the wave
functions corresponding to eigenstates of momentum

ψr,p(x) = ψr,p(0)e
−ipx. (6.26)

We will call ψr,p(0) ≡ u(r,p). Due to the superposition principle we will have

ψa(x) =

∫
dΩp

2∑

r=1

ϕa(r,p)u(r,p)e
−ipx. (6.27)

To find an explicit form for the local wave functions we will adopt the following strategy. We will assume specific
properties of local transformations for ψa(x). We will write an equation explicitly covariant under the Poincaré group
transformations and will later prove that the solutions of this equation give a unitary representation of the Poincaré
group. And will express the scalar product between states in terms of these wave functions.
Locality under group transformations requires

ψa(x)
Λ−→ ψΛa(x) = S(Λ)ψa(Λ

−1x), (6.28)

where S(Λ) is a finite dimensional representation of the Lorentz group. The Lorentz group is locally isomorphic to
SU(2)⊗SU(2). Hence the finite dimensional representations are fixed by two numbers (n+, n−) which determine the
representations of the two groups SU(2) with generators

J+ =
J+ iK

2
, (6.29)

J− =
J− iK

2
. (6.30)

We will heuristically construct the ψ with representations of dimension 2.
There exist two inequivalent representations of dimension 2. The (12 , 0) and the (0, 12 ). In the two representations

the group generators, defined by the infinitesimal transformations

ΛΛΛ ≈ 1 + iθθθ · J− iααα ·K, (6.31)

are given by

(
1

2
, 0) :

{
J = σσσ

2
K = −iσσσ2

, (6.32)

(0,
1

2
) :

{
J = σσσ

2
K = iσσσ2

. (6.33)

The corresponding finite transformations are

S( 1
2 ,0)

(Λ) = eiθθθ·
σσσ
2 −ααα·σσσ2 , (6.34)

S(0, 12 )
(Λ) = eiθθθ·

σσσ
2 +ααα·σσσ2 , (6.35)

with

S(0, 12 )
(Λ) = S†

( 1
2 ,0)

−1
(Λ). (6.36)
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We will call ξ the spinors which transform according to (12 , 0) and η the ones transforming according to (0, 12 ).
Since J is an axial vector, whereas K is a polar vector, we have under parity

(
1

2
, 0)

P←→ (0,
1

2
). (6.37)

Then in order to construct a representation invariant under parity we need to consider a reducible representation of
the Lorentz group for S(Λ), namely

(
1

2
, 0)⊕ (0,

1

2
). (6.38)

The vectorial space for this representation is composed by spinors of 4 components of the form

(
ξ
η

)
. (6.39)

In such representation, the generators of the Lorentz group are

J =



σσσ

2
0

0
σσσ

2


 , (6.40)

K =


 −i

σσσ

2
0

0 i
σσσ

2


 . (6.41)

Using the following identities for the Pauli matrices

[θθθ · σσσ,σσσ] = −2iθθθ ∧ σσσ, (6.42)

{ααα ·σσσ,σσσ} = 2ααα, (6.43)

where [. . .] stands for the commutator and {. . .} for the anticommutator, we easily find that

S( 1
2 ,0)

(Λ)(p0 + p · σσσ)S†

( 1
2 ,0)

(Λ) = p0 + p · σσσ + i[θθθ · σσσ
2
, p0 + p · σσσ]− {ααα · σσσ

2
, p0 + p · σσσ}+ . . .

= p0 + p · σσσ +
i

2
[θθθ · σσσ,p · σσσ]−ααα · σσσp0 −

1

2
{ααα · σσσ,p ·σσσ}+ . . .

= (p0 −ααα · p+ . . .) + σσσ · (p− θθθ ∧ p−αααp0 + . . .)

= p′0 + σσσ · p′, (6.44)

where in the vector representation we used

(iJi)jk = ǫijk, (6.45)

(iKi)j0 = (iKi)0j = δij , (6.46)

and p′ is the Lorentz transformed of p

p′µ = Λν
µpν . (6.47)

Then an equation of the form

(p0 + p · σ)η = cξ, (6.48)

where c is a scalar, is covariant under Lorentz transformations. In fact, calling S = S( 1
2 ,0)

(Λ), we have

S(p0 + p · σ)η = cSξ, (6.49)

or

S(p0 + p · σ)S†S†−1
η = cSξ′. (6.50)
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Due to Eq. (6.36) S†−1
η = η′ and using Eq. (6.44)

(p0
′
+ p′ · σσσ)η′ = ξ′, (6.51)

so the equation has the same form in all reference frames. Analogously we show that (p0−p ·σσσ)ξ transforms as (0, 12 ).
The most general system of first order covariant equations has then the following form

(p0 + p · σ)η = cξ, (6.52)

(p0 − p · σ)ξ = c′η, (6.53)

and invariance under parity imposes c = c′. Multiplying the first equation by (p0−p ·σσσ) and using the second equation
we find

p0
2 − p2 = c2. (6.54)

Then if we want to describe a particle we must identify c with the mass m. In terms of bispinors we have

(
0 p0 + p · σσσ

p0 − p · σσσ 0

)(
ξ
η

)
= m

(
ξ
η

)
. (6.55)

We give a more symmetric form to this equation by introducing the 4× 4 matrices

γ0 =

(
0 1
1 0

)
γγγ =

(
0 −σσσ
σσσ 0

)
, (6.56)

and the bispinor ψ =

(
ξ
η

)
. We will also introduce

γ5 =

(
1 0
0 −1

)
= iγ0γ1γ2γ3 = − i

4!
ǫµνστγ

µγνγσγτ . (6.57)

We then find

(γ0p0 − γγγ · p)ψ = mψ, (6.58)

or

γµpµψ = mψ. (6.59)

Introducing the notation ✁p = γµpµ we have

(✁p−m)ψ = 0. (6.60)

This equation is known as the Dirac equation.
Applying the Lorentz transformation S(Λ) in the representation (12 , 0)⊕ (0, 12 ) to the Dirac equation

S(Λ)γµpµS
−1(Λ)S(Λ)ψ = mS(Λ)ψ. (6.61)

Since the bispinor transforms under S(Λ) the covariance imposes

S(Λ)γµS−1(Λ) = Λµ
νγ

ν , (6.62)

which means that γµ transform as a four-vector.
In coordinate representation

(i✁∂ −m)ψ = 0, (6.63)

and by construction the solutions of this equation transform locally under Lorentz transformations. Of course in
order to know whether they represent the states of a spin 1/2 particle of mass m we must verify that they are in
bijective correspondence with the states defined in terms of the representations of the Poincaré group, and that a
transformation on the states corresponds to a transformation on the wave functions.
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We have

{γµ, γν} = 2gµν, (6.64)

we can define the covariant component of the gamma matrices

γµ = gµνγ
ν , (6.65)

and we find

{γµ, γν} = 2gµν. (6.66)

Also

{γµ, γ5} = 0, (6.67)

and

γ0
†
= γ0 γi

†
= −γi, (6.68)

or

γµ† = γ0γµγ0. (6.69)

Using the matrices γµ it is possible to write in a compact form the Lorentz transformations in the representation
(12 , 0)⊕ (0, 12 ). Consider the matrices

σµν =
1

2i
[γµ, γν ]. (6.70)

Under the transformation S(Λ)σµνS
−1(Λ) they transform as an antisymmetric tensor of rank 2. One can verify that

Ki =
1

2
σoi J i =

1

2
ǫoijkσjk i, j, k = 1, 2, 3. (6.71)

The tensor σµν represents the generators of the Lorentz group and we can write

S(Λ) = e
i
4ω

µνσµν . (6.72)

Moreover σµν/2 satisfies the algebra (5.41).
The matrix γ0 has the role of exchanging the representations (12 , 0) and (0, 12 ), so it coincides with the parity

operator up to a phase,

ψa(x)
P−→ ψPa(x) = ηP γ

0ψa(x
0,−x). (6.73)

From the anticommutation rules (6.64) follows

γ0γiγ0 = −γi i = 1, 2, 3 γ0γ0γ0 = γ0. (6.74)

It is interesting to consider the set of the 16 matrices

1, γ5, γµ, γ5γµ, σµν . (6.75)

From the definition follow that the properties of Lorentz transformation of the matrices (6.75) are

1 scalar
γ5 pseudoscalar
γµ vector
γ5γµ pseudovector
σµν antisymmetric tensor

(6.76)
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These 16 matrices are linearly independent (in fact they transform differently under Lorentz transformations) so they
constitute a complete basis for the 4× 4 matrices, i.e. any 4× 4 matrix can be written in the form

16∑

a=1

caΓ
a, (6.77)

where {Γa} is the set of 16 matrices (6.75).

