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Chapter 1

Motivations

In this report we want to predict the approach to equilibrium of a spherically
symmetric field-particle system initially excited in a non-equilibrium state where
the particle is in an unstable circular orbit around the origin [1].

In particular we will be concerned with the realization of a quasistatic ap-
proximation to the exact dynamical problem. As the newly built gravitational
wave detectors are preparing to receive their first set of data, theorical efforts
are being carried on to solve exactly Einstein’s equation to be able to timely
interpret such data. Our quasistatic approximation co is in an unstable circular
orbit could become an important tool in the event that such theoretical efforts
fail to solve the exact problem in time. The approximation should be particu-
larly usefull in interpreting the waveform coming from slowly decaying binary
neutron stars.

Binary neutron stars are known to exist and for some of the systems in our
own galaxy (like the relativistic binary radio pulsar PSR B1913+16 and PSR
B1534+12) general relativistic effects in the binary orbit have been measured to
high precision. With the construction of laser interferometers well underway, it
is of growing urgency that we be able to predict theoretically the gravitational
waveform emitted during the inspiral and the final coalescence of the two stars.
Relativistic binary systems, like binary neutron stars and binary black holes
pose a fundamental challange to theorists, as the two-body problem is one of
the outstanding unsolved problems in classical general relativity.
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Chapter 2

Introduction

When studying a two body problem one decomposes it in the trivial problem
involving the center of mass motion and the harder one involving the relative
motion of the two masses. Is the second one, we want to focus on. Since we don’
t want to deal with all the difficulties of General Relativity (there is no analytic
solution to the two body problem in GR) and we want to have a more realistic
theory than the Newtonian one, we choose to employ a theory which describes
gravitation by a nonlinear scalar gravitational field Φ in special relativity. To
decribe the relative motion in a two body problem we just need one particle
moving around the origin. The particle motion is confined at all times in its
orbital plane, and its position there is determined by the distance from the
origin rp, and the azimuthal angle ϕp. To follow the dynamical evolution of
the field-particle system in scalar gravity, one needs to solve a single hyperbolic
partial differential equation describing the field evolution, coupled to a system
of two ordinary differential equations describing the particle motion,

2Φ(r, t) = source ,
r̈p = . . . ,

ϕ̈p = . . . .
(2.1)

The source term of the field equation is where the coupling between the field and
the particle dynamics takes place, and is responsible for the nonlinearity of the
problem: source ∼ exp(Φ)ρ, where ρ(r, t) = (m/γ)δ(r− rp(t)) is the comoving
matter density, m the particle rest mass, and γ the Lorentz factor.

In particular we want to study the even simpler, spherically symmetric prob-
lem. It is infact a peculiarity of scalar gravitation that of being able to generate
gravitational waves even in spherical symmetry. This allows the study of wave
generation and propagation with the use of just one spatial dimension plus
time. In spherical symmetry the particle angular momentum ũϕ is conserved.
There are then three important quantities in our problem: the initial distance
from the origin ri, the particle rest mass m, and its angular momentum ũϕ.
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Two adimensional combinations of these quantities are particularly important
to parametrize the problem:

(1) The initial compaction α = ri/m which tunes the nonlinearity of the prob-
lem:

α ≫ 1 The system is in a weak field and slow particle velocity regime.
Newtonian gravitation provides a good analytical approximation to
the nearly linear and periodic system.

α ∼ 1 The system is nonlinear and aperiodic. There is no analytic solution
to the coupled equations (2.1), and a numerical integration is needed.
In this report we will describe an approximate solution which works
well when the system relaxes slowly.

(2) An adimensional measure of the particle angular momentum J = ũϕ/(ũϕ)circ(ri).
Here we are indicating with (ũϕ)circ(ri) the angular momentum that the
particle should have in order to be in a circular orbit at the initial radius
ri.

J = 0 The particle collapses to the origin.

J = 1 The particle is in a stable circular orbit. Even though the particle
is in circular motion around the origin, it doesn’ t loose energy by
gravitational radiation because in spherical symmetry the particle in
circular orbit represents a stationary spherical mass shell.

J > 1 The particle is initially at the periastron of its elliptical orbit. There
is a value Je such that if J > Je the particle escapes to infinity, if
J < Je the particle orbit becomes circular at t = ∞, and of radius re
bigger than ri.

Figure 2.1: Pictorial evolution of the particle orbit when J > 1.

J < 1 The particle is initially at the apastron of its elliptical orbit. The
particle orbit becomes circular at t = ∞, and of radius re smaller
than ri. If J ≪ 1 the shell relaxation will be fast (it will reach re
in a small number of oscillations) and the quasistatic approximation
that we are now going to describe will break down.
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Figure 2.2: Pictorial evolution of the particle orbit when J < 1.

When the timescale of orbital decay by radiation is much longer than the
orbital period, the particle can be considered to be in “quasiequilibrium”. When
this condition is satisfied we are allowed to drop the Φ,tt (radiative) term from
the field equation. Doing this the problem reduces to the solution of three
ordinary differential equations which can be solved “analytically”. We will call
this simpler problem the “static” approximation to the exact problem,

∇2Φ = source ,
r̈p = . . . ,

ϕ̈p = . . . .
(2.2)

In the static approximation (which reduces to Newtonian gravity in the limit
α ≫ 1) the particle motion is conservative but not necessarily periodic due to
the nonlinearity of the problem.

Monitoring the exact solution for the field at a fixed radius rout far from
the particle, one expects a behaviour similar to the one shown in figure 2.3. In

Figure 2.3: Expected behaviour for Φ(rout, t) as a function of time.

particular the damping of the wave amplitude is due to the fact that the particle
is gradually approaching a circular orbit. In the static approximation the field
cannot have any damping because of the conservativeness of the particle motion,
and we get a behaviour as shown in figure 2.4.
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Figure 2.4: Same as figure 2.3 but in the static approximation.

Any reasonable approximation to the exact solution in the nonlinear regime
has to be able to reproduce the damping of the wave. The “quasistatic” ap-
proximation that we propose takes into account the wave damping through the
following four steps:

(1) We use the solution rp(t) to the static approximation to determine the field
equation source term. We then solve the full field equation,

2Φ(r, t) = source , (2.3)

(2.4)

to find the flux of field energy (∼ r2Φ,tΦ,r) radiated out by the gravity
wave. This will allow us to determine the rate of change of the total energy
E of the particle-field system, with respect to time,

dE

dt
= −

∫
flux da . (2.5)

(2) Consider the particle-field system in the stationary state where the particle
is in a circular orbit at a radius R. Then instantaneously change the par-
ticle angular momentum from J = 1 to J = ũϕ/(ũϕ)circ(R) and calculate
the total energy of the system. Repeating this for all radii R between ri
and re we get a curve E(R) similar to the one shown in figure 2.5. The
values E(re) and E(ri) are exact, while at the true inversion points rinv
of the particle orbit, E(rinv) are expected to be good approximations to
the corresponding exact values. Knowing E(R) we can find the rate of
change of E with respect to R.

(3) Use the chain rule to get the rate of change of R with respect to time,

dR

dt
=

dE/dt

dE/dR
. (2.6)
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Figure 2.5: Shows the expected behaviour for the total energy of the system E
as a function of the circular orbits radii R. The energy curve has its minimum
at re, the radius of the circular orbit on which the particle decays at t = ∞.

(4) Finally knowing dR/dt we can correct the previous static estimate of the
field equation source term. We can then solve the full field equation again
to get the wave damping.
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Chapter 3

Statement of the problem

3.1 Basic Equations

The gravitational field is described by a massless scalar field Φ(xα) in special
relativity. The scalar field does not modify the background space-time geometry
which is always Minkowskian. Consider a particle of rest mass m moving along
a world-line zα(λ). Then the action for the field-particle system is,

I =

∫
L (−g)1/2 d4x , (3.1)

where the lagrangian density L is,

L = − 1

8πG
gαβΦ,αΦ,β − ρeΦ , (3.2)

and where the comoving density is,

ρ = m

∫ (
−gαβ

dzα

dλ

dzβ

dλ

)1/2

δ4(x⃗− z⃗(λ)) (−g)−1/2 dλ . (3.3)

Here the metric tensor gαβ is the usual Minkowski metric ηαβ since space-time
is flat in this theory [i.e. gαβ = ηαβ = diag(−1, 1, 1, 1) in Cartesian coordinates].
We use arrows to denote four-vectors and boldface to denote three-vectors. We
will set the speed of light c = 1 but will display the gravitational coupling
constant (Newton’ s constant) G explicitly. If we choose λ equal to the proper
time τ along the particle world-line, then,

ρ = m

∫
δ4(x⃗− z⃗(τ)) (−g)−1/2 dτ (3.4)

=
m

γ
δ3(x− z(t)) (−g)−1/2 , (3.5)
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where γ ≡ dz0/dτ is the Lorentz factor.
Varying the Lagrangian (3.2) with respect to Φ gives the field equation of

motion,

2Φ = 4πGeΦρ . (3.6)

In the Newtonian limit, where Φ ≪ 1, equation (3.6) becomes linear and reduces
to Poisson’ s equation. Varying the lagrangian with respect to zα gives the
particle equation of motion,

D2zα

dτ2
+

[
gαβ +

dzα

dτ

dzβ

dτ

]
Φ,β = 0 , (3.7)

where D denotes covariant differentiation. Here we are allowing for curvilin-
ear coordinates; covariant differentiation reduces to ordinary differentiation in
Cartesian coordinates. In the non relativistic limit equation (3.7) implies that
the gravitational force is −∇Φ. The fully relativistic form ensures that the four-
velocity uα = dzα/dτ remains orthogonal to the four-acceleration aα = Duα/dτ .

