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In a recent Review of Modern Physics, M. E. Fisher (Fisher, 1998) presented, to a wide audience, the ideas of
the Renormalization Group (RG) theory behind statistical mechanics of matter physics and Quantum Field Theory
(QFT).
We will also follow the lectures given by N. Goldenfeld (Goldenfeld, 1992) at the University of Illinois at Urbana-

Champaign in 1992.
Despite its name the theory is not really about a group but about a semigroup since the set of transformations

involved is not necessarily invertible. The theory is thought as one of the underlying ideas in the theoretical structure
of QFT even if the roots of RG theory has to be looked upon the theory of critical phenomena of the statistical
mechanics of matter physics.

I. NOTATION

In spIn specifying critical behavior (and asymptotic variation more generally) a little more precision than normally
used is really called for. Following well established custom, we use ≃ for “approximately equals” in a rough and ready
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sense, as in π2 ≃ 10. But to express “f(x) varies like xλ when x is small and positive” i.e., just to specify a critical
exponent, we write:

f(x) ∼ xλ (x→ 0+). (1.1)

Then the precise implication is

lim
x→0+

ln |f(x)|/ ln x = λ. (1.2)

We define ≈ as “asymptotically equals” so that

f(x) ≈ g(x) (x→ 0+), (1.3)

implies

lim
x→0+

f(x)/g(x) = 1. (1.4)

We define the o(·) symbol as follows:

f = o(g) (x→ 0), (1.5)

means that |f | < c|g| for some constant c and |x| small enough.

II. THE ORIGIN OF RG

The history of the RG has to be reckoned on the work of Lev D. Landau who can be regarded as the founder of
systematic effective field theories and of the concept of the order parameter ((Landau and Lifshitz, 1958) sec. 135).
That is one recognizes that there is a microscopic level of description and believes it should have certain general,
overall properties especially as regards locality and symmetry. Those then serve to govern the most characteristic
behavior on scales greater than atomic. Known the nature of the order parameter, suppose, for example, it is a
complex number and like a wave function, then one knows much about the macroscopic nature of a physical system.
Traditionally, one characterizes statistical mechanics as directly linking the microscopic world of nuclei and atoms

(on length scales of 10−13 to 10−8 cm) to the macroscopic world of say, millimeters to meters. But the order parameter,
as a dynamic, fluctuating object in many cases intervenes on an intermediate or mesoscopic level characterized by
scales of tens or hundreds of angstroms up to microns. A major collaborator of Landau and developer of the concept
was V. L. Ginzburg (Ginzburg, 1997; Ginzburg and Landau, 1959) in particular for the theory of superconductivity.
Landau’s concept of the order parameter brought light, clarity, and form to the general theory of phase transitions,

leading eventually, to the characterization of multicritical points and the understanding of many characteristic features
of ordered states. But in 1944 Lars Onsager, by a mathematical tour de force, computed exactly the partition
function and thermodynamic properties of the simplest model of a ferromagnet or a fluid (Kaufman and Onsager,
1949; Onsager, 1944, 1949). This model, the Ising model, exhibited a sharp critical point: But the explicit properties,
in particular, the nature of the critical singularities disagreed profoundly with essentially all the detailed predictions of
the Landau theory (and of all foregoing, more specific theories). From this challenge, and from experimental evidence
pointing in the same direction (Fisher, 1965), grew the ideas of universal but nontrivial critical exponents (Domb,
1960, 1996), special relations between different exponents (Essam and Fisher, 1963), and then, scaling descriptions
of the region of a critical point (Domb and Hunter, 1965; Kadanoff, 1966; Patashinskii and Pokrovskii, 1966; Widom,
1965a,b). These insights served as stimulus and inspiration to Kenneth Wilson in his pursuit of an understanding
of QFTs (Wilson, 1983). Indeed, once one understood the close mathematical analogy between doing statistical
mechanics with effective Hamiltonians and doing quantum field theory (especially with the aid of Feynman’s path
integral) the connections seemed almost obvious. Needless to say, however, the realization of the analogy did not
come overnight: In fact, Wilson himself was the individual who first understood clearly the analogies at the deepest
levels.
In 1971, Wilson, having struggled with the problem of the systematic integrating out of appropriate degrees of

freedom and the resulting RG flows for four or five years, was able to cast his RG ideas into a conceptually effective
framework (Wilson, 1971a,b, 1983). Effective in the sense that one could do certain calculations with it. And Franz
Wegner, very soon afterwards (Wegner, 1972a,b), further clarified the foundations and exposed their depth and
breadth. An early paper by Kadanoff and Wegner (Kadanoff and Wegner, 1971) showing when and how universality
could fail was particularly significant in demonstrating the richness of Wilson’s conception. Their focus on relevant,
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irrelevant, and marginal operators (or perturbations) has played a central role (Kadanoff, 1976; Wegner, 1976). The
advent of Wilson’s concept of the RG gave more precise meaning to the effective (“coarse-grained”) Hamiltonians
that stemmed from the work of Landau and Ginzburg. One now pictures the Landau-Ginzburg-Wilson (LGW)
Hamiltonians as true but significantly renormalized Hamiltonians in which finer microscopic degrees of freedom have
been integrated out.
So our understanding of “anomalous” i.e., non-Landau-type but, in reality, standard critical behaviour was greatly

enhanced. The epsilon expansion (see chapter 12 of the Goldenfeld book (Goldenfeld, 1992)), which used as a small,
perturbation parameter the deviation of the spatial dimensionality, d, from four dimensions, namely, ǫ = 4 − d,
provided a powerful and timely tool (Wilson and Fisher, 1972). It had the added advantage, if one wanted to move
ahead, that the method looked something like a cookbook so that “any fool” could do or check the calculations,
whether they really understood, at a deeper level, what they were doing or not. But in practice that also has a real
benefit in that a lot of calculations do get done, and some of them turn up new and interesting things or answer old or
new questions in instructive ways. A few calculations reveal apparent paradoxes and problems which serve to teach
one and advance understanding.
The foundations of RG theory are in the critical exponent relations and the crucial scaling concepts developed in

1963-66 (Essam and Fisher, 1963; Fisher, 1967a; Kadanoff, 1966; Widom, 1965a,b).
Some antedating reviews on RG theory are to be found in the following Refs. (Domb, 1960; Fisher, 1965, 1967b;

Kadanoff et al., 1967; Stanley, 1971). Retrospective reviews can be found in the following books (Baker Jr., 1990;
Creswick et al., 1992; Domb, 1996). Introductory accounts in an informal lecture style are presented by M. E. Fisher
in Refs. (Fisher, 1965, 1983).