Note that if ψ and ψ′ are two bispinors, ψ′†ψ is not a scalar density. In fact

ψ′†(x)ψ(x)
(a,Λ)−→ ψ′†(Λ−1x+ a)S†(Λ)S(Λ)ψ(Λ−1x+ a), (6.78)

and S†S 6= 1. The representation S(Λ) is not unitary as follows from its definition (6.32)-(6.33) and as should be
expected since the Lorentz group is not compact. But we have

S†(Λ)γ0 = γ0S−1(Λ). (6.79)

Then, upon defining ψ̄′ = ψ†γ0, ψ̄′ψ is a scalar density

ψ̄′(x)ψ(x)
(a,Λ)−→ ψ′†(Λ−1x+ a)S†(Λ)γ0S(Λ)ψ(Λ−1x+ a)

= ψ̄′(Λ−1x+ a)ψ(Λ−1x+ a). (6.80)

Let us finally mention the following formulas,

Tr{γµ1γµ2 · γµ2n+1} = 0, (6.81)

Tr{γµγν} = 4gµν, (6.82)

Tr{γµγνγργσ} = 4{gµνgρσ − gµρgνσ + gµσgνρ}, (6.83)

Tr{γ5γµγνγργσ} = −4iǫµνρσ, (6.84)

γµ�Aγ
µ = −2�A, (6.85)

γµ�A��Bγ
µ = 4AB, (6.86)

γµ�A��B�Cγ
µ = −2�C��B�A. (6.87)

1. Dirac equation solutions: momentum eigenstates

Multiplying Eq. (6.60) by γ0 we find

p0ψ = (ααα · p+ γ0m)ψ, (6.88)

where ααα = γ0γγγ. Now we do a change of representation where we diagonalize γ0

ψ → Uψ γµ → UγµU−1 U =
1√
2

(
1 1
1 −1

)
= U−1, (6.89)

explicitly

U

(
ξ
η

)
=




ξ + η√
2

ξ − η√
2


 ≡

(
ϕ
χ

)
. (6.90)

After this transformation the algebra of the γ matrices remains the same. The γ matrices are rewritten as follows

γ0 =

(
1 0
0 −1

)
γγγ =

(
0 σσσ
−σσσ 0

)
γ5 =

(
0 1
1 0

)
. (6.91)

Since γ0 is diagonal in the non-relativistic limit the states in this representation have definite parity. This is known
as Pauli representation. The one of Eq. (6.56) as spinorial or Kramers representation.
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Let us now find the solution with definite momentum and positive energy in the form

ψp(x) = e−ipxu(r,p), (6.92)

suggested by translational invariance.
In the Pauli representation we find then

p0u1 − σσσ · pu2 = mu1, (6.93)

−p0u2 + σσσ · pu1 = mu2, (6.94)

where p0 =
√
p2 +m2 and u =

(
u1
u2

)
.

These equations admit two independent solutions labeled by two Pauli spinors (bidimensional) w1 and w2 orthonor-
mal

u(r,p) = c

(
wr

σσσ · p
p0 +m

wr

)
w†

rws = δrs. (6.95)

Since we know that ūu must be invariant, we find

ūu = u†γ0u = w†wrc
2

(
1− σσσ† · pσσσ · p

(p0 +m)2

)

= c2
(
1− p2

(p0 +m)2

)

= c2
2m

p0 +m
= invariant. (6.96)

We then choose conveniently c =
√
p0 +m so that

u(r,p) =



√
p0 +mwr
σσσ · p√
p0 +m

wr


 , (6.97)

ū(r,p)u(s,p) = 2mδrs. (6.98)

As a standard base for the spinors wr we can take the eigenstates of σz

w1 =

(
1
0

)
w2 =

(
0
1

)
. (6.99)

As in the scalar case the Dirac equation admits also negative energy solutions. These will be of the following kind

ψ̃(x) = eip
0t+ip·xũ(r,p), (6.100)

Proceeding as in the previous case we find

ũ(r,p) =


 −

σσσ · p√
p0 +m

w̃r

√
p0 +mw̃r


 . (6.101)

Calling v(r,p) = ũ(r,−p) we find

v(r,p) =




σσσ · p√
p0 +m

w̃r

√
p0 +mw̃r


 , (6.102)

v̄(r,p)v(s,p) = −2mδrs. (6.103)

The spinors u and v satisfy the following algebraic equations

(✁p−m)u(r,p) = 0, (6.104)

(✁p+m)v(r,p) = 0, (6.105)
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and constitute a complete set of spinors for the description of the momentum eigenstates. The four solutions found
form a set of independent vectors, orthogonal respect to the γ0 metric

ū(r,p)u(s,p) = 2mδrs, (6.106)

v̄(r,p)v(s,p) = −2mδrs, (6.107)

ū(r,p)v(s,p) = v̄(r,p)u(s,p) = 0. (6.108)

Due to the completeness of the set we also have

2∑

r=1

u(r,p)ū(r,p) = ✁p+m, (6.109)

2∑

r=1

v(r,p)v̄(r,p) = ✁p−m. (6.110)

2. Transformation properties and connection with the Poincaré group representations

We will now explicitly study the effect of the Lorentz transformation S(Λ) on the solutions we just found. We will
find that they realize a representation of the Poincaré group for a spin 1/2 particle.
A Lorentz transformation sends solutions with momentum p to solutions with momentum p′ = Λp. In fact, using

the covariance property of the γ matrices we find

S(Λ)(✁p−m)u(r,p) = (✁p
′ −m)S(Λ)u(r,p) = 0. (6.111)

In the Pauli representation we find for a rotation R(θθθ)

J =



σσσ

2
0

0
σσσ

2


 S(R(θθθ)) =

(
eiθθθ·

σσσ
2 0

0 eiθθθ·
σσσ
2

)
, (6.112)

so

S(R(θθθ))u(r,p) =




√
p0 +meiθθθ·

σσσ
2wr

(R−1(θθθ)σσσ) · p√
p0 +m

eiθθθ·
σσσ
2wr


 =




√
p0 +meiθθθ·

σσσ
2wr

σσσ · (R(θθθ)p)√
p0 +m

eiθθθ·
σσσ
2wr


 , (6.113)

and

eiθθθ·
σσσ
2wr =

∑

r′

R(θθθ)r′rwr′ R(θθθ)r′r =
(
eiθθθ·

σσσ
2

)
r′r

S(R(θθθ))u(r,p) =
∑

r′

R(θθθ)r′ru(r′, Rp). (6.114)

A transformation of rapidity ααα is given by

S(Λααα) =

(
e−ααα·σσσ2 0

0 eααα·
σσσ
2

)
=


 cosh

α

2
− α̂αα · σσσ sinh α

2
0

0 cosh
α

2
+ α̂αα ·σσσ sinh α

2


 , (6.115)

and in the Pauli representation

US(Λααα)U
−1 =


 cosh

α

2
−α̂αα · σσσ sinh α

2
−α̂αα · σσσ sinh α

2
cosh

α

2


 . (6.116)

We then find explicitly


 cosh

α

2
−α̂αα · σσσ sinh α

2
−α̂αα · σσσ sinh α

2
cosh

α

2





√
p0 +mwr
σσσ · p√
p0 +m

wr


 =




√
p′0 +me−iϕσσσ·α̂αα∧p̂wr

σσσ · p′

√
p′0 +m

e−iϕσσσ·α̂αα∧p̂wr


 , (6.117)
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where

tanϕ =
|p| sinh α

2

(p0 +m) cosh α
2 − p‖ sinh α

2

. (6.118)