3.2 The problem

Consider one particle of rest mass m moving along a world-line zα(τ) = (rp, t)
with four-velocity uα, under the influence of a massless scalar gravitational field
Φ(r, t) in special relativity. In spherical symmetry the comoving matter density
takes the form,

ρ(r, t) =
m/γ

4πr2p (t)
δ(r − rp(t)) , (3.8)

where r = |r| and γ = u0 is the Lorentz factor. The particle effectively represents
an entire spherical shell of radius rp and mass surface density σ = m/(γ4πr2p ).

Assuming the particle confined in the θ = π/2 plane, so that uθ = 0 at all
times, the equations of motion in spherical coordinates rp = (rp, θp, ϕp), are,

ṙp = ũr

ũ0

˙̃ur =
ũ2
ϕ

ũ0 r3p
− e2ΦΦ,r

ũ0

,

 r2pϕ̇p =
ũϕ

ũ0

˙̃uϕ = 0

, (3.9)

where,

ũ0 =
√

e2Φ + ũ2
r + ũ2

ϕ/r
2

p , (3.10)

ũα ≡ eΦuα , (3.11)

and we use the dot to denote total differentiation with respect to time, and
commas to indicate partial differentiation.
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The particle moves conserving its orbital angular momentum ũϕ. For a static
gravitational field the particle energy ũ0 is also a constant.

Notice that from the field equation (3.6) follows that ϕ,r has, at all times
1 , a jump of 4πGeΦσ at the shell surface r = rp(t). It is then necessary to
specify how we calculate the gravitational force felt by the shell. We will use in
equation (3.9),

Φ,r ≡ [Φ,r(rp−) + Φ,r(rp+)]/2 . (3.12)

In this way we prevent any small patch of surface on the shell from interacting
with itself.

3.3 Initial condition

The field starts from a moment of time symmetry, so that at t = 0,

Φ,t = 0 ,

∇2Φ = 4πGeΦσδ(r − ri) , (3.13)

where ri = rp(t = 0) is the initial shell radius. The field is subject to the
boundary conditions,

Φ,r = 0 r = 0 , (3.14)

(rΦ),r = 0 r → ∞ . (3.15)

Choosing,

Φ =

{
a/rp r ≤ rp
a/r r > rp

, (3.16)

we can determine ai = a(t = 0) from the matching condition at the shell’ s
surface,

Φ,r(rp+)− Φ,r(rp−) =
Gm e2Φ

r2p ũ0
. (3.17)

Initially the particle is in a circular orbit of radius ri around the origin,

ũr = 0 ,

ri(u
ϕ
circ)

2 = [Φ,r(ri−) + Φ,r(ri+)]/2 = − ai
2r2i

, (3.18)

with an angular momentum,

(ũϕ)circ = eΦr2i u
ϕ
circ = eai/ri

√
−airi

2
. (3.19)

1We can safely assume that Φ,tt remains finite at all times at the shell surface.
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We can then find ai from equation (3.17), which becomes,

ai = − Gm eai/ri√
1− ai/(2ri)

. (3.20)

This initial condition (an Einstein state) is a stationary wave for the field
equation of motion and a stable circular orbit for the particle. So if we let the
system evolve from this initial state nothing will happen: the particle will keep
moving in the circular orbit at radius rp(t) = ri under the influence of the static
gravitational field (3.16). This can be shown, for example, rewriting the field
equation of motion in terms of the auxiliary functions,

X(r, t) = [(rΦ),r + (rΦ),t]/2 ,

Y (r, t) = [(rΦ),r − (rΦ),t]/2 . (3.21)

Now equation (3.6) becomes,

X,t = X,r − Fδ(r − rp) ,

Y,t = −Y,r + Fδ(r − rp) , (3.22)

where F = Gm exp(2Φ)/(2rpũ
0). The initial condition for X and Y becomes,

X(r, 0) = Y (r, 0) =

{
ai/(2ri) −ri < r < ri
0 otherwise

, (3.23)

From equations (3.19) and (3.20) follows that when ξ = 1, at t = 0, the source
term F = ai/(2ri). So that after an infinitesimal timestep dt, X(r, dt) = X(r, 0)
and Y (r, dt) = Y (r, 0).

So we perturb the system changing the particle’ s angular momentum by a
factor ξ,

ũϕ = ξ (ũϕ)circ , (3.24)

and let it evolve.

3.4 Conserved integrals

The particle-field dynamical system is characterized by a time-varying matter
and velocity profile, interacting with a time varying scalar field containing ra-
diation. Conservation of energy-momentum follows from,

∇T = 0 , (3.25)

where T is the total stress-energy tensor of the system,

Tµν =
2

(−g)1/2
δ[L(−g)1/2]

δgµν
. (3.26)
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Carrying out the variation using equation (3.2) we find,

Tµν = T field
µν + T particle

µν , (3.27)

where,

T field
µν =

1

4πG
[Φ,µΦ,ν − 1

2
gµνΦ

,αΦ,α] , (3.28)

T particle
µν = ρeΦuµuν . (3.29)

Conservation of energy-momentum gives rise to the following conserved in-
tegrals,

∂

∂t

∫
Sr

Tµ0(x, t) d3x = −
∫

Tµi
,i d

3x = −4πr2Tµr(r, t) , (3.30)

where Sr is the volume of the sphere of radius r centered at the origin, and we
used spherical symmetry in the last equality.

When r > rp(t) we find,

[µ = 0]
∂

∂t

{
1

2G

∫ r

0

[(Φ,0)
2 + (Φ,r)

2]r2 dr +mũ0

}
=

1

G
r2Φ,0Φ,r ,(3.31)

[µ = ϕ]
∂

∂t

(
ũϕ

r2p

)
= 0 ,

[µ = r]
∂

∂t

{
1

G

∫ r

0

Φ,0Φ,rr
2 dr −mũr

}
=

1

2G
r2[(Φ,0)

2 + (Φ,r)
2] ,

The particle-field total mass energy is given by the integral in equation (3.31),

E = Efield + Eparticle , (3.32)

Efield =
1

2G

∫ r

0

[(Φ,0)
2 + (Φ,r)

2]r2 dr ,

Eparticle = mũ0 .

According to equation (3.31), when evaluated at large enough radius, outside
any radiation or matter, E is conserved. As the particle shell breaths around its
asymptotic virial equilibrium state, Eparticle will undergo exponentially dumped
oscillations around its asymptotic value (see figure 3.1): the oscillations are due
to the coupling with the field, and the dumping to the gravitational radiation
going out to infinity (as a gravity wave). So that after a long time, apart from
some particular combinations of ξ and ri/m (see section 3.6.2), some energy will
have been exchanged between the field and the particle.

For a static situation, the (Φ,r)
2 term in equation (3.32) can be integrated

by parts to get,

E = −mΦpe
2Φp

2ũ0
+mũ0 , (3.33)
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Figure 3.1: Shows the expected behaviour of the particle energy ũ0 as a function
of time for the case α ∼ 1 and ξ < 1.

where Φp = Φ(rp, t). In the Newtonian limit equation (3.33) becomes,

E = m

[
−Φp

2
+ · · ·+ (1 + Φp + · · ·)

(
1 +

v2r
2

+
v2ϕ
2r2

+ · · ·

)]

≈ m

(
1 +

v2r
2

+
v2ϕ
2r2

+
Φp

2

)
, (3.34)

where vi ≡ ui/u
0. So E is the sum of the rest mass, plus the kinetic energy,

plus the gravitational potential energy of the matter shell.
When r < rp(t),

[µ = 0]
∂

∂t

∫ r

0

[(Φ,0)
2 + (Φ,r)

2]r2 dr = 2r2Φ,0Φ,r , (3.35)

[µ = ϕ] 0 = 0 , (3.36)

[µ = r]
∂

∂t

∫ r

0

Φ,0Φ,rr
2 dr =

r2

2
[(Φ,0)

2 + (Φ,r)
2] , (3.37)

which implies,

(Φ,0)
2 = (Φ,r)

2 ∀t ∀r < rp(t) . (3.38)

Those conserved integrals can be used as self consistent checks on our nu-
merical integration. In figure 3.2 we show what we would expect if we were to
evaluate the energy conservation equation,∫ rec

0

[(Φ,0)
2 + (Φ,r)

2]r2 dr + 2mũ0θ(rec − rp(t))

−2

∫ t

0

dt[Φ,0Φ,rr
2
ec −mδ(rec − rp(t))ũr] =∫ rec

0

(Φ(r, 0),rr)
2 dr + 2mũ0(t = 0)θ(rec − rp(0)) . (3.39)
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as a function of time at two fixed radii rec. The first radius is inside the shell at
all times, the second is always in the vacuum exterior. In the first case the right
hand side of equation (3.39) is zero, the integrated flux term (second integral in
equation (3.39)) is large, and the energy conservation involves the cancellation
of large terms. Consequently, the high degree to which we are able to maintain
energy conservation is a nontrivial measure of the accuracy of the code. In the
exterior, the flux is small and energy conservation is not a stringent test.

