
Static screening in a
degenerate electron plasma

Suppose we switch on an appropriately screened test charge potential δV
(actually the so colled Hartree potential) in a free Fermi gas. The Hartree
potential δV (r) created at a distance r from a static point charge of magni-
tude e should be evaluated self-consistently from the Poisson equation,

∇2δV (r) = −4πe2[δ(r) + δn(r)] , (1)

where δn(r) is the change in electronic density induced by the foreign charge.
The electron density n(r) may be written as

n(r) = 2
∑
k

|ψk(r)|2 , (2)

where ψk(r) are single-electron orbitals, the sum over k is restricted to occu-
pied orbitals (|k| ≤ kF , kF Fermi wave vector) and the factor 2 comes from
the sum over spin orientations. We must now calculate how the orbitals in
the presence of the foreign charge, differ from plane waves exp(ik · r). We
use for this purpose the Schrödinger equation,

∇2ψk(r) + [k2 − 2m

h̄2
δV (r)]ψk(r) = 0 , (3)

having imposed that the orbitals reduce to plane waves with energy h̄2k2/(2m)
at large distance 1.

With the aforementioned boundary condition the Schrödinger equation
may be converted into an integral equation,

ψk(r) =
1√
Ω
eik·r +

2m

h̄2

∫
Gk(r− r′)δV (r′)ψk(r

′)dr′ , (4)

with Gk(r) = − exp(ik · r)/(4πr) and Ω the volume of the system.

1This approach (which lead to the Random Phase Approximation, RPA) is approximate
insofar as the potential entering the Schrödinger equation has been taken as the Hartree
potential, thus neglecting exchange and correlation between an incoming electron and the
electronic screening cloud.
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Within linear response theory we can replace ψk(r) by Ω−1/2 exp(ik · r)
inside the integral. This yields

δn(r) = − mk2F
2π3h̄2

∫
j1(2kF |r− r′|) δV (r′)

|r− r′|2
dr′ , (5)

with j1(x) being the first-order spherical Bessel function [sin(x)−x cos(x)]/x2.
Using this result in the Poisson equation we get

∇2δV (r) = −4πe2δ(r) +
2mk2F e

2

π2h̄2

∫
j1(2kF |r− r′|) δV (r′)

|r− r′|2
dr′ , (6)

which is easily soluble in Fourier transform. Writing δV (k) = 4πe2/[k2ε(k)]
we find,

ε(k) = 1 +
2mkF e

2

πk2h̄2

[
1 +

kF
k

(
k2

4k2F
− 1

)
ln

∣∣∣∣∣k − 2kF
k + 2kF

∣∣∣∣∣
]

, (7)

which is the static dielectric function in RPA.
For k → 0 this expression gives ε(k) → 1+k2TF/k

2 with kTF = 3ω2
p/v

2
F (ωp

being the plasma frequency and vF the fermi velocity.) i.e. the result of the
Thomas-Fermi theory. However ε(k) has a singularity at k = ±2kF , where
its derivative diverges logarithmically 2. This singularity in δV (k) determines
after Fourier transform the behaviour of δV (r) at large r. δV (r) turns out to
be an oscillating function 3 rather than a monotonically decreasing function
as in the Thomas-Fermi theory. Indeed,

δV (r) =
∫ dk

(2π)3
4πe2

k2ε(k)
eik·r =

e2

iπr

∫ ∞

−∞
dk

eikr

kε(k)
, (8)

and the integrand has non-analytic behaviour at q = ±2kF ,[
1

kε(k)

]
k→±2kF

= −A(k − (±)2kf ) ln |k − (±)2kF |+ regular terms , (9)

2The discontinuity in the momentum distribution across the Fermi surface introduces
a singularity in elastic scattering processes with momentum transfer equal to 2kF .

3J. Friedel, N. Cimento Suppl. 7, 287 (1958).
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with A = (k2TF/4k
2
F )/(k

2
TF + 8k2F ). Hence,

δV (r)|r→∞ = −Ae
2

iπr

∫ ∞

−∞
dk eikr[(k − 2kF ) ln |k − 2kF |

+(k + 2kF ) ln |k + 2kF |] = −2Ae2
cos(2kF r)

r3
. (10)

This result is based on a theorem on Fourier transforms 4, stating that the
asymptotic behaviour of δV (r) is determined by the low-k behaviour as well
as the singularities of δV (k). Obviously, in the present case the asymptotic
contribution from the singularities is dominant over the exponential decay
of Thomas-Fermi type. The result implies that the screened ion-ion inter-
action in a metal has oscillatory character and ranges over several shells of
neighbours.

4M. Lighthill, “Introduction to Fourier Analysis and Generalized Functions” (Univer-
sity Press, Cambridge 1958)
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