Here we used Eqs. (D23) and (D24) and p‖ = α̂αα · p. The matrix R = e−iϕσσσ·α̂αα∧p̂ is a rotation of an angle −2ϕα̂αα ∧ p̂

which acts on the components of the spinor w. Explicitly

S(Λααα)u(r,p) =
∑

r′

R(Λααα,p)r′ru(r
′,Λαααp). (6.119)

For an infinitesimal transformation (α≪ 1)

ϕ ≈ α

2

|p|
p0 +m

, (6.120)

R ≈ 1− iσσσ
2
· ααα ∧ p

p0 +m
= 1+ is · p ∧ααα

p0 +m
. (6.121)

So in general we find

S(Λ)u(r,p) =
∑

r′

R(Λ,p)r′ru(r′,Λp), (6.122)

where R is the Wigner rotation associated to the transformation Λ. And an identical formula holds for v(r,p).
Let us now consider any solution of the Dirac equation

ψ(x) =

2∑

r=1

∫
dΩp

[
ϕ+
r (p)u(r,p)e

−ipx + ϕ−
r (p)v(r,p)e

ipx
]
. (6.123)

By construction the Poincaré group is realized in a local way on the space of these solutions

Ta : ψ(x)
a−→ ψ′(x) = ψ(x+ a), (6.124)

Λ : ψ(x)
Λ−→ ψ′(x) = ψ(Λ−1x). (6.125)

For infinitesimal transformations, recalling that
(
Λ−1x

)µ ≈ xµ − ωµ
νx

ν , we have

ψ(x)
a−→ (1 + aµ∂µ)ψ(x), (6.126)

ψ(x)
Λ−→ (1 +

i

2
ωµνσµν − ωµνxν∂µ)ψ(x). (6.127)

And the generators are

pµ = i∂µ, (6.128)

J(µν) = σµν +
1

i
(xµ∂ν − xν∂µ). (6.129)

For the translations we find

ϕ+
r (p)

a−→ e−ipaϕ+
r (p), (6.130)

ϕ−
r (p)

a−→ eipaϕ−
r (p), (6.131)

which are the usual transformations laws, in the momentum representation, for the eigenstates of the momenta p and
−p respectively.
For Lorentz transformations we find

ψ(x)
Λ−→

2∑

r,r′=1

∫
dΩp

[
ϕ+
r (p)R(Λ,p)r′ru(r′,Λp)e−ip(Λ−1x) + ϕ−

r (p)R(Λ,p)r′rv(r′,Λp)eip(Λ
−1x)

]

=
2∑

r,r′=1

∫
dΩp

[
ϕ+
r (Λ

−1p)R(Λ,Λ−1p)r′ru(r
′,p)e−ipx + ϕ−

r (Λ
−1p)R(Λ,Λ−1p)r′rv(r

′,p)eipx
]
.(6.132)
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So the law of transformation on the functions ϕ± is

ϕ+
r (p)

Λ−→
∑

r′

R(Λ,Λ−1p)rr′ϕ
+
r (Λ

−1p), (6.133)

ϕ−
r (p)

Λ−→
∑

r′

R(Λ,Λ−1p)rr′ϕ
−
r (Λ

−1p). (6.134)

This law of transformation is identical with the one constructed in Section V.A.1. The generators can be found
recalling that for rotations and velocity infinitesimal transformations we have

R(θθθ) ≈ 1 + i
σσσ

2
· θθθ, (6.135)

R(ααα) ≈ 1− iσσσ
2
· ααα ∧ p

p0 +m
. (6.136)

The result is

J =
σσσ

2
− ip ∧ ∂

∂p
, (6.137)

K =
1

2

p ∧ σσσ
p0 +m

+ ip0
∂

∂p
, (6.138)

which coincides with the expressions (5.102) and (5.105).
Let us now write the scalar product in terms of the ψ(x). Let ψa and ψb be two solutions of the Dirac equation.

Then the quantity

Jµ

(a,b)(x) = ψ̄b(x)γ
µψa(x), (6.139)

is conserved

∂µJ
µ

(a,b)(x) = 0, (6.140)

as can easily be proved from the Dirac equation and recalling that γ0γ0 = 1 and γ0γµγ0 = γµ†. Jµ

(a,b) transforms as

a four-vector under Lorentz transformations

Jµ

(a,b)(x)
Λ−→ ψ̄b(Λ

−1x)S−1(Λ)γµS(Λ)ψa(Λ
−1x)

= (Λ−1)µνψ̄b(Λ
−1x)γνψa(Λ

−1x), (6.141)

where we used Eq. (6.62) and (6.79). The conservation law is thus covariant. Applying Gauss theorem as in the
scalar case, the integral extended to any space-like surface with normal dσµ,

∫
dσµJ

µ

(a,b)(x), (6.142)

is independent from the chosen surface. Choosing a surface x0 = constant, it is independent from x0. We thus define

〈a|b〉 =
∫
dx ψ̄b(x, t)γ

0ψa(x, t) =

∫
dx ψ̄b(x, 0)γ

0ψa(x, 0). (6.143)

Respect to this scalar product, since it is Lorentz invariant and clearly translational invariant, the transformations
of Eqs. (6.126)-(6.127) are realized as unitary operators. It can be easily shown that their generators (6.128)-(6.129)
are hermitian respect to this scalar product.
Using the equations

u†(r,p)u(s,p) = v†(r,p)v(s,p) = 2p0δrs, (6.144)

u†(r,p)v(s,−p) = 0, (6.145)

we obtain

〈a|b〉 =
∫
dΩp

[
ϕ+
b

∗
(p)ϕ+

a (p) + ϕ−
b

∗
(p)ϕ−

a (p)
]
. (6.146)

So the scalar product coincides, in the two subspaces relative to positive and negative energies, with the scalar product
originally introduced for the representation of the Poincaré group.
We have then realized, in a local way, a unitary irreducible representation of the Poincaré group, extended to the

parity transformations, for particles of mass m and spin 1/2.
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C. Particles of spin 1

The most simple Lorentz transformation which contains spin 1 is the (12 ,
1
2 ) representation, i.e the one of four-vectors.

For this representation |sz| can assume the values 0 and 1.
A local wave function Wµ(x) transforms according to the law

Wµ(x)
Λ−→ Λµ

νW
ν(Λ−1x). (6.147)

For the state with definite momentum

Wµ
p (x) = e−ipxεµ(r,p), (6.148)

For the spin to be 1, in the rest frame the four-vector εµ(p) must have only spatial components. This means

εµ(r,p)pµ = 0. (6.149)

Then in addition to the Klein-Gordon equation

(�+m2)Wµ(x) = 0, (6.150)

Wµ(x) must satisfy the constraint (6.149) which in coordinate representation translates into

∂µW
µ(x) = 0. (6.151)

The Eqs. (6.150) and (6.151) are equivalent to the system

Gµν(x) = ∂µWν(x) − ∂νWµ(x), (6.152)

∂µG
µν(x)−m2W ν(x) = 0. (6.153)

In fact applying ∂ν to the second equation and using the antisymmetry of Gµν we find

m2∂µW
µ(x) = 0, (6.154)

which coincides with Eq. (6.151) when m 6= 0. On the other hand if ∂µW
µ(x) = 0 the Eq. (6.153) coincides with

(6.150).
The Eqs. (6.152) and (6.153) has both positive and negative energy solutions. The general solution is of the form

Wµ(x) =

3∑

r=1

∫
dΩp

[
W (r,p)εµ(r,p)e−ipx + W̃ (r,p)εµ∗(r,p)eipx

]
, (6.155)

where εµ(r,p) are independent vectors that obey to Eq. (6.149).
By construction such solution is an irreducible representation of the Poincaré group.
We can define a scalar product, exactly in the same way we did for the spin 0 case,

〈a|b〉 = −i
∫
dσνWa

∗
µ(x)

↔

∂ ν W
µ
b (x) (6.156)

= −
∫
dΩpWa

∗
µ(p)W

µ
b (p), (6.157)

where

Waµ(p) =

3∑

r=1

Wa(r,p)εµ(r,p). (6.158)

Note that

3∑

r=1

εµ(r,p)ε
∗
ν(r,p) = −gµν +

pµpν
m2

, (6.159)
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represents the density matrix for unpolarized states. The proof is straightforward in the rest frame. The covariance
fixes the form in other frames.