III. THE DECAY OF CORRELATION FUNCTIONS

Consider a locally defined microscopic variable which we will denote ψ(r). In a ferromagnet this might well be the
local magnetization, M(r), or spin vector, S(r), at point r in ordinary d-dimensional (Euclidean) space; in a fluid it
might be the deviation δρ(r), of the fluctuating density at r from the mean density. In QFT the local variables ψ(r)
are the basic quantum fields which are “operator valued”. For a magnetic system, in which quantum mechanics was
important, M(r) and S(r) would, likewise, be operators. However, the distinction is of relatively minor importance
so that we may, for ease, suppose ψ(r) is a simple classical variable. It will be most interesting when ψ is closely
related to the order parameter for the phase transition and critical behavior of concern.
By means of a scattering experiment (using light, x rays, neutrons, electrons, etc.) one can often observe the

corresponding pair correlation function (or basic “two-point function”)

G(r) = 〈ψ(0)ψ(r)〉, (3.1)

where the angular brackets 〈·〉 denote a statistical average over the thermal fluctuations that characterize all equilib-
rium systems at nonzero temperature. (Also understood, when ψ(r) is an operator, are the corresponding quantum-
mechanical expectation values).
Physically, G(r) is important since it provides a direct measure of the influence of the leading microscopic fluctua-

tions at the origin 0 on the behavior at a point distance r = |r| away. But, almost by definition, in the vicinity of an
appropriate critical point, for example the Curie point of a ferromagnet when ψ = M or the gas-liquid critical point
when ψ = δρ, a strong “ordering” influence or correlation spreads out over, essentially, macroscopic distances. As a
consequence, precisely at criticality one rather generally finds a power-law decay, namely,

Gc(r) ≈ D/rd−2+η as r → ∞, (3.2)

which is characterized by the critical exponent (or critical index) d− 2 + η.
Now all the theories one first encounters, the so-called “classical” or Landau-Ginzburg or van der Waals theories,

etc., predict, quite unequivocally, that η vanishes. In QFT this corresponds to the behavior of a free massless
particle. Mathematically, the reason underlying this prediction is that the basic functions entering the theory have
(or are assumed to have) a smooth, analytic, nonsingular character so that, following Newton, they may be freely
differentiated and, thereby expanded in Taylor series with positive integral powers even at the critical point. In
QFT the classical exponent value d − 2 (implying η = 0) can often be determined by naive dimensional analysis or
“power counting”: Then d − 2 is said to represent the “canonical dimension” while η, if nonvanishing, represents
the “dimensional anomaly”. Physically, the prediction η = 0 typically results from a neglect of fluctuations or,
more precisely as Wilson emphasized, from the assumption that only fluctuations on much smaller scales can play
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a significant role: In such circumstances the fluctuations can be safely incorporated into effective (or renormalized)
parameters (masses, coupling constants, etc.) with no change in the basic character of the theory.
But a power-law dependence on distance implies a lack of a definite length scale and, hence, a scale invariance. To

illustrate this, let us rescale distances by a factor b so that r → r′ = br, and, at the same time, rescale the order
parameter ψ by some “covariant” factor bω where ω will be a critical exponent characterizing ψ. Then we have that
if one has ω = 1

2 (d− 2 + η), the factors of b drop out and the form in Eq. (3.2) is recaptured. In other words Gc(r)
is scale invariant (or covariant): Its variation reveals no characteristic lengths, large, small, or intermediate.
Since power laws imply scale invariance and the absence of well separated scales, the classical theories should be

suspect at (and near) criticality. Indeed, one finds that the “anomaly” h does not normally vanish (at least for
dimensions d less than 4, which is the only concern in a physics of matter laboratory). In particular, from the work of
Kaufman and Onsager (Kaufman and Onsager, 1949) one can show analytically that η = 1

4 for the d = 2 Ising model.
Consequently, the analyticity and Taylor expansions presupposed in the classical theories are not valid. Therein lies
the challenge to theory. Indeed, it proved hard even to envisage the nature of a theory that would lead to η 6= 0. The
power of the renormalization group is that it provides a conceptual and, in many cases, a computational framework
within which anomalous values for η (and for other exponents like ω and its analogs for all local quantities such as
the energy density E) arise naturally.
In applications to matter physics, it is clear that the power law in Eq. (3.2) can hold only for distances relatively

large compared to atomic lengths or lattice spacings which we will denote a. In this sense the scale invariance of
correlation functions is only asymptotic hence the symbol ≈, for “asymptotically equals”, and the proviso r → ∞ in
Eq. (3.2). A more detailed description would account for the effects of nonvanishing a, at least in leading order. By
contrast, in QFT the microscopic distance a represents an “ultraviolet” cutoff which, since it is in general unknown,
one normally wishes to remove from the theory. If this removal is not done with surgical care, which is what the
renormalization program in QFT is all about, the theory remains plagued with infinite divergencies arising when
a → 0, i.e., when the “cutoff is removed”. But in statistical physics one always anticipates a short-distance cutoff
that sets certain physical parameters such as the value of Tc; infinite terms per se do not arise and certainly do not
drive the theory as in QFT.
One may, however, provide a more concrete illustration of scale dependence by referring again to the power law

Eq. (3.2). If the exponent η vanishes, or equivalently, if ψ has its canonical dimension, so that ω = ωcan = 1
2 (d− 2),

one may regard the amplitude D as a fixed, measurable parameter which will typically embody some real physical
significance. Suppose, however, η does not vanish but is nonetheless relatively small: Indeed, for many (d = 3)-
dimensional systems, one has η ≃ 0.035 (Baker Jr., 1990; Domb, 1996; Fisher, 1983; Fisher and Burford, 1967). Then
we can introduce a “renormalized” or “scale-dependent” parameter

D̃(r) ≈ D/rη as r → ∞, (3.3)

and rewrite the original result simply as

Gc(r) = D̃(r)/rd−2. (3.4)

Since η is small we see that D̃(r) varies slowly with the scale r on which it is measured. In many cases in QFT the
dimensions of the field ψ (alias the order parameter) are subject only to marginal perturbations (see below) which

translate into a ln r dependence of the renormalized parameter D̃(r); the variation with scale is then still weaker than
when η 6= 0.