Figure 3.2: Energy conservation at two selected radii as a function of time.
The solid line shows the left-hand side of equation (3.39) (volume integral plus
integrated flux), the dotted line shows the second term alone (integrated flux),
and the dashed line shows the right-hand side (volume integral at t = 0). The
radii are (a) rec < rp(t) at all times, (b)rec > rp(t) at all times. The degree to
which the solid and dashed lines coincide compared with the magnitude of the
dotted line is a measure of the code’ s ability to conserve energy.

3.5 Monopole radiation

In the weak field, slow motion limit, the radiation field can be obtained by
a multipole expansion. Since the theory involves a scalar field, the lowest-
order contribution to the radiation comes from the monopole term. This is
in contrast with electromagnetism (vector field: dipole radiation) or general
relativity (tensor field: quadrupole radiation).

Using Green’ s function for the wave equation we can transform equation
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(3.6) into the integral form,

Φ(x, t) = −G

∫
d3x′ [e

Φρ]t′=t−|x−x′|

|x− x′|
. (3.40)

In the wave zone we can replace the denominator in equation (3.40) by the
distance r = |x|. To isolate the conserved rest mass m, define the rest density
to be,

ρ0 = γρ . (3.41)

Then,

Φ(x, t) ≈ −G

r

∫
d3x′

[
eΦ

γ
ρ0

]
t′=t−|x−x′|

. (3.42)

In the integrand, expand,

ρ0(x
′, t′) = ρ0(x

′, t− r) + (r − |x− x′|)ρ0,t (3.43)

+ 1
2 (r − |x− x′|)2ρ0,tt + · · · ,

and,

eΦ

γ
= [1 + Φ− 1

2v
2]t′=t−r + · · · , (3.44)

where v2 = [ur/u
0]2 + [uϕ/(u

0r)]2. For large r,

r − |x− x′| ≈ x · x′

r
= r′ cos θ′ . (3.45)

The leading-order contribution to the expansion of equation (3.42) comes from
the product of ρ0 in equation (3.43) with the 1 in equation (3.44). The resulting
integral gives m, so that this term represents the nonradiative Coulomb field.
Thus the leading-order radiation field is,

Φ(x, t) = −G

r

∫
d3x′[ρ0(Φ− 1

2v
2) + r′ cos θ′ρ0,t + r′

2
cos2 θ′ρ0,tt] t−r . (3.46)

To this order, it is irrelevant wether one uses ρ or ρ0 in equation (3.46).
For a spherically symmetric density distribution, the term proportional to

cos θ′ in equation (3.46) integrates to zero, giving,

Φ(r, t) = −G

r

∫
dr′ 4πr′

2
[ρ0(Φ− 1

2v
2) + 1

6r
2

p ρ0,tt]t−r . (3.47)

The last term in the integrand can be rewritten as follows,

1

6

∫
dr′ 4πr′

2 d2(r′
2
)

dt2
ρ0 =

1

3
m

(
ũ2
r + rp

dũr

dt

)
, (3.48)
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and using the equation of motion (3.9) in the weak field limit, we find,

1

6

∫
dr′ 4πr′

2 d2(r′
2
)

dt2
ρ0 =

1

3
m

(
ũ2
r +

ũ2
ϕ

r2p
− rpΦ,r

)
, (3.49)

Thus equation (3.47) becomes,

rΦ(r, t) = Gm

{
1

6

[
rp(Φ,r(rp+) + Φ,r(rp−)) + ũ2

r +
ũ2
ϕ

r2p

]
− Φ

}
t−r

. (3.50)

In figure 3.3 we show how a snapshot of the field at t = to should look like, and
compare it with the leading order radiation field of equation (3.50), in the wave
zone.

Figure 3.3: For the case α ∼ 1, ξ < 1, shows a snapshot at t = to of the field
Φ(to, r), the first order radiation part (3.50), and the first order radiation part
plus the zeroth order −m/r.

From equation (3.31) follows that the rate of energy emission when r > rp(t)
is,

dE

dt
= − 1

G
r2Φ,tΦ,r = − 1

G
(rΦ,t)

2 , (3.51)

where in the last equality we used the fact that since X is propagating to the
left, the following outgoing wave boundary condition must hold,

X(r, t) = 0 or (rΦ),r + (rΦ),t = 0 ∀t, ∀r > rp(t) . (3.52)

3.6 Analytic results

3.6.1 Newtonian limit

For weak fields and slow velocities we can test our code using the analytic solu-
tion from Newtonian gravitation. In this limit the particle equation of motion

16



is,

r̈p = −Φ,r +
J2

r3p
, (3.53)

Φ,r =
Gm

2 r2
,

J = (r2vϕ)t=0 = r2i ξ
√
Φ,r(ri)/ri = ξ

√
Gmri/2 ,

which can be rewritten as,

ẍ = −Meff

x2
+

J2
eff

x3
, (3.54)

ẋ(0) = 0 ,

x(0) = 1 ,

where rp(t) = rix(t), Meff = Gm/(2r3i ), and Jeff = ξ
√

Meff . The first integral
yields the conserved energy,

E =
1

2
ẋ2 − Meff

x
+

J2
eff

2x2
. (3.55)

For E = Meff (ξ
2/2 − 1) < 0 (i.e. ξ2 < 2) we have bound orbits. Solving for

the turning points (ẋ = 0) yields,

x± =
1± (1− ξ2)

2− ξ2
. (3.56)

So that for 0 < ξ < 1 the shell contracts to rix− and for 1 < ξ <
√
2 it expands

to rix−. For ξ >
√
2 the shell explodes.

Integrating the equation of motion we get the parametric solution,

x = a(1− e cos(u)) , (3.57)

t =
P

2π
(u− e sin(u))− P

2
,

where the semimajor axis, eccentricity and period are given by,

a =
1

2− ξ2
,

e = |1− ξ2| ,

P = 2π

√
2r3i

Gm(2− ξ2)3
. (3.58)

Inserting this analytic solution into equation (3.47) and differentiating with
respect to time gives the wave amplitude in the wave zone,

rΦ,t = −4

3

(Gm)2

ri

[
ẋ

x2

]
t−r

. (3.59)
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From equation (3.51) we get for the rate of energy emission,

dE

dt
= −16

9

(Gm)4

r2i

[
ẋ2

x4

]
t−r

. (3.60)

Integrating over an oscillation period we get the energy radiated per period,

∆PE = −16π

36
m

(
Gm

ri

)7/2
(1− ξ2)2

ξ7
(5− 2ξ2 + ξ4) . (3.61)

3.6.2 Relaxation to virial equilibrium

If the shell does not explode or collapse, it will eventually reach, as it loses
energy by emitting gravitational waves, an equilibrium circular orbit (see figure
3.4). At this point the particle-field system is in an Einstein state were ũr = 0,
ũ2
ϕ = r3p e2ΦΦ,r, and the field is static and of the form (3.16), in a neighborhood

of the shell.

Figure 3.4: Shows the relaxation to the virial equilibrium state for an α ∼ 1
shell with two different values of ξ: ξ < 1 and ξ > 1.