Let us give, for completeness, an explicit representation of the base εµ(r,p). In the rest frame we can choose any
three spatial orthonormal vectors. Let them be εεε(r,0). For particles with momentum p we can define, according to
Eq. (5.174),

εµ(r,p) = S(Λp)ε(r,0) = (Λp)
µ
νε

ν(r,0), (6.160)

where we used the fact that εµ transform as a four-vector. Using then the explicit expression (5.80) we have

ε0(r,p) =
p · εεε(r,0)

m
, (6.161)

εεε(r,p) = εεε(r,0) + p
p · εεε(r,0)
m(p0 +m)

. (6.162)

The canonical base is the one where εi(r,0) = δir. Choosing instead as a base the eigenstates of sz we have

εεε(+1,0) = − i√
2
(ex + iey), (6.163)

εεε(0,0) = iez, (6.164)

εεε(−1,0) =
i√
2
(ex − iey), (6.165)

where ex, ey, ez are the versors of the axes.

In the vectorial case the Wigner matrix R is defined by

R(Λ)r′rεµ(r′,p) = Λµ
νε

ν(r,Λ−1p). (6.166)

VII. THE SECOND QUANTIZATION

It is an experimental fact that the number of particles may change in physical processes: An hydrogen atom in the
state 2P is composed by an electron and a proton and decays into an atom in its fundamental state plus a photon, an
electron which pass through the Coulomb field of nucleus is accelerated and emit photons (Bremsstrahlung), when a
positron annihilates with an electron their mass is converted in energy in the form of two photons, in the scattering
between two high energy protons many pions are produced, . . .. Then, exist transitions between states with different
number of particles. In Section VII.A we will present a formalism that allows to describe systems of many free
particles, used in any many-body theory, relativistic or not, and known as Fock method. It allows to describe many
particles states with the correct statistics and to introduce operators that change the number of particles (creation
and annihilation operators).

In Section VII.B we will introduce the free field operators, and we will interpret in terms of field operators the
negative energy solutions of the equations of free motion.
The relativistic equations of motion can be rederived in the Lagrangian formalism and it can be shown that the

Fock second quantization is equivalent to the canonical quantization of a system of an infinite number of degrees of
freedom.

The Lagrangian formalism is indispensable to write theories of non-free particles: In interaction.

A. Fock space

Let us consider an orthonormal complete base |i〉 for the single particle states. For example the base |r,p〉 of the
positive energy states for relativistic particles introduced in Section VI.

If the particles are bosons, in the state |i〉 can coexist an arbitrary number ni of free particles.
If the particles are fermions, in the state |i〉 can exist at most one particle.

In both cases, assigning the occupation numbers {ni} in the various states |i〉 determines completely the state of
the system, since the state must be symmetric for the bosons and completely antisymmetric for the fermions.
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1. Bosons

For any state |i〉 the observable number of particles in such state, ni, has integer eigenvalues: 1, 2, 3, . . .

His spectrum is the one of an harmonic oscillator. As for the harmonic oscillator is possible to define a rising
(creation) operator b†i and a lowering (annihilation) operator bi of the eigenvalue of ni. The commutation properties
are

[bi, b
†
i ] = 1 [bi, bi] = [b†i , b

†
i ] = 0, (7.1)

We then define ni = b†ibi with

[ni, bi] = −bi [ni, b
†
i ] = b†i . (7.2)

The lower state |0i〉 corresponds to zero particles in the state |i〉 and bi|0i〉 = 0 with 〈0i|0i〉 = 1. The normalized state
with ni particles is then

(b†i )
ni

√
ni!
|0i〉 = |ni〉. (7.3)

A state identified by the set of occupation numbers {ni} in the different states |i〉 can be written as

|ni1 , . . . , nik , . . .〉 =
∏

ii

(b†i )
ni

√
ni!
|0〉 (7.4)

where |0〉 =∏i |0i〉 is the vacuum. It is automatically symmetric under particle exchange if

[bi, bk] = [b†i , b
†
k] = 0. (7.5)

The “harmonic oscillators” correspondent to different modes are independent and we must also have

[bi, b
†
k] = δik. (7.6)

The total number of particles is

N =
∑

i

ni =
∑

i

b†ibi, (7.7)

Moreover 〈0|0〉 = 1.

2. Fermions

For the fermions the occupation number can be 0 or 1 and the state must be completely antisymmetric under
particle exchange. This can be realized by associating to each single particle state an harmonic anti-oscillator,
requiring anticommutation between operators relative to different modes

[bi, bk]+ = [b†i , b
†
k]+ = 0 [bi, b

†
k]+ = δik, (7.8)

ni = b†ibi N =
∑

i

ni bi|0i〉 = 0, (7.9)

[ni, bk] = −biδik [ni, b
†
k] = b†i δik. (7.10)

The subscript + indicates the anticommutator. The possible states in the mode |i〉 are |0i〉 and b†i |0i〉 = |1i〉. b
†
i

2|0i〉 = 0

because the operator b†i anticommutes with itself. Moreover

bib
†
i |0i〉 = (−bib†i + 1)|0i〉 = |0i〉. (7.11)
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3. Observations

Given an operator O written in terms of creation and annihilation operators we will denote with : O : the normal
ordered operator for bosons or the antinormal ordered operator for fermions. For bosons it is obtained from O
displacing all creation operators to the left and all annihilation operators to the right and for fermions is is obtained
from O displacing all creation operators to the left and all annihilation operators to the right times (−1)n, with n the
number of needed exchanges of a creation and an annihilation operator. For example for bosons : bb† : = b†b = bb†−1.
Normal ordering is not linear. For example : bb† : =: 1 + b†b : =: 1 : +: b†b : = 1 + b†b 6= b†b. For fermions
: bb† : = −b†b = bb† − 1. In particular we will always have 〈0| : O : 0〉 = 0 on the vacuum. We usually refer to the
normal order as the Wick order.
The (anti)commutation relations are invariant under unitary changes of base. Let V be a unitary transformation

from the base |1i〉 for the single particle states to the base |1α〉

|1α〉 =
∑

i

Vαi|1i〉 |1i〉 =
∑

i

V †
iα|1α〉, (7.12)

with V V † = V †V = 1. If |1i〉 = b†i |0〉 then |1α〉 =
∑

i Vαib
†
i |0〉. Defining

b†α =
∑

i

Vαib
†
i bα =

∑

i

V ∗
αibi, (7.13)

we have

[bα, bβ ]± = [b†α, b
†
β]± = 0, (7.14)

[bα, b
†
β ]± =

∑

ij

V ∗
αiVβj [bi, b

†
j ]± =

∑

i

V ∗
αiVβi = (V V †)βα = δαβ . (7.15)

The vacuum remains unchanged.
If the index i that label the states is continuous, as for the momentum p in the base |r,p〉 for free particles, the

(anti)commutation rules must be modified replacing the δik in the Eqs. (7.6) and (7.8) the diagonal element of the
identity matrix in the chosen representation. For the states |r,p〉

[b(r,p), b(r′,p′)]± = [b†(r,p), b†(r′,p′)]± = 0, (7.16)

[b(r,p), b†(r′,p′)]± = δrr′(2π)
32p0δ(p− p′), (7.17)

where ± denotes the commutator or anticommutator. This choice give the correct states normalization. In fact

〈r,p|r′,p′〉 = 〈0|b(r,p)b†(r′,p′)0〉 = 〈0|[b(r,p), b†(r′,p′)]±0〉 = δrr′(2π)
32p0δ(p− p′). (7.18)

The density of occupation number is b†(r,p)b(r,p) and the total number of particles is

N =

∫
dΩp

∑

r

b†(r,p)b(r,p). (7.19)

The commutation rules for N are

[N, b(r,p)] = −b(r,p) [N, b†(r,p)] = b†(r,p). (7.20)

B. Field operators

Let

|s〉 =
∫
dΩp

∑

r

ϕs(r,p)|r,p〉, (7.21)

be any single particle state. It can be written as

|s〉 =
∫
dΩp

∑

r

ϕs(r,p)b
†(r,p)|0〉, (7.22)
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with