IV. THE CHALLANGES POSED BY CRITICAL PHENOMENA

Physics is an experimental science. So let us briefly review a few experimental findings that serves to focus attention
on the principal theoretical challenges faced by, and rather fully met by RG theory.
In 1869 Andrews reported to the Royal Society his observations of carbon dioxide sealed in a (strong) glass tube at

a mean overall density, ρ, close to 0.5 gm cm−3. At room temperatures the fluid breaks into two phases: A liquid of
density ρliq(T ) that coexists with a lighter vapor or gas phase of density ρgas(T ) from which it is separated by a visible
meniscus or interface; but when the temperature, T , is raised and reaches a sharp critical temperature, Tc ≃ 31.04
◦C, the liquid and gaseous phases become identical, assuming a common density ρliq = ρgas = ρc while the meniscus
disappears in a “mist” of “critical opalescence”. For all T above Tc there is a complete “continuity of state”, i.e., no
distinction whatsoever remains between liquid and gas (and there is no meniscus). A plot of ρliq(T ) and ρgas(T ), as
illustrated somewhat schematically in Fig. 1(d), represents the so-called gas-liquid coexistence curve or binodal: The
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FIG. 1 Temperature variation of gas-liquid coexistence curves (temperature, T , versus density, ρ) and corresponding spon-
taneous magnetization plots (magnetization, M , versus T ). The solid curves, (b) and (d), represent (semiquantitatively)
observation and modern theory, while the dotted curves (a) and (c) illustrate the corresponding “classical” predictions (mean-
field theory and van der Waals approximation). These latter plots are parabolic through the critical points (small open circles)
instead of obeying a power law with the universal exponent β ≃ 0.325: See Eqs. (4.3) and (11). The energy scale ε, and the
maximal density and magnetization, ρmax and Mmax , are nonuniversal parameters particular to each physical system; they
vary widely in magnitude.

two halves, ρliq > ρc and ρgas < ρc , meet smoothly at the critical point (Tc, ρc), shown as a small circle in Fig. 1:
The dashed line below Tc represents the diameter defined by ρ(T ) = 1

2 [ρliq(T ) + ρgas(T )].

The same phenomena occur in all elemental and simple molecular fluids and in fluid mixtures. The values of Tc
, however, vary widely: e.g., for helium-four one finds 5.20 K while for mercury Tc ≃ 1764 K. The same is true for
the critical densities and concentrations: These are thus “nonuniversal parameters” directly reflecting the atomic and
molecular properties, i.e., the physics on the scale of the cutoff a. Hence, in Fig. 1, ρmax (which may be taken as the
density of the corresponding crystal at low T ) is of order 1/a3, while the scale of kBTc is set by the basic microscopic
potential energy of attraction denoted ε. While of considerable chemical, physical, and engineering interest, such
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parameters will be of marginal concern to us here. The point, rather, is that the shapes of the coexistence curves,
ρliq(T ) and ρgas(T ) versus T , become asymptotically universal in character as the critical point is approached.
To be more explicit, note first an issue of symmetry. In QFT, symmetries of many sorts play an important role:

They may (or must) be built into the theory but can be “broken” in the physically realized vacuum state(s) of the
quantum field. In the physics of fluids the opposite situation pertains. There is no real physical symmetry between
coexisting liquid and gas: They are just different states, one a relatively dense collection of atoms or molecules, the
other a relatively dilute collection, see Fig. 1(d). However, if one compares the two sides of the coexistence curve, gas
and liquid, by forming the ratio

R(T ) = [ρc − ρgas(T )]/[ρc − ρliq(T )], (4.1)

one discovers an extraordinarily precise asymptotic symmetry. Explicitly, when T approaches Tc from below or,
introducing a convenient notation,

t ≡ (T − Tc)/Tc → 0−, (4.2)

one finds R(T ) → 1. This simply means that the physical fluid builds for itself an exact mirror symmetry in density
(and other properties) as the critical point is approached. And this is a universal feature for all fluids near criticality.
(This symmetry is reflected in Fig. 1(d) by the high, although not absolutely perfect, degree of asymptotic linearity
of the coexistence-curve diameter, ρ(T ), the dashed line described above).
More striking than the (asymptotic) symmetry of the coexistence curve is the universality of its shape close to Tc,

visible in Fig. 1(d) as a flattening of the graph relative to the parabolic shape of the corresponding classical prediction,
see plot (c) in Fig. 1, which is derived from the famous van der Waals equation of state. Rather generally one can
describe the shape of a fluid coexistence curve in the critical region via the power law

∆ρ ≡
1

2
[ρliq(T )− ρgas(T )] ≈ B|t|β as t→ 0−, (4.3)

where B is a nonuniversal amplitude while the critical exponent β takes a universal value

β ≃ 0.325, (4.4)

(in which the last figure is uncertain). To stress the point: β is a nontrivial number, not known exactly, but it is
the same for all fluid critical points! This contrasts starkly with the classical prediction β = 1

2 [corresponding to a
parabola: See Fig. 1(c)]. The value in Eq. (4.4) applies to (d = 3)-dimensional systems. Classical theories make the
same predictions for all d. On the other hand, for d = 2, Onsager’s work (Onsager, 1949) on the square-lattice Ising
model leads to β = 1

8 . This value has since been confirmed experimentally by Kim and Chan (Kim and Chan, 1984)
for a “two-dimensional fluid” of methane (CH4) adsorbed on the flat, hexagonal-lattice surface of graphite crystals.
Not only does the value in Eq. (4.4) for β describe many types of fluid system, it also applies to anisotropic

magnetic materials, in particular to those of Ising-type with one “easy axis”. For that case, in vanishing magnetic
fields, H , below the Curie or critical temperature, Tc , a ferromagnet exhibits a spontaneous magnetization and one
has M = ±M0(T ). The sign, + or −, depends on whether one lets H approach zero from positive or negative values.
Since, in equilibrium, there is a full, natural physical symmetry under H → −H and M → −M (in contrast to fluid
systems) one clearly has Mc = 0: Likewise, the asymptotic symmetry corresponding to Eq. (4.1) is, in this case exact
for all T : See Fig. 1, plots (a) and (b). Thus, as is evident in Fig. 1, the global shape of a spontaneous magnetization
curve does not closely resemble a normal fluid coexistence curve. Nevertheless, in the asymptotic law

M0(T ) ≈ B|t|β as t→ 0−, (4.5)

the exponent value in Eq. (4.4) still applies for d = 3: See Fig. 1(b); the corresponding classical “mean-field theory”
in plot (a), again predicts β = 1

2 . For d = 2 the value β = 1
8 is once more valid.