Given the angular momentum of the particle ũϕ we can then predict the
final equilibrium radius re, by solving the following equations in ae = a(t = ∞)
and re = rp(t = ∞),

ae = − Gm e2ae/re√
e2ae/re + ũ2

ϕ/re
2

, (3.62)

ũ2
ϕ = e2ae/rere

3(−ae/(2re
2)) . (3.63)

One can verify that, {
re < ri when ξ < 1
re > ri when ξ > 1

, (3.64)
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This final state is a virial equilibrium state. Taking the trace of the special
relativistic virial theorem,∫

T ijd3x =
1

2

∂2

∂t2

∫
T 00xixjd3x , (3.65)

gives at equilibrium,∫
ρeΦ(ur

2 + uϕ
2/r2)d3x =

1

8πG

∫
(∇Φ)2d3x = −1

2

∫
ρΦeΦd3x , (3.66)

or, when ũr = 0,

ũ2
ϕ

r2e
= −1

2
e2ΦΦ , (3.67)

which is the same as equation (3.63), when the field is of the form (3.16).
The final energy of the particle-field system is,

E(t = ∞) = −m

2

a

re

e2a/re

ũ0(t = ∞)
+mũ0(t = ∞) , (3.68)

where,

ũ0(t = ∞) =

√
e2ae/re +

ũ2
ϕ

r2e
. (3.69)

The shell will only collapse into the origin when it possesses 0 angular mo-
mentum 2. This follows from equation (3.10) and the observation that the
particle energy mũ0 will always be smaller than the initial total energy of the
particle-field system E(t = 0). Since the exponential is bigger than 0, we can
write,

[E(t = 0)]2 > ũ2
r +

ũ2
ϕ

r2
, (3.70)

and when ũr = 0, equation (3.70) gives the following lower bound on the acces-
sible radii 3,

rp > ũϕ/E(t = 0) , (3.71)

where,

E(t = 0) =
a2

2ri
+mũ0(t = 0) , (3.72)

ũ0(t = 0) =

√
e2a/ri +

ũ2
ϕ

r2i
.

2This is different from what happens in General Relativity where the shell can collapse
also for non-zero values of the angular momentum.

3At sufficiently small ξ one can get a better lower bound by substituting E(t = 0) with
ũ0(t = 0) in equation (3.71).
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3.6.3 Explosion

In order to explode the shell has to reach r = ∞ with at least ũr = 0. But
for r → ∞, σ → 0 and ϕ → 0 so that Eparticle → m. When the shell is at
infinity Efield will be a small positive quantity. So for the explosion to happen
the initial energy of the particle-field system has to be greater then m,

E(t = 0) > m , (3.73)

In the Newtonian limit ri ≫ m, condition (3.73) reduces to ξ >
√
2. The escape

radial velocity is (see figure 3.5),

ũr(r → ∞) =
√
[(E(t = 0)− Efield(t = ∞))/m]2 − 1

≈
√
[E(t = 0)/m]2 − 1 , (3.74)

or,

vr(r → ∞) ≈
√
E2(t = 0)−m2

E(t = 0)
. (3.75)

冖 ” 冖 8 一 0

Figure 3.5: Expected shell behaviour for ξ > ξe.
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Chapter 4

Approximations

Here we will describe two approximated solutions of the exact problem stated
in chapter 3.

4.1 Quasistatic approximation

When it takes many oscillations for the particle to settle into the final stable
circular orbit, we can hope to approximate its slow motion with a quasistatic
approximation. The idea is the following. Consider the static version of our
problem (equations (3.9)-(3.6)),

(rΦ),rr =
Gme2Φ

ũ0 rs
δ(r − rs) , (4.1)

drs
dt

=
ũr

ũ0
,

dũr

dt
=

ũ2
ϕ

ũ0 r3s
− e2ΦΦ,r

ũ0
,

ũ0 =
√
e2Φ + ũ2

r + ũ2
ϕ/r

2
s ,

ũϕ = constant ,

where we called rs(t) the shell radius in this static approximation. At all times
the field must be of the form (3.16) with a = as. Once we know rs(t) and ũr(t)
we can determine the field from the jump condition (3.17),

as = − Gm e2as/rs√
e2as/rs + ũ2

r + ũ2
ϕ/r

2
s

. (4.2)

Since we have a static field Φ = Φ(r, rs(t), ũr(t)), Φ,t = 0 and the system is
conservative. The shell will then experience undumped oscillations around its
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final equilibrium radius re. In order to have the shell reach re, we need a recipe
to dump the oscillations. This will give us a quasistatic approximation to the
true shell motion.

Once we know the initial ri, and final re shell radii we can construct a
sequence of intermediate “quasi-static” Einstein states as follows. The shell
initially at ri will contract (ξ < 1) or expand (ξ > 1) towards re in a succession
of circular orbits (ũr = 0) occurring at the true inversion points of the particle
trajectory. We call the intermediate radii of these circular orbits, rq.s.(i) =
rp(P1 + . . . + Pi), where P1, . . . , Pi are the first i oscillation periods . At those
points the field will be of the form (3.16) with a = aq.s. determined by solving
equation (3.17) for any given rp = rq.s.(i). At each rq.s. we can determine the new
value of ξ,

ξq.s.(i) =
ũϕ

eaq.s./rq.s.(i)r2q.s.(i)
√
−aq.s./(2r3q.s.(i))

, (4.3)

the particle energy,

ũ0 =
√
e2aq.s./rq.s. + ũ2

ϕ/r
2

q.s. , (4.4)

and the particle-field energy,

E =
a2q.s.
2rq.s.

+mũ0 (4.5)

We expect this to be a very good approximation for the particle energy at the
true inversion points of the particle trajectory for a wide range of α’s and ξ’s (see
figures 4.1 and 4.2). There usually is a value of ξ different from 1, ξo, at which

Figure 4.1: For the α ∼ 1, ξ < 1 case, shows ũ0 as a function of the shell
radius as expected from an exact numerical integration (solid line) and from
the analytic expression (4.4) (dashed line). We expect the dashed curve to pass
through the true values for the energy at the turning points of the particle orbit.
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Figure 4.2: Same as figure 4.1 but for the α ≫ 1 and ξ < 1 case.

the energy of the particle in the final equilibrium state is equal to its energy at
the beginning of the evolution (see figure 4.3). For shells with α < 0.4204623...,
ξo < 1, for less compact shells ξo > 1. One can also show that E(rq.s.) has a
minimum at rq.s.(∞) = re (see figure 4.4).
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Figure 4.3: Shows ũ0 as calculated from equation (4.4), as a function of the
shell radius, for two different situations: on the left a more compact shell, on
the right a less compact one.

Suppose we have approximated the true shell motion up to the i-th period
Pi. Then we continue the approximation as follows (see figure 4.5),

1. Calculate dE/drq.s. from equation (4.5),

dE

drq.s.
= −

a2q.s.
2r2q.s.

+
a3q.s.(5rq.s. − 2aq.s.)

rq.s.(7aq.s.r2q.s. − 2a2q.s.rq.s. − 4r3q.s.)
+

m
ũ2
ϕ

ũ0

(
1

ξ2q.s.

4aq.s. − 8rq.s.
rq.s.(7aq.s.r2q.s. − 2a2q.s.rq.s. − 4r3q.s.)

− 1

r3q.s.

)
(4.6)

2. Calculate the energy radiated in the i-th oscillation period Pi. In general,
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Figure 4.4: Shows the expected family of curves for E v.s. rp parametrized by
the particle’ s angular momentum ξ.

Z
X
Q
e
t

Figure 4.5: How the quasistatic approximation is expected to approximate a
nonlinear collapse.

when r > rp(t),

∆Pi
E =

∫ P1+...+Pi

P1+...+Pi−1

dt
dE

dt
, (4.7)

dE

dt
=

1

G
r2Φ,tΦ,r = − 1

G
(rΦ,t)

2 . (4.8)

We need a good approximation to the monopole term (the lowest order
contribution to the radiation) of the wave amplitude rΦ(r, t). In the weak
field slow motion limit one finds (see equation (3.47)),

rΦ(r, t) = −G

∫
dr′ 4πr′

2
[ρ0(Φ− 1

2v
2) + 1

6r
2

p ρ0,tt]t−r .

When α ≫ 1 it will be sufficient to use the Newtonian approximation. So
we will use the analytic expression (3.61). When α ∼ 1 we need to use the
static approximation (system (4.1)) to get a numerical estimate for ∆Pi

E.
The details of the calculation are outlined in the appendix.
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3. Given rq.s.(i) we can find rq.s.(i+ 1) using the chain rule,

rq.s.(i+ 1) = rq.s.(i) +
∆Pi

E

dE/drq.s.(rq.s.(i))
. (4.9)

4. Start a new static oscillation from ri = rq.s.(i+ 1) and ξ = ξq.s.(i+ 1).

4.2 Characteristics approximation

We adopt a mean-field particle simulation scheme:

1. The particle is evolved in the mean background field Φ for a small time ∆t.

2. From the new particle position and velocity we obtain the new matter source
term appearing in the field equation (3.6).

3. We then update Φ by evolving the field equation for a time-step ∆t.

4. Repeat the whole process.

The particle evolves through an ordinary differential equation which poses no
computational difficulties. One can for example use one of the standard Runge-
Kutta schemes to solve it. The field evolution is much more problematic. It
involves the solution of the Cauchy problem for a non-linear hyperbolic partial
differential equation with discontinuous initial data. In the next chapter we will
outline an exact numerical integration scheme for the field equation. Here we
will describe an approximated one.