〈r′,p′|s〉 = 〈0|b(r′,p′)s〉 =
∫
dΩp

∑

r

ϕs(r,p)〈0|b(r′,p′)b†(r,p)0〉, (7.23)

but

〈0|b(r′,p′)b†(r,p)0〉 = δrr′(2π)
32p0δ(p− p′), (7.24)

and so

〈0|b(r′,p′)s〉 = ϕs(r
′,p′). (7.25)

The operator b(r,p) extracts from a state the component with momentum p. We can construct an operator which
acts in the same way on the x space. For a particle of any spin let us consider the positive energy solutions and build
the following operator

ϕ+(x) =

∫
dΩp

∑

r

b(r,p)u(r,p)e−ipx. (7.26)

The operator ϕ+(x) has the same number of components of the function u(r,p): 1 for spin 0, 4 for spin 1/2 and 1.
In any case from Eq. (7.26) follows

〈0|ϕ+(x)s〉 =
∫
dΩp

∑

r

ϕs(r,p)u(r,p)e
−ipx = ϕs(x), (7.27)

where ϕs(x) is the wave function of the state |s〉.
The operator ϕ+(x) defined in Eq. (7.26) is called field operator or better the positive energy component of the

field operator. The subscript + indicates that it contains only positive energies.
The operator ϕ+(x) is a linear superposition of solutions u(r,p)e−ipx with positive energy of the wave equation, so

it is a solution with positive energy of the wave equation.
Let us give the explicit formulas for the field operator

spin 0 ϕ+(x) =

∫
dΩp b(p)e

−ipx, (7.28)

spin 1
2 ψ+(x) =

∫
dΩp

2∑

r=1

u(r,p)b(r,p)e−ipx, (7.29)

spin 1 Wµ
+(x) =

∫
dΩp

3∑

r=1

εµ(r,p)b(r,p)e−ipx. (7.30)

It is possible to invert these formulas using the expressions for the scalar products defined in the various cases (6.22),
(6.143), and (6.156)

spin 0 b(p) = i

∫
dσµ eipx

↔

∂ µ ϕ+(x) = i

∫
dx eipx

↔

∂ 0 ϕ+(x), (7.31)

spin 1
2 b(r,p) =

∫
dxu†(r,p)eipxψ+(x), (7.32)

spin 1 b(r,p) = −i
∫
dx ε∗µ(r,p)e

ipx
↔

∂ 0 W
µ
+(x). (7.33)

All observables can be expressed in terms of b†(r,p) and b(r,p). Then they can be expressed in terms of the fields
and of their first derivatives for spin 0 and 1 particles, and in terms of the fields for spin 1/2 particles.

C. Transformation properties of the field operators

The invariance under a symmetry group implies the existence of a unitary representation of the group which send
the Hilbert space into itself.
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For a free particle the symmetry group is the Poincaré group and the representation is irreducible. We want now
construct the representation of the group on the many free particles states.
Let U(Λ, a) = TaU(Λ) be a transformation of the group with Lorentz matrix Λ and translation parameter aµ. On

the single particle states we know that

U(Λ, a)|r,p〉 = e−i(Λp)aR(Λ,p)r′r|r′,Λp〉, (7.34)

where R is a unitary matrix which represents the Wigner rotation. To construct the representation of the group in
the Fock space we assume that the vacuum is invariant

U(Λ, a)|0〉 = |0〉, (7.35)

and we set

U(Λ, a)b†(r,p)U †(Λ, a) = e−i(Λp)aR(Λ,p)r′rb†(r′,Λp). (7.36)

This representation realizes the (7.34) and transforms independently the many particles states. For the annihilation
operator we will then have

U(Λ, a)b(r,p)U †(Λ, a) = ei(Λp)aR(Λ,p)∗rr′b(r′,Λp). (7.37)

We define the transformed of b(r,p) as follows 4

b(r,p)→ U †(Λ, a)b(r,p)U(Λ, a). (7.39)

From Eq. (7.37), recalling that

U−1(Λ, a) = U(Λ−1,−Λ−1a), (7.40)

we find

U †(Λ, a)b(r,p)U(Λ, a) = e−ipaR(Λ,Λ−1p)rr′b(r
′,Λ−1p), (7.41)

U †(Λ, a)b†(r,p)U(Λ, a) = eipaR(Λ,Λ−1p)∗rr′b(r
′,Λ−1p). (7.42)

(7.43)

To derive Eq. (7.41) we used

R(Λ−1,p)∗r′r = R(Λ−1,p)†rr′ , (7.44)

and

R(Λ−1,p)†rr′ = R(Λ,Λ−1p)rr′ . (7.45)

Eq. (7.45) can be derived observing that R is unitary, that

|r,p〉 = U(Λ)U †(Λ)|r,p〉 = U(Λ)R(Λ−1,p)r′r|r′,Λ−1p〉 (7.46)

= R(Λ,Λ−1p)r′′r′R(Λ−1,p)r′r|r′′,p〉, (7.47)

and that |r,p〉 is a complete base at fixed p. Since the transformation (7.41) is unitary in Fock space it leaves
unchanged the commutation relations.
The generators of the unitary transformation U(Λ, a) can be explicitly constructed as hermitian operators on Fock

space. For infinitesimal transformations

U(Λ, a) ≈ 1− ipµaµ + iθθθ · J− iααα ·K. (7.48)

4 Note that here we must define the transformed operator using the inverse transformation respect to the one that applies to regular
observables for which the measure in the two reference frames must coincide. In fact

ϕs(r,p) = 〈0|bs〉 → 〈0|U†bUs〉 ≡ 〈0|b′s〉, (7.38)

where b′ is the transformed operator and in the last equation we used the fact that U |0〉 = |0〉 and U |s〉 = |s′〉.
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We recall that for infinitesimal rotations

R(Λ)rr′ ≈ δrr′ + iθθθ · srr′, (7.49)

b(r,Λ−1p) ≈ b(r,p+ θθθ ∧ p) ≈ b(r,p) + θθθ ·
(
p ∧ ∂

∂p

)
b(r,p), (7.50)

and for infinitesimal velocity transformations

R(Λ)rr′ ≈ δrr′ − i
ααα ∧ p

p0 +m
· srr′, (7.51)

b(r,Λ−1p) ≈ b(r,p+αααp0) ≈ b(r,p) +ααα · p0 ∂
∂p

b(r,p). (7.52)

Using Eqs. (7.41) and (7.48) we derive the commutation relations for the generators

[pµ, b(r,p)] = −pµb(r,p), (7.53)

[J, b(r,p)] = −
(
s− ip ∧ ∂

∂p

)

rr′
b(r′,p), (7.54)

[K, b(r,p)] = −
(

p ∧ s

p0 +m
+ ip0

∂

∂p

)

rr′
b(r′,p). (7.55)

Taking the hermitian conjugate and recalling that the s matrices are hermitian we find

[pµ, b
†(r,p)] = pµb

†(r,p), (7.56)

[J, b†(r,p)] =

(
s + ip ∧ ∂

∂p

)

r′r

b†(r′,p), (7.57)

[K, b†(r,p)] =

(
p ∧ s

p0 +m
− ip0 ∂

∂p

)

r′r

b†(r′,p). (7.58)

It is possible to give an explicit representation for the operators pµ,J, and K in terms of the operators b and b†

pµ =

∫
dΩp

∑

r

b†(r,p)pµb(r,p), (7.59)

J =

∫
dΩp

∑

r

b†(r,p)

(
s− ip ∧ ∂

∂p

)

rr′
b(r,p), (7.60)

K =

∫
dΩp

∑

r

b†(r,p)

(
p ∧ s

p0 +m
+ ip0

∂

∂p

)

rr′
b(r,p), (7.61)

so that these operators satisfy the commutation rules (7.53)-(7.55).
Let us now treat the transformation properties of the field operator. The Eq. (7.41) induces the following trans-

formation

U †(Λ, a)ϕ+(x)U(Λ, a) =

∫
dΩp e

−ipx
∑

r

u(r,p)e−ipaR(Λ,Λ−1p)rr′b(r
′,Λ−1p). (7.62)