And, beyond fluids and anisotropic ferromagnets many other systems belong, more correctly their critical behavior
belongs, to the “Ising universality class”. Included are other magnetic materials (antiferromagnets and ferrimagnets),
binary metallic alloys (exhibiting order-disorder transitions), certain types of ferroelectrics, and so on.
For each of these systems there is an appropriate order parameter and, via Eq. (3.2), one can then define (and

usually measure) the correlation decay exponent η which is likewise universal. Indeed, essentially any measurable
property of a physical system displays a universal critical singularity. Of particular importance is the exponent
α ≃ 0.11 (Ising, d = 3) which describes the divergence to infinity of the specific heat via

c(T ) ≈ A±/|t|α as t→ 0±, (4.6)
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(at constant volume for fluids or in zero field, H = 0, for ferromagnets, etc.). The amplitudes A+ and A− are again
nonuniversal; but their dimensionless ratio, A+/A−, is universal, taking a value close to 0.52. When d = 2, as Onsager
(Onsager, 1944) found, A+/A− = 1 and |t|−α is replaced by ln |t|. But classical theory merely predicts a jump in
specific heat, ∆c = c−c − c+c > 0 for all d.

Two other central quantities are a divergent isothermal compressibility χ(T ) (for a fluid) or isothermal susceptibility,
χ(T ) ∝ (∂M/∂H)T (for a ferromagnet) and, for all systems, a divergent correlation length, ξ(T ), which measures the
growth of the “range of influence” or of correlation observed say, via the decay of the correlation function G(r;T ),
see Eq. (3.1) above, to its long-distance limit. For these functions we write

χ(T ) ≈ C±/|t|γ and ξ(t) ≈ ξ±0 /|t|
ν , (4.7)

as t→ 0±, and find, for d = 3 Ising-type systems,

γ ≃ 1.24 and ν ≃ 0.63, (4.8)

(while γ = 1 3
4 and ν = 1 for d = 2).

As hinted, there are other universality classes known theoretically although relatively few are found experimentally
(Aharony, 1976; Fisher, 1974b). Indeed, one of the early successes of RG theory was delineating and sharpening our
grasp of the various important universality classes. To a significant degree one found that only the vectorial or tensorial
character of the relevant order parameter (e.g., scalar, complex number alias two-component vector, threecomponent
vector, etc.) plays a role in determining the universality class. But the whys and the wherefores of this self-same issue
represent, as does the universality itself, a prime challenge to any theory of critical phenomena.

V. THE CRITICAL EXPONENTS

It has been believed for a long time that the critical exponents were the same above and below the critical tem-
perature. It has now been shown that this is not necessarily true: When a continuous symmetry is explicitly broken
down to a discrete symmetry by irrelevant (in the renormalization group sense) anisotropies, then the exponents γ
and γ′ are not identical (Leonard and Delamotte, 2015). Here we indicate with a prime the critical exponents for
t < 0 (ordered phase) and without the prime the critical exponent for t > 0 (disordered phase).

A. The classical exponent values

The classical Landau theory (aka mean-field theory) values of the critical exponents for a scalar field are given by
(see chapter 5 of Goldenfeld book (Goldenfeld, 1992))

α = 0, (5.1)

β =
1

2
, (5.2)

γ = 1, (5.3)

δ = 3, (5.4)

adding derivative terms turning it into a mean-field Ginzburg-Landau theory, we get

η = 0, (5.5)

ν =
1

2
. (5.6)

They are valid for d > duc = 4, the upper critical dimension (Fisher, 1974a,b, 1983; Wilson and Fisher, 1972;
Wilson and Kogut, 1974).

The problem with mean-field theory is that the critical exponents do not depend on the space dimension. This
leads to a quantitative discrepancy in space dimensions 2 and 3, where the true critical exponents differ from the
mean-field values. It leads to a qualitative discrepancy in space dimension 1, where a critical point in fact no longer
exists, even though mean-field theory still predicts there is one. The space dimension where mean-field theory becomes
qualitatively incorrect is called the lower critical dimension.
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B. The Ising exponent values

We list in Table I the critical exponents of the ferromagnetic transition in the Ising model (see also Goldenfeld book
(Goldenfeld, 1992) p. 111).

TABLE I This table lists the critical exponents of the ferromagnetic transition in the Ising model. In statistical physics, the
Ising model describes a continuous phase transition with scalar order parameter. The critical exponents of the transition are
universal values and characterize the singular properties of physical quantities. The ferromagnetic transition of the Ising model
establishes an important universality class, which contains a variety of phase transitions as different as ferromagnetism close to
the Curie point and critical opalescence of liquid near its critical point.

d = 2 d = 3 d = 4

α 0 0.11008(1) 0

β 1/8 0.326419(3) 1/2

γ 7/4 1.237075(10) 1

δ 15 4.78984(1) 3

η 1/4 0.036298(2) 0

ν 1 0.629971(4) 1/2

ω 2 0.82966(9) 0

C. Exponent relations

Critical exponents obey the following exponent relations independently of the universality class

νd = 2− α = 2β + γ = β(δ + 1) = γ
δ + 1

δ − 1
, (5.7)

2− η =
γ

ν
= d

δ − 1

δ + 1
. (5.8)

These equations imply that there are only two independent exponents, e.g., ν and η. All this follows from the theory
of the RG.
The relations (Essam and Fisher, 1963; Fisher, 1959, 1962, 1964, 1967b)

γ = (2− η)ν, (5.9)