The idea is to use the auxiliary functions X(r, t) and Y (r, t) introduced in
section 3.3. We make the following approximation: in the timestep dt we evolve
the field according to equation (3.22) where we consider the source term F as
constant in time 1. Under this approximation, given at time to, X(r, to) =
Xo(r), and Y (r, to) = Yo(r) the solutions for X and Y at later times are,

X(r, t) = Xo(r +∆t)− F st[rp −∆t, rp](r) + F st[−rp −∆t,−rp](r) ,

Y (r, t) = Yo(r −∆t) + F st[rp, rp +∆t](r)− F st[−rp,−rp +∆t](r) ,(4.10)

where st[a, b](r) = H(x−a)−H(x−b) withH the Heaviside function, ∆t = t−to,
and we added an image soruce at r = −rp(t)

2 in order to ensure the finiteness
of the field at the origin at all times, which requires,

X(0, t) = Y (0, t) ∀t . (4.11)

1Note that this is an approximation even within the mean-field scheme since in its definition
F contains the field itself.

2See appendix (B) for a justification of our use of the images method in the solution of
this particular field equation.
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We then reconstruct the gravitational field as follows,

Φ(r, t) =
1

r

∫ r

0

[X(r, t) + Y (r, t)] dr . (4.12)

In our code we tabulate the field using a uniform grid in r and we choose
dr = dt. We need infact, to make sure that in using the solutions (4.10), the
source terms fall upon the translated functions less frequently as possible. Those
events are purely due to the mean field scheme, which require that we move the
particle over a fixed field. When dr = dt they occur only when the particle hits
a grid point at a given timestep.
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Chapter 5

Exact Numerical
Integration

Here we describe the scheme we use to solve exactly the scalar field equation
(3.6) coupled to the particle equations (3.9) in spherical symmetry, within the
mean-field approximation described in secction 4.2.

5.1 Characteristics method

In order to make to make the characteristics approximation an exact integration
we need to replace the solution (4.10) with,

X(r, t) = Xo(r +∆t)− F (rp, t+ (r − rp))st[rp −∆t, rp] +

F (rp, t+ (r + rp))st[−rp −∆t,−rp]

Y (r, t) = Yo(r +∆t) + F (rp, t− (r − rp))st[rp −∆t, rp]− (5.1)

F (rp, t+ (r − rp))st[−rp,−rp +∆t]

In our numerical integration we have always used the field time-step ∆t, equal
to the particle time-step dt, equal to the grid spacing dr. In this case there is
no difference in using equations (5.1) or (4.10). If we want to use ∆t = ndt with
n = 2, 3, . . . then the more general solution (5.1) should be used and solved by
iteration.

5.2 High resolution method

A more rigorous method when computing discontinuous solutions of the wave
equation can be found among the flux-limiter methods described in chapter 16
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of Randall J. LeVeque “Numerical Methods for Conservation Laws”. Here we
will describe the one employing the “Van Leer” smoother limiter function.

This method is second order accurate on smooth parts of the field and yet
gives a well resolved, nonoscillatory discontinuity at the shell surface (by increas-
ing the amount of numerical dissipation in its neighborhood). The method has
the total variation diminishing property provided that the Courant, Friedrichs,
and Lewy (CFL) condition is satisfied and consequently it is mononotonicity
preserving.

We will first state the method for a general linear hyperbolic system of partial
differential equations and later specialize it to our nonlinear field equation.

Consider the time-dependent Cauchy problem in one space dimension,

u,t +Au,x = 0 , −∞ < x < ∞ , t ≥ 0

u(x, 0) = uo(x) ,

where u ∈ Rm and A is an n × n matrix. The system is called hyperbolic
when A is diagonalizable with real eigenvalues, so that we can decompose A =
RΛR−1, where Λ = diag(λ1, λ2 . . . , λm) is the diagonal matrix of eigenvalues
and R = [r1|r2| · · · |rm] is the matrix of right eigenvectors of A. Discretize time
as tn = ndt and space as xj = jdr. The finite difference method we want to
describe produces approximations Un

j ∈ Rm to the solution u(xj , tn) = un
j at

the discrete grid points. The method is written in conservative form as follows,

Un+1
j = Un

j − dt

dr
(FLn

j − FLn
j−1) , (5.2)

FLj = FLlj + FLhj , (5.3)

FLlj =
1

2
A(Uj + Uj+1)−

1

2
|A|(Uj+1 − Uj) , (5.4)

|A| = R(Λ+ − Λ−)R−1, Λ± = diag(λ±
1 , . . . , λ

±
m), λ±

p =
max

min
(λp, 0) ,(5.5)

FLhj =
1

2

m∑
p=1

ϕ(θpj)(sgn(νp)− νp)λpαpjrp , (5.6)

νp = λp
dt

dr
, (5.7)

αj = R−1(Uj+1 − Uj) , (5.8)

ϕ(θ) =
|θ|+ θ

1 + |θ|
, “Van Leer” smoother limiter function (5.9)

θpj =
αpj′

αpj

, j′ = j − sgnνp (5.10)

FLh is the high order (Lax-Wendroff) flux acting on the smooth portions of the
solution (where θ is near to 1) while FLl is the low order (first order upwind)
flux acting in the vicinity of a discontinuity (where θ is far from 1). The CFL
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condition is, ∣∣∣∣λpdt

dr

∣∣∣∣ ≤ 1 , ∀p . (5.11)

Our field equation is a wave equation with a nonlinear source term. It can
be rewritten as follows,

u,t +Au,x = b , (5.12)

u =

(
u1
u2

)
=

(
Ψ,x

Ψ,t

)
, Ψ(x, t) = xΦ(x, t) , (5.13)

A =

(
0 −1
−1 0

)
, |A| =

(
1 0
0 1

)
, (5.14)

Λ =

(
−1 0
0 1

)
, R =

(
1 1
1 −1

)
, R−1 =

(
1/2 1/2
1/2 −1/2

)
,(5.15)

b =

(
0

4πGσe
1
x

∫ x

0
u1(x′,t) dx′

x[δ(x− rp) + δ(x+ rp)]

)
. (5.16)

(5.17)

The initial condition is,

uo(x) =

(
−aist[−ri, ri](x)

0

)
. (5.18)

If we call rmax = jmaxdr the maximum extent of our grid, the outgoing wave
boudary conditions are,

u1(x > xmax, t) + u2(x > xmax, t) = 0 , ∀t , (5.19)

u1(x < −xmax, t)− u2(x < −xmax, t) = 0 , ∀t .

Immagine that we have approximated the true solution of the field equation up
to the n-th time slice (i.e. we know Un

j for j = −jmax, . . . ,−1, 0, 1, . . . , jmax).
The difference scheme,

U1n+1
j = f(U1nj−1, U1nj , U1nj+1, U2nj−1, U2nj , U2nj+1) , (5.20)

U2n+1
j = g(U1nj−1, U1nj , U1nj+1, U2nj−1, U2nj , U2nj+1) , (5.21)

when evaluated at jmax becomes a system of 2 equations in 2 unknowns U1n+1
jmax

and U1njmax+1,

U1n+1
jmax

= f(U1njmax−1, U1njmax
, U1njmax+1, U2njmax−1) , (5.22)

U1n+1
jmax

= −g(U1njmax−1, U1njmax
, U1njmax+1, U2njmax−1) , (5.23)
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allowing the closure of the difference scheme. A consistency check would be to
monitor the constraint,

U2n0 = 0 , ∀n . (5.24)

The difference scheme to be used for the field equation follows from equation
(5.2),

Un+1
j = Un

j − dt

dr
(FLn

j − FLn
j−1) + dt Bn

j , (5.25)

where B is the approximation to the source term b,

Bn
j =

(
0

4πGσ(tn)e
1
xj

∫ xj

0
u1(x,t) dx

xj
W (rp(tn)−xj)−W (−rp(tn)−xj)

dr

)
. (5.26)

In equation (5.26) we have approximated the delta functions using a triangular
shaped cloud scheme, which in one dimension employs 3 mesh points and has
an assignment-interpolation function W which is continuous in value and first
derivative. Mass is assigned from the particle at rp to the 3 mesh points nearest
to it,

W (x) =


3
4 −

(
x
dr

)2 |x| ≤ dr
2

1
2

(
3
2 − |x|

dr

)2
dr
2 ≤ |x| ≤ 3dr

2

0 otherwise

. (5.27)
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Chapter 6

Numerical results

When analyzing our numerical results, we will adopt gravitational units where
G = c = 1. In this chapter we report the results obtained with the characteristic
approximation code (see section D). We will refer to this results as the “exact
integration” results.

6.1 Relaxation to virial equilibrium

When trying to reproduce the expected behaviour described in figure 3.4 we got
figure 6.1.

When trying to reproduce the expected behaviour described in figure 3.1 we
got figure 6.2.

6.2 C omparison with the analytic method

We compare the numerical integration in the linear and nonlinear regimes with
the analytic Newtonian solution.
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Figure 6.1: Shows the relaxation to the virial equilibrium state for an α = 3
shell with two different values of ξ. In both cases the decay is fitted well by an
exponential.

6.3 Monopole radiation

When trying to reproduce the expected behaviour described in figure 3.3 we got
figure 6.6.