Changing variables p→ Λp and using Eq. (6.122) we find

ϕ′(x) ≡ U †(Λ, a)ϕ+(x)U(Λ, a) = S(Λ)ϕ+(Λ
−1x+ Λ−1a), (7.63)

which is the correct transformation law for a local operator 5. Indicating with x′ the transformed event we can also
write

ϕ′
+(x

′) = U †ϕ+(x
′)U = S(Λ)ϕ+(x). (7.64)

5 We recall that (Λ, a)−1x = (TaΛ)−1x = Λ−1T−ax = Λ−1x+ Λ−1a.



44

This equation allows to write down immediately the action of the generators of the Poincaré group on the field
operators. Denoting with J(µν) and pµ the generators in the Fock space

U(Ta) = e−iaµpµ U(Λ) = e
i
2ω

µνJ(µν) , (7.65)

and with σµν the generator of the group in the representation under which ϕ transforms, i.e. the generator of the
S(Λ) matrix, from Eq. (7.63) follows

[pµ, ϕ+(x)] = −i∂µϕ+(x), (7.66)

[J(µν), ϕ+(x)] = − [σµν − i(xµ∂ν − xν∂µ)]ϕ+(x), (7.67)

as follows from Eqs. (6.128) and (6.129).

D. Locality and spin-statistics theorem

In constructing the relativistic theory it is necessary to deal with local operators commuting at spacelike distances.
In fact, since a signal can not propagate at speeds higher than that of light, measures occurred at spatial distances
must not influence each other. As observed in Section VII.B all observables can be written in terms of fields and their
first derivatives. If the (anti)commutators between these quantities are zero for spacelike distances it will be possible
to construct a theory that satisfies causality.
From the commutators between the operators b(r,p) and b†(r,p) we can easily calculate the commutators between

the fields and their derivatives. Let us consider first the scalar field

[ϕ+(x), ϕ+(y)] = 0, (7.68)

[ϕ+(x), ϕ
†
+(y)] = F+(x− y), (7.69)

[ϕ+(x), ∂0ϕ
†
+(y)] =

∂

∂y0
F+(x− y), (7.70)

where Eq. (7.70) follows from Eq. (7.69).
The function F+ is invariant under translations and under Lorentz transformations. It is in fact a c-number, i.e.

as an operator in the Fock space it is proportional to the identity, because such is [b(r,p), b†(r,p)]. From Eq. (7.69)
follows that

U †(Λ, a)[ϕ+(x), ϕ
†
+(x)]U(Λ, a) = F+(x− y)U †(Λ, a)U(Λ, a) = F+(x− y). (7.71)

But the first member is also equal to

[ϕ+(Λ
−1(x+ a)), ϕ†

+(Λ
−1(x+ a))] = F+(Λ

−1(x− y)), (7.72)

and this proves the invariance of F+ under the Poincaré group.
Explicitly we have

F+(x − y) =
∫
dΩp e

−ip(x−y). (7.73)

If x and y are at spacelike distances it is always possible to bring them to be simultaneous (x0 = y0) through a
Lorentz transformation. To study the behavior of F+ at spacelike distances it is sufficient to study it at equal times
(x0 = y0). We then have

F+(0,x− y) =

∫
dΩp e

ip·(x−y), (7.74)

∂

∂y0
F+(x

0 − y0,x− y)

∣∣∣∣
y0=x0

=
i

2

∫
dp

(2π)3
eip·(x−y) =

i

2
δ(x− y). (7.75)

The integral in Eq. (7.74) can be easily calculated in terms of Bessel functions

F+(0,x− y) =
m

(2π)2|x− y|K0(m|x− y|). (7.76)
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F+ is different from zero at spacelike distances of the order of the Compton wavelength of the particle (ℓ = h/mc).
So a theory constructed in terms of just the ϕ+ is non local.
But we remember that next to the positive energy solutions exist the “negative energy” solutions of the Klein-

Gordon equation. In the Fock space context a dependence of the kind eipx is associated to a creation operator, rather
than to a destruction operator as in the expansion for ϕ+. While considering the negative energy solutions is then
natural to introduce a “negative frequency” field

ϕ−(x) =

∫
dΩp e

ipxd†(p). (7.77)

The operators d†(p) and d(p) are operator independent from b†(p) and b(p), i.e. they describe a different particle,
and so they commute with them.
Let us now construct the field

ϕ(x) = ϕ+(x) + ϕ−(x), (7.78)

or

ϕ(x) =

∫
dΩp

[
d(p)e−ipx + d†(p)eipx

]
, (7.79)

ϕ†(x) =

∫
dΩp

[
d†(p)eipx + d(p)e−ipx

]
. (7.80)

(7.81)

The commutators now becomes

[ϕ(x), ϕ(y)] = [ϕ†(x), ϕ†(y)] = 0, (7.82)

[ϕ(x), ϕ†(y)] = F+(x− y)− F+(y − x), (7.83)

[ϕ(x), ∂0ϕ
†(y)] =

∂

∂y0
[F+(x − y)− F+(y − x)] . (7.84)

At equal times, at spacelike distances, we have

[ϕ(x0,x), ϕ†(x0,y)] = 0, (7.85)

[ϕ(x0,x), ∂0ϕ
†(x0,y)] = iδ(x− y). (7.86)

The theory is now local.
We note that the minus sign in the Eqs. (7.83) and (7.84) depends by the choice of commutation relation: The

locality in Eqs. (7.85) and (7.86) would have been destroyed if we would have chosen the Fermi statistics. This is a
manifestation of the so called spin-statistics theorem.
We note that since ϕ(x) is a superposition of solutions of the Klein-Gordon equation it itself satisfies to such

equation

(�+m2)ϕ(x) = 0. (7.87)

Note that since b(p) 6= d(p) the scalar field is not hermitian. This is also called a charged scalar field. The hermitian
field is called neutral. The particle described by the creation operator d† is called antiparticle.
Let us now treat the spin 1/2 case. For the Dirac field,

ψ+(x) =

∫
dΩp

∑

r

u(r,p)b(r,p)e−ipx, (7.88)

we have

[ψα
+(x), ψ

†
+

β
(y)]+ =

∫
dΩp

∑

r

uα(r,p)u†
β
(r,p)e−ip(x−y)

=

∫
dΩp [(✁p+m)γ0]αβe−ip(x−y), (7.89)
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where we used the anticommutation relations for the b, b† and we used the Eq. (6.109) for the projector on the positive
energies states.
Omitting the indexes α, β and using the anticommutation rules of the γ matrices we can then write

[ψ+(x), ψ
†
+(y)]+ =

(
i
∂

∂x0
+mγ0 + iγ0γγγ · ∇∇∇

)
F+(x− y), (7.90)

where F+ is again given by Eq. (7.74). At equal times

[ψ+(x
0,x), ψ†

+(x
0,y)]+ =

i

2
δ(x− y) + (mγ0 + iγ0γγγ · ∇∇∇)F+(x− y), (7.91)

which is non-local.
In analogy to what we did in the scalar case we introduce

ψ−(x) =

∫
dΩp

∑

r

v(r,p)b†(r,p)eipx, (7.92)

where d† is the creation operator for a new particle

[d(r,p), d†(r′,p′)]+ = δrr′2p
0(2π)3δ(p− p′), (7.93)

[d, d]+ = [d†, d†]+ = [b, d]+ = [b, d†]+ = [b†, d]+ = [b†, d†]+0, (7.94)

and

ψ(x) = ψ+(x) + ψ−(x) =

∫
dΩp

∑

r

[
u(r,p)b(r,p)e−ipx + v(r,p)d†(r,p)eipx

]
, (7.95)

ψ†(x) =

∫
dΩp

∑

r

[
u†(r,p)b†(r,p)eipx + v†(r,p)d(r,p)e−ipx

]
. (7.96)

Then

[ψ(x), ψ(y)]+ = [ψ†(x), ψ†(y)]+ = 0, (7.97)

[ψ(x), ψ†(y)]+ =

∫
dΩp

[
(✁p+m)γ0e−ip(x−y) + (✁p−m)γ0eip(x−y)

]
(7.98)

=

∫
dΩp

[(
iγµ

∂

∂xµ
+m

)
γ0e−ip(x−y) +

(
iγµ

∂

∂yµ
−m

)
γ0eip(x−y)

]

=

(
iγµ

∂

∂xµ
+m

)
γ0[F+(x− y)− F+(y − x)].