α+ 2β + γ = 2, (5.10)

hold exactly for the d = 2 Ising models and are valid when d = 3 to within the experimental accuracy or the numerical
precision (of the theoretical estimates (Baker Jr., 1990; Domb, 1996; Fisher, 1967b)). They are even obeyed exactly
by the classical exponent values (which, today, we understand as valid for d > 4).
The first relation (5.9) pertains just to the basic correlation function G(r;T ) as defined previously in Eq. (3.1). It

follows from the assumption (Fisher, 1959, 1962), supported in turn by an examination of the structure of Onsager’s
matrix solution to the Ising model (Kaufman and Onsager, 1949; Onsager, 1944) that in the critical region all lengths
(much larger than the lattice spacing a) scale like the correlation length ξ(T ), introduced in Eq. (4.7). Formally one
expresses this principle by writing, for t→ 0 and r → ∞,

G(r;T ) ≈
D

rd−2+η
G

(
r

ξ(T )

)
, (5.11)

where, for consistency with (3.2), the scaling function, G(x), satisfies the normalization condition G(0) = 1. Inte-
grating r over all space yields the compressibility/susceptibility χ(T ) and, thence, the relation γ = (2 − η)ν. This
scaling law highlights the importance of the correlation length ξ in the critical region, a feature later stressed and
developed further, especially by Widom (Widom, 1965a,b), Kadanoff (Kadanoff, 1966, 1976), and Wilson (Wilson,
1983; Wilson and Kogut, 1974). It isworth remarking that in QFT the inverse correlationlength ξ−1, is basically
equivalent to the renormalized mass of the field ψ: Masslessness then equates with criticality since ξ−1 → 0.
The second relation (5.10) is proven in section VIII.
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VI. THE GAUSSIAN MODEL AND THE UPPER CRITICAL DIMENSION

See chapters 6 and 7 of the book of Goldenfeld (Goldenfeld, 1992).

VII. THE TASK OF RG

One would wish the RG theory to:

(i) explain the ubiquity of power laws at and near critical points (as opposed to the exponential laws which governs,
for example, the decay of correlation in Coulomb liquids (Das et al., 2011; Martin, 1988));

(ii) explain the values of the leading thermodynamic and correlation exponents, α, β, γ, δ, ν, η, and ω;

(iii) clarify why and how the classical values are in error, including the existence of borderline dimensionalities, like
duc = 4, above which classical theories become valid;

(iv) find the correction-to-scaling exponent θ (and, ideally, the higher-order correction exponents);

(v) give a method to compute crossover exponents, φ, to check for the relevance or irrelevance of a multitude of
possible perturbations;

(vi) give understanding of universality with nontrivial exponents;

(vii) give a derivation of scaling;

(viii) allow to understand the breakdown of universality and scaling in certain circumstances;

(ix) handle effectively logarithmic and more exotic dependences on temperature.

We may start by supposing that one has a set of microscopic, fluctuating, mechanical variables: In QFT these
would be the various quantum fields, ψ(r), defined at all points in a Euclidean (or Minkowski) space. In statistical
physics the phase space variables PS = {RN , PN} of N particles of coordinates RN = {r1, . . . , rN} and momenta
PN = {p1, . . . ,pN} in a volume V .
In terms of the basic variables PS one can form various “local operators” (or “physical quantities” or “observables”)

like, for a real fluid, the pressure P , the energy density E , the specific heat c, the isothermal compressibility χ, etc.
or, for the Ising model, the pressure P , the spontaneous magnetization M , the energy density E , the specific heat c,
the isothermal magnetic susceptibility χ, etc. For a mapping between the Ising model and a real fluid see Goldenfeld
book (Goldenfeld, 1992) section 2.12.
A physical system of interest is then specified by its Hamiltonian H[PS;L] which is usually just a spatially uniform

sum of local operators made up from the phase space operators and the coupling constant L = {L}. The crucial
function is the “reduced Hamiltonian”

H[PS;K] = −H[PS;L]/kBT, (7.1)

where kB is Boltzmann constant, T the absolute temperature, and K = {T, L}, are the various “thermodynamic
fields” (or coupling constants in QFT). We may suppose that one or more of the thermodynamic fields, in particular
the temperature, can be controlled directly by the experimenter; but others may be “given” since they will, for
example, embody details of the physical system that are “fixed by nature”.
An important feature of Wilson’s approach, however, is to regard any “physical Hamiltonian” as merely specifying

a subspace in a very large space of possible (reduced) Hamiltonians, H. This change in perspective proves crucial
to the proper formulation of a renormalization group: In principle, it enters also in QFT although in practice, it is
usually given little attention.
The partition function will be

ZN [H] = TrN

{
eH[PS]

}
, (7.2)

where the trace operator TrN{·}, denotes a summation or integration over the possible values of all the 2dN variables
PS. Then the thermodynamics follow from the total free energy density, which is given by

f [H] ≡ f(K) = lim
N,V→∞

lnZN [H]

V
, (7.3)
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where N and V becomes infinite maintaining the ratio V/N = ad fixed: In QFT this corresponds to an infinite system
with an ultraviolet lattice cutoff.
To the degree that one can actually perform the trace operation in Eq. (7.2) for a particular model system and take

the “thermodynamic limit” in Eq. (7.3) one will obtain the precise critical exponents, scaling functions, and so on.
This was Onsager’s (1944) (Onsager, 1944) route in solving the d = 2, spin 1/2 Ising models in zero magnetic field. At
first sight one then has no need of RG theory. While one knows for sure that α = 0 (ln), β = 1

8 , γ = 1 3
4 , ν = 1, η = 1

4 , . . .
for the planar Ising models one does not know why the exponents have these values. Indeed, the seemingly inevitable
mathematical complexities of solving even such physically oversimplified models exactly (Baxter, 1982) serve to conceal
almost all traces of general, underlying mechanisms and principles that might “explain” the results. Also, should one
ever achieve truly high precision in simulating critical systems on a computer (a prospect which still seems some
decades away (Ceperley, 1995)) the same problem would remain. Thus it comes to pass that even a rather crude and
approximate solution of a two-dimensional Ising model by a RG method can be truly instructive.