6.4 Quasistatic approximation

When trying to reproduce the expected behaviour described in figure 4.1 we got
figures 6.7 and 6.8.
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Figure 6.2: For the case α = 3, ξ = 0.7 shows the particle energy ũ0 versus
time. The decay to the equilibrium value is well fitted by an exponential.
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Figure 6.3: Compares the numerical integration with the analytic Newtonian
approximation. To the left the quasi-Newtonian α = 500, ξ = 0.7 shell is
shown. The predicted equilibrium radius is at re = 2.4662896500. To the right
the α = 3, ξ = 0.7 shell is shown. The predicted equilibrium radius is at
re = 1.9657627134.
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Figure 6.4: Shows ũr as a function of the shell radius for the case α = 3, ξ = 0.7.
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Figure 6.5: Same as figure 6.4 for the case α = 500, ξ = 0.7.
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Figure 6.6: For the case α = 3, ξ = 0.7, shows a snapshot at t=100 of the field
Φ(100, t), the first order radiation part (3.50), and the first order radiation part
plus the zeroth order −m/r.
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Figure 6.7: For the α = 3, ξ = 0.7 case, shows the ũ0 as a function of the
shell radius for the numerical integration. The solid line was derived using the
analytic expression (4.4). We see that it approximates well the values for the
energy at the turning points.
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Figure 6.8: Same as figure 4.1 but for the α = 500, ξ = 0.7 case.

36



Chapter 7

Conclusions

Some future developments to the present work may be:

0 Correct the characteristics approximation as outlined in section refcharacter-
istics

1 Integrate the equations (3.6) and (3.7) using the finite-difference scheme for
the evolution of the field described in section 5.2.

2 Extend the one particle problem to a many particle one, and check how the
quasistatic approximation performs there.

3 Go on to solve more realistic gravitational field theories, and look for qua-
sistatic approximations.
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Appendix A

Energy loss in the static
approximation

In the weak field slow motion limit, in the wave zone the gravity wave amplitude
can be written (dropping terms higher than the monopole) as (see equation
(3.47) in the main text),

rΦ(r, t) = −G

∫
dr′ 4πr′

2
[ρ0(Φ− 1

2v
2) + 1

6r
2

p ρ0,tt]t−r ,

where in the static approximation,

ρo =
m

4πr2s
δ(r′ − rs) , (A.1)

v2 = (ṙs)
2 +

(
ũϕ

ũ0

)2
1

r2s
, (A.2)

Φ =

{
as/rs r ≤ rs
as/r r > rs

, (A.3)

and as = as(rs, ũr) through the jump condition (see equation (4.2) in the main
text),

as = − Gm e2as/rs√
e2as/rs + ũ2

r + ũ2
ϕ/r

2
s

.

Then we can rewrite the wave amplitude as follows,

rΦ(r, t) = −Gm

{
as
rs

− (ṙs)
2

2
−
(
ũϕ

ũ0

)2
1

2r2s
+

1

3
[(ṙs)

2 + rsr̈s]

}
t−r

,

= −Gm

{
as
rs

−
(
ũϕ

ũ0

)2
1

2r2s
− 1

6
(ṙs)

2 +
1

3
rsr̈s

}
t−r

. (A.4)
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Taking the time derivative one gets (both ũ0 and ũϕ are constants of motion),

rΦ,t = −Gm

{
ȧs
rs

− asṙs
r2s

+

(
ũϕ

ũ0

)2
ṙs
r3s

+
1

3
rs ˙̈rs

}
t−r

. (A.5)

In the static approximation,

ṙs =
ũr

ũ0
, (A.6)

r̈s =
˙̃ur

ũ0
=

(
ũϕ

ũ0

)2
1

r3s
− e2as/rs

(ũ0)2
as
2r2s

, (A.7)

˙̈rs = −
(
ũϕ

ũ0

)2
3ṙs
r4s

− e2as/rs

2(ũ0)2

(
ȧs
r2s

− 2asṙs
r3s

)
− e2as/rs

(ũ0)2
as
r2s

(
ȧs
rs

− asṙs
r2s

)
,(A.8)

ȧs = (as),ũr
ũ0r̈s + (as),rs ṙs , (A.9)

(as),ũr = −
ũr

a
e2as/rs+ũ2

r+ũ2
ϕ
/r2s

1− 2as

rs
+ as

rs
e2as/rs

e2as/rs+ũ2
r+ũ2

ϕ
/r2s

, (A.10)

(as),rs = −
2a2

s

r2s
− a2

s

r2s

e2as/rs

e2as/rs+ũ2
r+ũ2

ϕ
/r2s

1− 2as

rs
+ as

rs
e2as/rs

e2as/rs+ũ2
r+ũ2

ϕ
/r2s

. (A.11)

Using equations (A.6)-(A.11) into equation (A.5) one can determine numeri-
cally the rate of energy loss (3.51). This can then be integrated to get the energy
emitted by the particle in a full revolution around the origin. This calculation
can be carried out analytically in the Newtonian approximation as shown in
detail in the next section.

A.1 Newtonian approximation

In the Newtonian approximation we have,

as → −Gm , (A.12)

ũϕ

ũ0
→
√

Gmξ2ri
2

, (A.13)

r̈s → −Gm

2r2s
+

Gmξ2ri
2r3s

. (A.14)

Making these substitutions in equation (A.5) we get equation (3.59) of the main
text,

rΦ,t = −4

3

(Gm)2

ri

[
ẋ

x2

]
t−r

, (A.15)

where x = rs/ri. So for the rate of energy emission in the wave zone we get
equation (3.60), which integrated over one orbital period gives equation (3.61).

39



Appendix B

Method of Images

We want to justify the use we have made of the images method, in the solution
of the nonlinear field equation (3.6).

To do that we need to show the equivalence between the two following prob-
lems. Calling Ψ(r, t) = rΦ(r, t), with r ∈ [0,∞], the first problem is our original
one, namely,

problem 1:


Ψ,tt −Ψ,rr = F (r,Ψ(r, t))δ(r − rp)
Ψ(r, 0) = f(r) i.c.
Ψ,t(r, 0) = 0 i.c.
Ψ(0, t) = 0 b.c.
Ψ,r(rm, t) + Ψ,t(rm, t) = 0 b.c.

(B.1)

where i.c. stands for initial condition and b.c. for boundary condition.
The second problem is over the whole real axis x ∈ [−∞,∞] and employs

two sources, the one at rp, of the first problem, and its image,

problem 2:


Ψ,tt −Ψ,xx = F (x,Ψ(x, t))[δ(x− rp) + δ(x+ rp)]
Ψ(x, 0) = f(x)− f(−x) i.c.
Ψ,t(x, 0) = 0 i.c.
Ψ,x(±rm, t)±Ψ,t(±rm, t) = 0 b.c.

(B.2)

The general solution to problem 1 can be written in integral form as follows,

Ψ(r, t) =
1

2
[f(r + t) + f(r − t) +Wrp(r, t)]−

1

2
[r → −r] , (B.3)

where,

Wrp(r, t) =

∫ t

0

dt F (rp,Ψ(rp, t))[H(rp − r + (t− t))−H(−rp + r + (t− t))](B.4)

and the last term in equation (B.3) was added in order to have the solution
satisfy the boundary condition at r = 0. The outgoing wave boundary condition
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is automatically satisfayed since rm is intended to be at all times to the right
of the source, and f(r) is constant for r > rp(0). So there are no ingoing waves
passing through rm.

The general solution to problem 2 can be written in integral form as follows,

Ψ(r, t) =
1

2
{[f(x+ t)− f(−x− t)] + [f(x− t)− f(−x+ t)] (B.5)

+Wrp(x, t) +W−rp(x, t)} , (B.6)

In order for the two problems to have the same solution for x ≥ 0, the
following condition has to be satisfied,

Wrp(−x, t) = −W−rp(x, t) . (B.7)

This condition is equivalent to,

F (rp,Ψ(rp, t)) = −F (−rp,Ψ(−rp, t)) = −F (−rp,−Ψ(rp, t)) , (B.8)

where in the last equality we used the fact that the field is an odd function in
x at all times. We can easily verify that our field equation, where,

F (rp,Ψ(rp, t)) = −Gm

rp

e2Ψ(rp,t)/rp√
e2Ψ(rp,t)/rp + ũ2

r + ũ2
ϕ/r

2
p

, (B.9)

satisfies such condition.
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Appendix C

The nonhomogeneous wave
equation

We want to find a solution to the following problem,

Ψ,tt −Ψ,xx = F (x, t) , (C.1)

Ψ(x, 0) = 0 , (C.2)

Ψ,t(x, 0) = 0 . (C.3)

Make the change of variables,

ξ = x+ t , (C.4)

η = x− t . (C.5)

The differential equation then becomes,

Ψ,ξη

(
ξ + η

2
,
ξ − η

2

)
= −1

4
F

(
ξ + η

2
,
ξ − η

2

)
. (C.6)