At equal times, using γ0γ0 = 1, we find

[ψ(x0,x), ψ†(x0,y)]+ = iδ(x− y), (7.99)

which is again local. Again we must notice that in order to have Eq. (7.99) in a local form it was essential to choose
the anticommutators. The commutator would have brought a minus sign for the vv† term in Eq. (7.98) and to a
non-local result. This is a manifestation of the spin-statistic theorem.
Since ψ is a linear superposition of Dirac equation solutions, it itself is a solution of the Dirac equation

(i✁∂ −m)ψ(x) = 0. (7.100)

Let us conclude with the case of a massive vectorial field. The analysis is identical to the scalar case. For a vectorial
field we define

Wµ(x) =

∫
dΩp

3∑

r=1

[εµ(r,p)b(r,p)e
−ipx + ε∗µ(r,p)d

†(r,p)eipx], (7.101)

W †
µ(x) =

∫
dΩp

3∑

r=1

[ε∗µ(r,p)b
†(r,p)eipx + εµ(r,p)d(r,p)e

−ipx]. (7.102)
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The commutation rules can be easily derived recalling Eq. (6.159)

[Wµ(x),W
†
ν (y)] = −

(
gµν +

1

m2

∂

∂xµ
∂

∂xν

)
[F+(x− y)− F+(y − x)], (7.103)

[Wµ(x
0,x),W †

ν (x
0,y)] = − i

2m2
[gµ0∂ν + g0ν∂µ]δ(x− y), (7.104)

[Wµ(x
0,x), ∂0W

†
ν (x

0,y)] = −
(
gµν +

∂µ∂ν
m2

)
iδ(x− y). (7.105)

Also in this case the use of the Bose statistics has been essential for the locality of (7.104). Again this is a manifestation
of the spin-statistics theorem.
The vectorial field Wµ will satisfy to the following system of equations

(�+m2)Wµ(x) = 0, (7.106)

∂µW
µ = 0 (7.107)

The spin-statistics theorem states that, as a consequence of Lorentz invariance and of locality, half integer spin
particles must obey to Fermi statistics and integer spin particles must obey to Bose statistics.
As we saw in the various cases, the introduction of the negative energy solutions does not interfere with the Lorentz

structure of the fields. Since the commutation rules of the operators b and d are identical we can write the action of
the group on the whole Fock space generated by b† and d†. In particular the generators are given by

pµ =

∫
dΩp

∑

r

[
b†(r,p)pµb(r,p) + d†(r,p)pµd(r,p)

]
, (7.108)

J =

∫
dΩp

∑

r

[
b†(r,p)

(
s− ip ∧ ∂

∂p

)

rr′
b(r,p) + d†(r,p)

(
s− ip ∧ ∂

∂p

)

rr′
d(r,p)

]
, (7.109)

K =

∫
dΩp

∑

r

[
b†(r,p)

(
p ∧ s

p0 +m
+ ip0

∂

∂p

)

rr′
b(r,p) + d†(r,p)

(
p ∧ s

p0 +m
+ ip0

∂

∂p

)

rr′
d(r,p)

]
, (7.110)

as can be inferred by Eqs. (7.59)-(7.61).
On the field operators Eqs. (7.66) and (7.67) now give

[pµ, ϕ(x)] = −i∂µϕ(x), (7.111)

[J(µν), ϕ(x)] = − [σµν − i(xµ∂ν − xν∂µ)]ϕ(x), (7.112)

From the point of view of the Poincaré group it is evident from the construction and from the generators (7.108)-
(7.110) that the antiparticle states are identical to the particle ones: they describe a system of free particles of mass
m.

Appendix A: Commutators

The commutator of two operators A and B is defined as

[A,B] = AB −BA. (A1)

The commutator satisfies to the following Lie algebra relations

[A,A] = 0, (A2)

[A,B] = −[B,A], (A3)

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0, (A4)

where the third one is known as the Jacobi identity.
For three operators A,B, and C we also have

[A,B + C] = [A,B] + [A,C], (A5)

[A,BC] = B[A,C] + [A,B]C. (A6)



48

If [A,B] = α ∈ C then

[A,B2] = B[A,B] + [A,B]B = 2αB, (A7)

[A,B3] = B[A,B2] + [A,B]B2 = 3αB2, (A8)

. . .

[A,Bn] = nαBn−1. (A9)

Then, given a smooth function f , using its Taylor series expansion, we readily obtain

[A, f(B)] = α
df(B)

dB
. (A10)

In general we can prove the following lemma:
Hadamard lemma: Given any two operators A and B we have

eABe−A = B + [A,B] +
1

2!
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + . . . (A11)

Proof: Consider the function f(s) = esABe−sA. We want f(1). Taylor expand f(s) around s = 0

f(s) = f(0) + sf ′(0) +
1

2!
s2f ′′(0) +

1

3!
s3f ′′′(0) + . . . , (A12)

but it is easy to see that

f ′(s) = esAABe−sA − esABAe−sA = esA[A,B]e−sA, (A13)

f ′′(s) = esA[A, [A,B]]e−sA, (A14)

f ′′′(s) = esA[A, [A, [A,B]]]e−sA, (A15)

and so on.
The following theorem is also of great importance:

Theorem: Given two hermitian operators A and B which commutes, [A,B] = 0, they can be diagonalized simulta-
neously on the same orthonormal base of vectors of the Hilbert space.

Appendix B: The Levi-Civita symbol

The Levi-Civita symbol ǫi1i2...in is defined as a total antisymmetric n rank tensor with ǫ012...n = 1.
In two dimensions

ǫijǫik = δjk, (B1)

ǫijǫij = 2, (B2)

where in the first equation we contracted one index and in the second equation we contracted both indexes.
In three dimensions

ǫijkǫilm = δjlδkm − δjmδkl, (B3)

ǫijkǫijl = 3δkl − δkl = 2δkl, (B4)

ǫijkǫijk = 6. (B5)

In general

ǫi1i2...inǫj1j2...jn = det



δi1j1 · · · δi1jn
...

. . .

δinj1 δinjn


 . (B6)

Also for an n× n matrix A with (A)ij = aij we have

det(A) = ǫi1i2...ina1i1a2i2 · · · anin , (B7)

det(A)ǫj1j2...jn = ǫi1i2...inai1j1ai2j2 · · ·ainjn . (B8)
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Appendix C: Angular momentum

Consider the angular momentum hermitian operator L̂, where the hat denotes the operator. Then the following
commutation relations hold

[L̂i, L̂j] = iǫijkL̂k. (C1)

Then define

L̂2 =

3∑

i=1

L̂2
i , (C2)

L̂± = L̂1 ± L̂2. (C3)

We can then prove the following relations

[L̂2, L̂i] = 0, (C4)

[L̂+, L̂−] = 2L̂3, (C5)

[L̂3, L̂±] = ±L̂±, (C6)

and

L̂2 = L̂+L̂− + L̂2
3 − L̂3 = L̂−L̂+ + L̂2

3 + L̂3 (C7)

Since L̂2 commutes with L̂3 we can diagonalize them simultaneously so that

L̂2|ψL,M 〉 = L2|ψL,M 〉, (C8)

L̂3|ψL,M 〉 = M |ψL,M 〉, (C9)

where, since L̂2 − L̂2
3 = L̂2

1 + L̂2
2, we called L the maximum value of |M | for a given value L. Then

L̂3L̂±|ψL,M 〉 = (M ± 1)L̂±|ψL,M 〉, (C10)

L̂+ψL,M = 0. (C11)

From Eq. (C7) follows

0 = L̂−L̂+|ψL,M 〉 = (L̂2 − L̂2
3 − L̂3)|ψL,M 〉, (C12)

or L2 = L(L+ 1). Also M can assume 2L+ 1 values, namely M = L,L− 1, . . . ,−L. And 2L = 0, 1, 2, 3, . . ..