VIII. THE BASIS AND FORMULATION

At the heart of (real space 1 ) RG theory there is the renormalization of the spatial scale via r → r′ = br which
produces on the reduced Hamiltonian the following renormalization transformation

H
′
[PS′;K ′] =RRRbH[PS,K], (8.1)

where we have elected to keep track of the spatial rescaling factor, b, as a subscript of the RG operator RRR. Thus
successive renormalizations with scaling factors b1 and b2 yield the quite general relation RRRb2RRRb1 = RRRb2b1 , which
essentially defines a unitary semigroup of transformations. the formal algebraic definition (MacLane and Birkhoff,
1967) of a unitary semigroup (or “monoid”) is a setM of elements, u, v, w, x, . . . with a binary operation, xy = w ∈M ,
which is associative, so v(wx) = (vw)x, and has a unit u, obeying ux = xu = x (for all x ∈ M). In RG theory, the
unit transformation corresponds simply to b = 1.

It is more fruitful to iterate the transformation so obtaining a sequence, H
(l)
, of renormalized Hamiltonians, namely,

H
(l)

=RRRbH
(l−1)

=RRRblH. (8.2)

Hille (Hille, 1948) and Riesz and Sz.-Nagy (Riesz and Sz.-Nagy, 1955) describe semigroups within a continuum,
functional analysis context and discuss the existence of an infinitesimal generator when the flow parameter l is defined
for continuous values l ≥ 0. One may regard

l = logb(|r
′|/|r|), (8.3)

as measuring, logarithmically, the scale on which the system is being described; but note that, in general, the form of
the Hamiltonian is also changing as the “scale” is changed or l increases. Thus a partially renormalized Hamiltonian
can be expected to take on a more-or-less generic, mesoscopic form: Hence it represents an appropriate candidate to
give meaning to a Landau-Ginzburg or, now, LGW effective Hamiltonian.
It is also worth mentioning that by letting b→ 1+, one can derive a differential or continuous RG flow and rewrite

the recursion relation (8.2) as

d

dl
H = BBBH. (8.4)

In this form the RG semigroup can typically be extended to an Abelian group (MacLane and Birkhoff, 1967). But as
already stressed this fact plays a negligible role. Such continuous flows are illustrated in Fig. 2. 2

The recursive application of an RG transformation RRRb induces a flow in the space of Hamiltonians, H. Then one
observes that “sensible”, “reasonable”, or, better, “well-designed” RG transformations are smooth, so that points in
the original physical manifold, H(0), that are close, say in temperature, remain so in H(1), i.e., under renormalization,
and likewise as the flow parameter l increases, in H(l).

1 As opposed to the momentum-shell RG (Wilson and Fisher, 1972).
2 If it happens that H can be represented, in general only approximately, by a single coupling constant, say, g, then BBB reduces to the
so-called beta-function β(g) of QFT.
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Thanks to the smoothness of the RG transformation, if one knows the free energy fl ≡ f [H(l)] at the l-th stage of
renormalization, then one knows the original free energy f [H] and its critical behavior: Explicitly one has

f(K) ≡ f [H] = b−dlf [H
(l)
] ≡ b−dlfl(K

(l)). (8.5)

Furthermore, the smoothness implies that all the universal critical properties are preserved under renormalization.

Similarly one finds (Fisher, 1983; Wilson, 1971a; Wilson and Kogut, 1974) that the critical point of H
(0)

≡ H maps

on to that of H
(1)

≡ H
′
, and so on, as illustrated by the flow lines in Fig. 2. Thus it is instructive to follow the critical

FIG. 2 A depiction of the space of Hamiltonians H showing initial or physical manifolds, K = {t, h} with t = (T−Tc)/Tc and Tc

the critical temperature, [labelled (a), (b), . . .] and the flows induced by repeated application of a discrete RG transformation
RRRb with a spatial rescaling factor b (or induced by a corresponding continuous or differential RG). Critical trajectories are

shown bold: They all terminate, in the region of H shown here, at a fixed point H
∗
. The full space contains, in general, other

nontrivial, critical fixed points, describing multicritical points and distinct critical-point universality classes; in addition, trivial
fixed points, including high-temperature “sinks” with no outflowing or relevant trajectories, typically appear. Lines of fixed
points and other more complex structures may arise and, indeed, play a crucial role in certain problems. [After Ref. (Fisher,
1983)]

trajectories in H, i.e., those RG flow lines that emanate from a physical critical point. In principle, the topology
of these trajectories could be enormously complicated and even chaotic: In practice, however, for a well-designed or
“apt” RG transformation, one most frequently finds that the critical flows terminate, or, more accurately, come to an
asymptotic halt, at a fixed point H∗, of the RG: See Fig. 2. Such a fixed point is defined simply by

RRRbH
∗
= H

∗
or BBBH

∗
= 0. (8.6)

One then searches for fixed-point solutions.
Why are the fixed points so important? Some, in fact, are not, being merely trivial, corresponding to no interactions

or to all spins frozen, etc. But the nontrivial fixed points represent critical states; furthermore, the nature of their
criticality, and of the free energy in their neighborhood, must, as explained, be identical to that of all those distinct
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Hamiltonians whose critical trajectories converge to the same fixed point. In other words, a particular fixed point
defines a universality class 3 of critical behavior which “governs” or “attracts” all those systems whose critical points
eventually map onto it: See Fig. 2.
Here, then we at last have the natural explanation of universality: Systems of quite different physical character

may, nevertheless, belong to the domain of attraction of the same fixed point H
∗
in H. The distinct sets of inflowing

trajectories reflect their varying physical content of associated irrelevant variables and the corresponding nonuniversal
rates of approach to the asymptotic power laws dicated by H∗.
From each critical fixed point, there flow at least two “unstable” or outgoing trajectories. These correspond to

one or more relevant variables, specifically, for the case illustrated in Fig. 2, to the temperature or thermal field,
t = (T − Tc)/Tc, with Tc the critical temperature, and the magnetic or ordering field, h.If there are further relevant
trajectories then one can expect crossover to different critical behavior. In the space H, such trajectories will then
typically lead to distinct fixed points describing (in general) completely new universality classes. A skeptical reader
may ask: “But what if no fixed points are found?” This can well mean, as it has frequently meant in the past, simply
that the chosen RG transformation was poorly designed or “not apt”. On the other hand, a fixed point represents only
the simplest kind of asymptotic flow behavior: Other types of asymptotic flow may well be identified and translated
into physical terms.
But what about power laws and scaling?
The smoothness of a well-designed RG transformation means that it can always be expanded locally, to at least some

degree, in a Taylor series (Fisher, 1974b; Kadanoff, 1976; Wegner, 1972a,b, 1976; Wilson, 1971a; Wilson and Kogut,
1974). It is worth stressing that it is this very property that fails for free energies in a critical region: To regain this
ability, the large space of Hamiltonians is crucial. Near a fixed point satisfying Eq. (8.5) we can, therefore, rather
generally expect to be able to linearize by writing