Integrating with respect to ξ, we have,

Ψ,η

(
ξ + η

2
,
ξ − η

2

)
= Ψη

(
ξ + η

2
,
ξ − η

2

)]
ξ=η

(C.7)

+

∫ ξ

η

Ψ,ξη

(
ξ + η

2
,
ξ − η

2

)
dξ (C.8)

=
1

2
Ψ,x(η, 0)−

1

2
Ψ,t(η, 0) (C.9)

−1

4

∫ ξ

η

F

(
ξ + η

2
,
ξ − η

2

)
dξ (C.10)
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We integrate this equation from an arbitrary value of η to ξ to find,

Ψ(ξ, 0)−Ψ

(
ξ + η

2
,
ξ − η

2

)
=

∫ ξ

η

[
1

2
Ψ,x(η, 0)−

1

2
Ψ,t(η, 0)

]
dη (C.11)

−1

4

∫ ξ

η

∫ ξ

η

F

(
ξ + η

2
,
ξ − η

2

)
dξdη .(C.12)

In the first integral we note that,∫ ξ

η

Ψ,x(η, 0)dη = Ψ(ξ, 0)−Ψ(η, 0) . (C.13)

In the second integral we let,

η = x− t , (C.14)

ξ = x+ t . (C.15)

The domain of integration η ≤ η ≤ ξ ≤ ξ becomes

η ≤ x− t ≤ x+ t ≤ ξ , (C.16)

or

η + t ≤ x ≤ ξ − t , 0 ≤ t ≤ 1

2
(ξ − η) . (C.17)

The jacobian determinant of the transformation from (ξ, η) to (x, t) is 2. There-
fore

1

4

∫ ξ

η

∫ ξ

η

F

(
ξ + η

2
,
ξ − η

2

)
dξdη =

1

2

∫ (ξ−η)/2

0

∫ ξ−t

η+t

F (x, t)dxdt . (C.18)

Making these substitutions and transposing, we find

Ψ

(
ξ + η

2
,
ξ − η

2

)
=

1

2
[Ψ(ξ, 0) + Ψ(η, 0)] +

1

2

∫ ξ

η

Ψ,t(x, 0)dx (C.19)

+
1

2

∫ (ξ−η)/2

0

∫ ξ−t

η+t

F (x, t)dxdt . (C.20)

We recall that ξ = x+ t and η = x− t. We use the initial conditions to obtain
the solution formula

Ψ(x, t) =
1

2

∫ t

0

∫ x+(t−t)

x−(t−t)

F (x, t)dxdt . (C.21)
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Appendix D

The code

This is the code used for the exact
numerical integration.
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c 1 SHELL CLUSTER

c dimt = number of timesteps in the integration

c dimg = dimension of the uniform r grid

c

c INPUT r0=shell radius

c mr=shell rest mass

c xi=up/up(circular)

c dt=time-step

c rot=dr/dt dr=grid spacing

c OUTPUT

c fort.8 = (t,rp)

c fort.9 = (rp,utt,utlr)

c erp=equilibrium radius

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

implicit none

include ’cluster.p’

c INPUT

real*8 r0,mr,xi

real*8 dt

integer rot

c OUTPUT

real*8 erp,rp,utt,utlr

c INTERNAL

real*8 phirp,e2p,fpl,fpr,phiprp,e2ppr,st

real*8 a,ea,dr

real*8 ut,up,utlp,am2

real*8 xx(0:imax),yy(-imax:imax)

real*8 rg(-imax:imax),phi(0:imax)

integer i,tsteps,jp,dimg,dimt

parameter(dimg=1000)

parameter(dimt=60000)

c ========================INPUT DATA============================

call in(rp,mr,xi,dr,rot,dt)

r0=rp

c =====================INITIAL CONDITION========================

tsteps=0

c -------------uniform grid in r (spacing dr)-------------------

do i=-dimg,dimg

rg(i)=dble(i)*dr

enddo

c ----------particle--------------------------------------------

c tangential orbit (utlr=0)

utlr=0.d0

c find angular velocity for the circular orbit at rp

call phi1(mr,rp,a,up)

c angular momentum for circular orbits (in a time

c independent field) is:

c utlp(circ)=ulp(circ)*exp(phi)=up(circ)*r*r*exp(phi)

c set utlp=xi*utlp(circ) = constant of motion

utlp=xi*rp**2*exp(a/rp)*up

am2 =utlp**2

up=utlp/(rp**2*exp(a/rp))

ut=sqrt(1.d0+(rp*up)**2)

c initial source term

st=exp(a/rp)*mr/(2.d0*rp*ut)

c ----------field-----------------------------------------------

c xx(r,0)=yy(r,0)=(r*phi(r,0)),r

c phi(r,0)=a/rp r <= rp

c phi(r,0)=a/r r > rp

jp=nint(rp/dr)

c real space r >= 0

do i=0,jp-1

xx(i)=.5d0*a/rp

yy(i)=.5d0*a/rp

phi(i)=a/rp

enddo

do i=jp,dimg

xx(i)=0.d0

yy(i)=0.d0

phi(i)=a/rg(i)

enddo

c immaginary space r < 0

do i=-dimg,-jp-1

yy(i)=0.d0

enddo

do i=-jp,-1

yy(i)=.5d0*a/rp

enddo

c =====================NEXT TIMESTEP============================

100 tsteps=tsteps+1

if(mod(tsteps,rot).ne.0) goto 15

c ----------evolve field----------------------------------------

c reinterpolate phi(rp) to find new source term

jp =nint(rp/dr)

phirp=phi(jp)

e2p = exp(2.d0*phirp)

utt = sqrt(e2p+utlr**2+(utlp/rp)**2)

c the new source term is

st = .5d0*e2p*mr/(rp*utt)

c evolve the field

call evphi(dimg,dr,rg,st,rp,xx,yy,phi)

c ----------evolve particle-------------------------------------

c find e2p=exp(2*phi(rp))

15 jp = nint(rp/dr)

phirp = phi(jp)

e2p = exp(2.d0*phirp)

c find e2ppr=e2p*(phi,r(rp-)+phi,r(rp+))/2

fpl = (xx(jp-1)+yy(jp-1)-phirp)/rp

fpr = (xx(jp+1)+yy(jp+1)-phirp)/rp

phiprp= (fpl+fpr)*.5d0

e2ppr = e2p*phiprp

c evolve the particle with 4-th order Runge-Kutta

call runge4(am2,e2p,e2ppr,dt,rp,utlr,rp,utlr)

c write fort.8 :[t,r(t)] and fort.9 :[t,utt(t),utlr(t)]

write(8,*) tsteps*dt,rp,phirp

write(9,*) rp,utt,utlr

if(tsteps.eq.dimt) goto 200

goto 100

c estimate the final equilibrium radius erp

200 call eqrp1(utlp,mr,erp,ea)

c write output

call out(mr,r0,erp,xi,dt,dr,dimt,dimg)

stop
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end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c Read initial data

c INPUT

c rp = initial shell radius

c mr = shell rest mass

c xi = ratio up/up(circular)

c dt = time-step

c rot = dr/dt(>=1 Courant stability condition)

c

c OUTPUT(all above +)

c dr = grid spacing

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine in(rp,mr,xi,dr,rot,dt)

implicit none

real*8 rp,mr,xi,dr,dt

integer rot

write(*,*) ’initial radius rp’

read(*,*) rp

write(*,*) ’rest mass mr’

read(*,*) mr

write(*,*) ’ratio utlp/utlp(circular)’

read(*,*) xi

write(*,*) ’time-step dt’

read(*,*) dt

write(*,*) ’ratio dr/dt=[integer>=1]’

read(*,*) rot

dr=dt*dble(rot)

return

end

cccccccccccccccccccccccccccccccccccccccccccccccccccccc

c 4-th order runge-kutta

c advances to the next time step (h) the equations

c dr/dt=f(r,u)

c du/dt=g(r.u)

c where u=utlr (u tilde-low-r)

c f(r,u)=u/utu0

c g(r,u)=utlp**2/(utu0*r**3)-exp(2*phi)*phi,r/utu0

c utu0=sqrt(exp(2*phi)+u**2+(utlp/r)**2)

c and phi = potential at r,u

c phi,r = d(phi)/dr at r,u

c INPUT am2(=utlp**2 angular momentum squared),

c e2p(=exp(2*phi)),e2ppr(=exp(2*phi)*phi,r),

c h(=time step),ri,ui(=initial values for r,u)

c OUTPUT r,u (=final values for r,u)

cccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine runge4(am2,e2p,e2ppr,h,ri,ui,r,u)

implicit none

c INPUT

real*8 am2,e2p,e2ppr,h,ri,ui

c OUTPUT

real*8 u,r

c INTERNAL

real*8 f,g,u0

real*8 k1,k2,k3,k4,l1,l2,l3,l4

real*8 k1o2,k2o2,l1o2,l2o2

real*8 inv6

parameter(inv6=1/6.d0)