For the orbital angular momentum L̂ = r̂ ∧ p̂. In the coordinate representation r̂ = r and p̂ = −i∇∇∇r. From the
commutation relations for position and momentum

[r̂i, r̂j ] = 0, (C13)

[p̂i, p̂j ] = 0, (C14)

[r̂i, p̂j ] = iδij , (C15)

follows

[L̂i, r̂j ] = iǫijk r̂k, (C16)

[L̂i, p̂j ] = iǫijkp̂k, (C17)

and again Eq. (C1). Using spherical coordinates

r1 = r sin θ cosφ, r2 = r sin θ sinφ, r3 = r cos θ, (C18)

we find in particular

L̂3 = −i ∂
∂φ
. (C19)
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So we see that the eigenvalue equation

L̂3ψL,M (r) =MψL,M (r), (C20)

has solution

ψL,M = f(r, θ)eiMφ, (C21)

where f is an arbitrary function. If the function ψL,M has to be single valued, it must be periodic in φ with period
2π. Hence we find that additionally for the orbital case we must have M = 0,±1,±2, . . ., i.e. L must be an integer.

If we have to add the angular momentum of two different systems, L̂ = L̂(1) + L̂(2), we can either choose the set of

commuting operators {(̂L(1))2, (̂L(2))2, L̂(1)
3, L̂(2)

3} or the other one {(̂L(1))2, (̂L(2))2, L̂2, L̂3}, since [L̂(1), L̂(2)] = 0.

Appendix D: SU(2)

The special unitary group of degree n, SU(n), is the group of n × n unitary matrices with determinant 1. Its
dimension as a real manifold is n2 − 1 = 3. Topologically it is compact and simply connected. Algebraically it is a
simple Lie group.
Consider the 2 × 2 complex matrices A which are unitary A†A = 1 and with determinant equal to 1. The most

general 2× 2 complex matrix can be written as

A =

(
z1 z2
z3 z4

)
zi = ρie

iϕi . (D1)

Imposing unitarity is the same as imposing the three following conditions

z∗1z1 + z∗3z3 = 1, (D2)

z∗2z2 + z∗4z4 = 1, (D3)

z∗1z2 + z∗3z4 = 0. (D4)

Imposing that the determinant is 1 amounts to setting

z1z4 − z2z3 = 1. (D5)

This four conditions can be rewritten as follows

ρ21 + ρ23 = 1, (D6)

ρ22 + ρ24 = 1, (D7)

ρ1ρ2e
i(ϕ2−ϕ1) + ρ3ρ4e

i(ϕ4−ϕ3) = 0, (D8)

ρ1ρ4e
i(ϕ1+ϕ4) − ρ2ρ3ei(ϕ2−ϕ3) = 1. (D9)

Taking the modulus of Eq. (D8) gives ρ1ρ2 = ρ3ρ4. When we use this relation in Eqs. (D6) and (D7) we find ρ1 = ρ4
and ρ2 = ρ3. Then Eq. (D8) gives ϕ2 − ϕ1 + ϕ3 − ϕ4 = π which when used in Eq. (D9) gives

ρ21 + ρ22 = e−i(ϕ1+ϕ4), (D10)

which in turn is satisfied by ρ21 + ρ22 = 1 and ϕ1 + ϕ4 = 0. Then we end up with matrices of the form

A =

(
ρ1e

iϕ1 ±
√
1− ρ1eiϕ2

∓
√
1− ρ1e−iϕ2 ρ1e

−iϕ1

)
. (D11)

In other words we can say that

SU(2) =

{(
α −β∗

β α∗

)
| α, β ∈ C, |α|2 + |β|2 = 1

}
. (D12)
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The Lie algebra SU(2) of the group is obtained through the exponential map as the 2× 2 complex matrices ia such
that A = eia. Then the unitarity of A implies that a be hermitian and the condition for A to have determinant 1
implies that a be traceless. It is easy to prove that SU(n) has dimension 2n(n− 1)/2 + n− 1 = n2 − 1 and

SU(2) = {iθθθ · σσσ | θθθ ∈ R
3}, (D13)

with σi the Pauli matrices

σ1 = σx =

(
0 1
1 0

)
, (D14)

σ2 = σy =

(
0 −i
i 0

)
, (D15)

σ3 = σz =

(
1 0
0 −1

)
. (D16)

If we add to the Pauli matrices the identity matrix

1 =

(
1 0
0 1

)
= σ2

1 = σ2
2 = σ2

3 = −iσ1σ2σ3, (D17)

we obtain a base for the vector space of hermitian 2× 2 complex matrices.
The Pauli matrices are unitary and some of their properties are as follows

det(σi) = −1, (D18)

Tr(σi) = 0, (D19)

det(a · σσσ) = −|a|2, (D20)

[σi, σj ] = 2iǫijkσk, (D21)

{σi, σj} = 2δij1, (D22)

(a · σσσ)(b · σσσ) = (a · b)1 + i(a ∧ b) ·σσσ, (D23)

eia(n̂·σσσ) = 1 cos a+ i(n̂ · σσσ) sin a. (D24)

The Pauli matrices offer a representation for the spin 1/2 operator s as follows

s =
σσσ

2
. (D25)

There exists a 2 : 1 group homomorphism between SU(2) and SO(3).

Appendix E: Velocity transformations

A velocity transformation with βββ = (0, 0, β) is x′ = Λx with




x′0

x′1

x′2

x′3


 =




γ 0 0 −γβ
0 1 0 0
0 0 1 0
−γβ 0 0 γ







x0

x1

x2

x3


 , (E1)

where γ = 1/
√
1− β2. The velocity transformation can be cast into another useful form by defining a parameter α

called the rapidity (or hyperbolic angle) such that

eα = γ(1 + β) =

√
1 + β

1− β , (E2)

and thus

e−α = γ(1− β) =
√

1− β
1 + β

. (E3)
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So

γ = coshα =
eα + e−α

2
, (E4)

βγ = sinhα =
eα − e−α

2
, (E5)

(E6)

and therefore

β = tanhα. (E7)

We then have



x′0

x′1

x′2

x′3


 =




coshα 0 0 − sinhα
0 1 0 0
0 0 1 0

− sinhα 0 0 coshα







x0

x1

x2

x3


 , (E8)

with



coshα 0 0 − sinhα
0 1 0 0
0 0 1 0

− sinhα 0 0 coshα


 = exp


−iα




0 0 0 −i
0 0 0 0
0 0 0 0
−i 0 0 0





 ≡ exp(−iαK3), (E9)

where the simpler Lie-algebraic hyperbolic rotation generator iK3 is called a boost generator.

ACKNOWLEDGMENTS

These notes are extracted from the “Theoretical Physics” course given by Prof. Adriano di Giacomo at the physics
department of the University of Pisa in 1993.

REFERENCES

Berestetskij, V. B., E. M. Lif̌sits, and L. P. Pitaevskij (1991), Teoria quantistica relativistica (Editori Riuniti, Edizioni Mir,
Roma, Mosca).

Shirokov, Y. M. (1958a), JETP 6, 664,919,929.
Shirokov, Y. M. (1958b), JETP 7, 493.
Shirokov, Y. M. (1959), JETP 9, 620.


	Symmetries and particles
	Abstract
	Contents
	Definition of Invariance
	Conventions
	Units
	Fourier transform
	Operators


	Invariance in quantum mechanics
	Invariance and time evolution
	Galilean relativity
	Spatial translations
	Rotations
	Galilean transformations
	Galileo group
	Parity invariance
	Time reversal

	Einstein Relativity
	The irreducible unitary representation of the Poincaré group
	Massive particles
	The Elicity
	Massless particles
	The Wigner rotation
	Discrete transformations

	Wave functions in coordinate space

	The relativistic wave equations
	Particles of spin 0
	Particles of spin 1/2
	Dirac equation solutions: momentum eigenstates
	Transformation properties and connection with the Poincaré group representations

	Particles of spin 1

	The second quantization
	Fock space
	Bosons
	Fermions
	Observations

	Field operators
	Transformation properties of the field operators
	Locality and spin-statistics theorem

	Commutators
	The Levi-Civita symbol
	Angular momentum
	SU(2)
	Velocity transformations
	Acknowledgments
	References