RRRb[H
∗
+ gQ] = H

∗
+ gLLLbQ+ o(g), (8.7)

as g → 0, or in differential form,

d

dl
(H

∗
+ gQ) = gBBBQ+ o(g). (8.8)

NowLLLb andBBB are linear operators (albeit acting in a large spaceH). As such we can seek eigenvalues and corresponding
“eigenoperators”, say Qk (which will be “partial Hamiltonians”). Thus, we may write

LLLbQk = Λk(b)Qk or BBBQk = λkQk, (8.9)

where, in fact, (by the semigroup property) the eigenvalues must be related by Λk(b) = bλk . As in any such linear
problem, knowing the spectrum of eigenvalues and eigenoperators or, at least, its dominant parts, tells one much of
what one needs to know. Reasonably, the Qk should form a basis for a general expansion

H ∼= H
∗
+

∑

k≥1

gkQk. (8.10)

Physically, the expansion coefficient gk (≡ g
(0)
k ) then represents the thermodynamic field (reduced, as always, by the

factor 1/kBT ) conjugate to the “critical operator” Qk which, in turn, will often be close to some combination of local
operators. Indeed, in a characteristic critical-point problem one finds two relevant operators, say Q1 and Q2 with
λ1, λ2 > 0. Invariably, one of these operators can, say by its symmetry, be identified with the local energy density,
Q1

∼= E , so that g1 ∼= t is the thermal field; the second then characterizes the order parameter, Q2
∼= Ψ with field

g2 ∼= h. Under renormalization each gk varies simply as g
(l)
k ≈ bλklg

(0)
k .

3 This retrospective statement may, perhaps, warrant further comment. First, the terms “universal” and “universality class” came into
common usage only after 1974 when the concept of various types of RG fixed point had been well recognized (see Fisher Ref. (Fisher,
1974b)). Kadanoff (Kadanoff, 1976) deserves credit not only for introducing and popularizing the terms but especially for emphasizing,
refining, and extending the concepts. On the other hand, Domb’s (Domb, 1960) review made clear that all (short-range) Ising models
should have the same critical exponents irrespective of lattice structure but depending strongly on dimensionality. The excluded-volume
problem for polymers was known to have closely related but distinct critical exponents from the Ising model, depending similarly on
dimensionality but not lattice structure (Fisher and Sykes, 1959). And, as regards the Heisenberg model, which possesses what we
would now say is an (n = 3)-component vector or O(3) order parameter, there were strong hints that the exponents were again different
(Domb and Sykes, 1962; Rushbrooke and Wood, 1958). On the experimental front matters might, possibly be viewed as less clear-cut:
Indeed, for ferromagnets, nonclassical exponents were unambiguously revealed only in 1964 by Kouvel and Fisher (Kouvel and Fisher,
1964). However, a striking experiment by Heller and Benedek (Heller and Benedek, 1962) had already shown that the order parameter

of the antiferromagnet MnF2, namely, the sublattice magnetization M†
0
(T ), vanishes as |t|β with β = 0.335. Furthermore, for fluids, the

work of the Dutch school under Michels and the famous analysis of coexistence curves by Guggenheim (Guggenheim, 1949) allowed little
doubt, see Rowlinson book (Rowlinson, 1959), Chap. 3, especially, pp. 91-95 that all reasonably simple atomic and molecular fluids
displayed the same but nonclassical critical exponents with β ≃ 1

3
: And, also well before 1960, Widom and Rice (Widom and Rice,

1955) had analyzed the critical isotherms of a number of simple fluids and concluded that the corresponding critical exponent δ (see,
e.g., Ref. (Fisher, 1967b)) took a value around 4.2 in place of the van der Waals value δ = 3. In addition, evidence was in hand showing
that the consolute point in binary fluid mixtures was similar (see Rowlinson book (Rowlinson, 1959), pp. 165-166).
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Finally, one examines the flow equation (8.5) for the free energy. The essential point is that the degree of renor-
malization, bl, can be chosen as large as one wishes. When t → 0, i.e., in the critical region which it is our aim to
understand, a good choice proves to be bl = 1/|t|1/λ1 , which clearly diverges at ∞. One then finds that Eq. (8.5)
leads to the following basic scaling relation

fs(t, h, . . . , gj, . . .) ≈ |t|2−αF

(
h

|t|∆
, . . . ,

gj
|t|φj

, . . .

)
, (8.11)

where fs is the “singular part” of the free energy found by subtracting from the free energy all the analytic terms. α
is the specific heat exponent introduced while the exponent, ∆, which determines how h scales with t, is given by

∆ = β + γ, (8.12)

Widom observed, incidentally, that the classical theories themselves obey scaling: One then has α = 0,∆ = 1 1
2 , φ =

− 1
2 . The exponent, φ, did not appear in the original critical-point scaling formulations (Domb and Hunter, 1965;

Fisher, 1967b; Kadanoff, 1966; Patashinskii and Pokrovskii, 1966; Stanley, 1971; Widom, 1965a,b); neither did the
argument g/|t|φ appear in the scaling function F . It is really only with the appreciation of RG theory that we know
that such a dependence should in general be present and, indeed, that a full spectrum {φj} of such higher-order
exponents with φ ≡ φ1 > φ2 > φ3 > . . . must normally appear (Fisher, 1974a; Wilson, 1971a).
Eq. (8.11) is the essential result. Recall, for example, that: (i) it very generally implies the thermodynamic

exponent relation Eq. (5.10) connecting α, β, and γ (since the derivative of the free energy with respect to h is
proportional to minus the magnetization); and (ii) since all leading exponents are determined entirely by the two
exponents α and ∆ (= β + γ), it predicts similar exponent relations for any other exponents one might define, such
as δ specified on the critical isotherm by H ∼M δ. Beyond that, (iii) if one fixes P (or g) and similar parameters and
observes the free energy or, in practice, the equation of state, the data one collects amount to describing a function,
say M(T,H), of two variables. Typically this would be displayed as sets of isotherms: i.e., many plots of M vs. H at
various closely spaced, fixed values of T near Tc . But according to the scaling law Eq. (8.11) if one plots the scaled

variables fs/|t|
2−α or M/|t|β vs. the scaled field h/|t|∆, for appropriately chosen exponents and critical temperature

Tc, one should find that all these data “collapse” (in Stanley’s (Stanley, 1971) picturesque terminology) onto a single
curve, which then just represents the scaling function x = F(y) itself. This collapse is some times also called law of

corresponding states (see for instance section 4.1 in Ref. (Hansen and McDonald, 1990)).
Now, however, the critical exponents can be expressed directly in terms of the RG eigenexponents λk (for the fixed

point in question). Specifically one finds

2− α =
d

λ1
, ∆ =

λ2
λ1
, φj =

λj
λ1
, ν =

1

λ1
. (8.13)

Then, the sign of a given φj and, hence, of the corresponding λj determines the relevance (for λj > 0), marginality (for
λj = 0), or irrelevance (for λj < 0) of the corresponding critical operator Qj (or “perturbation”) and of its conjugate
field gj: This field might, but for most values of j will not, be under direct experimental control. The first and last
of the equations (8.13) yield the hyperscaling relation: dν = 2− α which explicitly involve the spatial dimensionality
(Fisher, 1974a). This relation holds exactly for the d = 2 Ising model and also for all other exactly soluble models
when d < 4 (Baxter, 1982; Fisher, 1983). 4

When a coupling constant g is irrelevant then z = g/|t|φ → 0 on approaching the critical point. Consequently,
F(y, z) can be replaced simply by F(y, 0) which is a function of just a single variable. Furthermore, asymptotically
when T → Tc we get the same function whatever the actual value of g. Clearly this is an example of universality.
5 Then one can, fairly generally, hope to expand the scaling function F(y, z) in powers of z and thereby obtain the
so called “correction-to-scaling” exponent θ, which is also universal (for d = 3 Ising-type systems one finds θ ≃ 0.54
(Zinn and Fisher, 1996)).
When a coupling constant g is relevant then when t → 0 the scaled variable g/|t|φ grows larger and larger. Two

possibilities then arise: Either the critical point may be destroyed altogether. This is, in fact, the effect of the

4 Unlike the previous exponent relations (all being independent of d) hyperscaling fails for the classical theories unless d = 4. And since
one knows (rigorously for certain models) that the classical exponent values are valid for d > 4, it follows that hyperscaling cannot be
generally valid. Thus something is certainly missing from Kadanoff’s picture. Now, thanks to RG insights, we know that the breakdown
of hyperscaling is to be understood via the second argument in the “fuller” scaling form Eq. (8.11): when d exceeds the appropriate
borderline dimension, duc, a “dangerous irrelevant variable” appears and must be allowed for (see Fisher in Ref. (Gunton and Green,
1973) p. 66 where a “dangerous irrelevant variable” is characterized as a “hidden relevant variable” and Ref. (Fisher, 1983), appendix
D). In essence one finds that the scaling function limit F(y, z → 0, . . .), previously accepted without question, is no longer well defined
but, rather, diverges as a power of z: asymptotic scaling survives but d∗ ≡ (2 − α)/ν sticks at the value 4 for d > duc = 4.

5 Note that Tc for example, will usually be a function of any irrelevant parameter such as gj . This comes about because, in a full scaling
formulation, the variables t, h, and {gj} appearing in Eq. (8.11) must be replaced by nonlinear scaling fields t(t, h, {gj}), h(t, h, {gj}),
and gj(t, h, {gj}) which are smooth functions of t, h, and gj (Fisher, 1983; Wegner, 1972a,b, 1976). By the same token it is usually
advantageous to introduce a prefactor A0 in Eq. (8.11) and “metrical factors” Ej in the arguments of F (see, e.g., Ref. (Fisher, 1983).
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magnetic field, which must itself be regarded as a relevant perturbation since φ ≡ ∆ = β+γ > 0. Alternatively, when
z grows, the true, asymptotic critical behavior may crossover (Aharony, 1976; Fisher, 1974b) to a new, quite distinct

universality class with different exponents and a new asymptotic scaling function, say, F∞(y). 6

Whena coupling constant g is marginal then when t→ 0 this may lead to logarithmic modifications of the classical
critical power laws (by factors diverging as ln |t| to various powers). The predicted logarithmic behavior has, in
fact, been verified experimentally by Ahlers et al. (Ahlers et al., 1975). In other cases, especially for d = 2, marginal
variables lead to continuously variable exponents such as α(g), and to quite different thermal variation, like exp(A/|t|ν);
such results have been checked both in exactly solved statistical mechanical models and in physical systems such as
superfluid helium films (Kadanoff and Wegner, 1971; Nelson, 1983).
Because of the multifaceted character of matter physics these are rather different and more diverse than those

aspects of RG theory of significance for QFT. When there are no marginal variables and the leas negative φj is
larger than unity in magnitude, a simple scaling description will usually work well and the Kadanoff picture almost
applies. When there are no relevant variables and only one or a few marginal variables, field-theoretic perturbative
techniques of the Gell-Mann-Low (Gell-Mann and Low, 1954), Callan-Symanzik (Amit, 1978; Brézin et al., 1976;
Itzykson and Drouffe, 1989; Wilson, 1975) or so-called “parquet diagram” varieties (Larkin and Khmel‘nitskii, 1969)
may well suffice (assuming the dominating fixed point is sufficiently simple to be well understood). There may then
be little incentive for specifically invoking general RG theory. This seems, more or less, to be the current situation in
QFT and it applies also in certain physics of matter problems.
Within RG theory the general mechanism of universality is as follows: In a very large (generally infinitely large)

space of Hamiltonians H, parametrized by t, h, and all the gj , there is a controlling critical point (a fixed point) about
which each variable enters with a characteristic exponent. All systems with Hamiltonians differing only through the
values of the gj (within suitable bounds) will exhibit the same critical behavior determined by the same free-energy
scaling function F , dropping the irrelevant arguments. Different universality classes will be associated with different
controlling critical points in the space of Hamiltonians with, once one recognizes the concept of RG flows, different
“domains of attraction” under the flow. Indeed, the expectation of a general form of scaling is frequently the most
important consequence of RG theory for the practising experimentalist or theorist.
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