u0(r,u)= sqrt(e2p+u**2+am2/r**2)

f(r,u) = u/u0(r,u)

g(r,u) = am2/(u0(r,u)*r**3)-e2ppr/u0(r,u)

k1 = h*f(ri,ui)

l1 = h*g(ri,ui)

k1o2= .5d0*k1

l1o2= .5d0*l1

k2 = h*f(ri+k1o2,ui+l1o2)

l2 = h*g(ri+k1o2,ui+l1o2)

k2o2= .5d0*k2

l2o2= .5d0*l2

k3 = h*f(ri+k2o2,ui+l2o2)

l3 = h*g(ri+k2o2,ui+l2o2)

k4 = h*f(ri+k3,ui+l3)

l4 = h*g(ri+k3,ui+l3)

r = ri+inv6*(k1+2.d0*(k2+k3)+k4)

u = ui+inv6*(l1+2.d0*(l2+l3)+l4)

return

end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c Integrate the 1D wave equation with a delta

c function as the source

c -(r*phi),tt+(r*phi),rr=2*st*delta(r-rp)

c rewritten as

c xx,t=xx,r+st*delta(r-rp)

c yy,t=-yy,r-st*delta(r-rp)

c where

c xx=(v+w)/2

c yy=(v-w)/2

c and

c v=(r*phi),r

c w=(r*phi),t

c add an image to ensure finiteness of phi(0,t) forall t

c xx(0,t)=yy(0,t) at all times

c

c INPUT dr (= grid spacing), rg(-imax:imax) (= grid),

c st (= source term), rp (= shell radius),

c xxo(0:imax), yyo(-imax:imax) (= old "field")

c

c OUTPUT xxo(0:imax), yyo(-imax:imax), phi(0:imax) (=field)

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine evphi(dimg,dr,rg,st,rp,xxo,yyo,phi)

implicit none

include ’cluster.p’

c INPUT

integer dimg

real*8 st,dr,rp

real*8 rg(-imax:imax)

c OUTPUT

real*8 xxo(0:imax),yyo(-imax:imax)

real*8 phi(0:imax)

c INTERNAL

real*8 xx(0:imax),yy(-imax:imax)

real*8 dt,psi

integer i

c check for rp>=rg(dimg-1)

if(rp.ge.rg(dimg-1)) then

write(*,*) ’particle out of right grid margin !!!’

stop

endif

c field timestep

dt=dr

c yy(r)=yyo(r-dt)+st*step[rp,rp+dt]-st*step[-rp,-rp+dt]

c xx(r)=xxo(r+dt)-st*step[rp-dt,rp]

yy(-dimg)=0.d0

do i=-dimg+1,-1

yy(i)=yyo(i-1)

if(-rp.le.rg(i).and.rg(i).lt.-rp+dt) then

yy(i)=yy(i)-st

endif

enddo

do i=0,dimg-1

xx(i)=xxo(i+1)

yy(i)=yyo(i-1)

if(rp-dt.le.rg(i).and.rg(i).lt.rp) then

xx(i)=xx(i)-st

elseif(rp.le.rg(i).and.rg(i).lt.rp+dt) then

yy(i)=yy(i)+st

endif

enddo

xx(dimg)=0.d0

yy(dimg)=yyo(dimg-1)

c rewrite xx and yy

do i=-dimg,-1

yyo(i)=yy(i)

enddo

do i=0,dimg

xxo(i)=xx(i)

yyo(i)=yy(i)

enddo

c integrate x+y starting from the origin

c using trapezoidal method (order dr**3)

psi=.5d0*(xx(0)+yy(0))

do i=1,dimg

psi=psi+xx(i)+yy(i)

c the gravitational potential is

phi(i)=dr*(psi-.5d0*(xx(i)+yy(i)))/rg(i)

enddo

phi(0)=phi(1)

c check boundary condition at r=0

if(xx(0).ne.yy(0)) then

print *,’xx(0) <> yy(0) !!!!!!!!’

endif

return

end
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c Given rp (and ur=0) solves for a and up in:

c 1.0) ut = sqrt(1+ur**2+(rp*up)**2)

c 1.1) a =-exp(a/rp)*mr/ut

c 2 ) up = sqrt(-a/(2*rp**3))

c rewritten as

c -a = exp(a/rp)*mr/sqrt(1-a/(2*rp))

c

c INPUT mr (= rest mass),rp (= shell radius)

c OUTPUT a ("potential"), up (= angular velocity)

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine phi1(mr,rp,a,up)

implicit none

c INPUT

real*8 mr,rp

c OUTPUT

real*8 a,up

c INTERNAL

real*8 ao,sqti,ep,f,fp

real*8 acc

parameter(acc=1.d-15)

a=0.d0

c start the Newton iteration

10 sqti=1.d0/sqrt(1.d0-a/(2.d0*rp))

ep=exp(a/rp)

f=a+mr*ep*sqti

fp=1.d0+mr*ep*(sqti+.25d0*sqti**3)/rp

ao=a

a=ao-f/fp

if(abs(f).gt.acc) goto 10

c the angular velocity rp*up**2=(a/rp**2)/2

up=sqrt(-a/(2.d0*rp**3))

return

end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c Finds the equilibrium radius

c given utlp solves for a and rp in:

c 1.0) utt = sqrt(exp(2*a/rp)+(utlp/rp)**2)

c 1.1) a =-exp(2*a/rp)*mr/utt

c 2) utlp**2=-exp(2*a/rp)*rp**3*(a/rp**2)/2

c rewritten as

c y=4*a**4/(a**4-(2*utlp*mr)**2)

c 1) utlp**2*(y/a**2)=-exp(y) -------> find a (<0)

c 2) r=(a**4-(2*utlp*mr)**2)/(2*a**3) -------> find r (>0)

c INPUT utlp (= angular momentum), mr (= rest mass)

c OUTPUT erp (= equil radius),ea (= equil "potential")

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine eqrp1(utlp,mr,erp,ea)

implicit none

c INPUT

real*8 mr,utlp

c OUTPUT

real*8 ea,erp

c INTERNAL

real*8 a4,y,ai,af,afo,fi,ff

real*8 acc,u2,fu2m2

parameter(acc=1.d-10)

u2=utlp**2

fu2m2=4.d0*u2*mr**2

c upper limit

ai=0.d0

fi=1

c find the lower limit

af=-sqrt(2.d0*u2*(-1.d0+sqrt(1.d0+(-mr/utlp)**2)))

c start the secant iteration

10 a4=af**4

y =4.d0*a4/(a4-fu2m2)

ff=u2*y/af**2+exp(y)

afo=af

af=afo-ff*(afo-ai)/(ff-fi)

if(abs((af-afo)/afo).gt.acc) then

ai=afo

fi=ff

goto 10

endif

c found a find r

erp=(af**4-fu2m2)/(2.d0*af**3)

ea =af

return

end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c writes parameters in output

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine out(mr,ri,rf,xi,dt,dr,dimt,dimg)

implicit none

real *8 mr,ri,rf,dt,dr,xi

integer dimt,dimg

c rest mass

write(*,*) ’mr=’,mr

c initial radius

write(*,*) ’ri=’,ri

c xi=up/up(circular)

write(*,*) ’xi=’,xi

c final equilibrium radius

write(*,*) ’rf=’,rf

c time step

write(*,*) ’dtf=’,dt

c grid spacing

write(*,*) ’dr=’,dr

c total integration time=dimt*dtf

write(*,*) ’dimt=’,dimt

c grid dimension r in [0,dimg*dr]

write(*,*) ’dimg=’,dimg

return

end
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This is the code used for enveloping the
numerical integration.

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c Relaxation to virial equilibrium

c

c INPUT r0=shell initial radius

c mr=shell rest mass

c xi=up/up(circular)

c

c OUTPUT fort.10 : r_max,utt(r_max),xi

c fort.14 : time,r_max

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

implicit none

c INPUT

real*8 r0,mr,xi

c OUTPUT

real*8 utt,r(0:1000),tt

c INTERNAL

real*8 dr,dtdr(0:1000),etot,dedt,dedr

real*8 a,ea,rf,utlp,up,am2

real*8 e2p,npo2pi,xi2

integer i,np

parameter(np=999)

c ========================INPUT DATA============================

write(*,*) ’initial radius r0’

read(*,*) r0

write(*,*) ’rest mass mr’

read(*,*) mr

write(*,*) ’ratio utlp/utlp(circular)’

read(*,*) xi

if(xi.ge.sqrt(2.d0)) then

print *,’qust.f uses Newtonian approx. : xi < sqrt(2)’

stop

endif

c ======================INITIALIZATION==========================

c find angular velocity for the circular orbit at r0

call phi1(mr,r0,a,up)

utlp =xi*r0**2*exp(a/r0)*up

am2 =utlp**2

c find final equilibrium radius rf and particle energy

call eqrp1(utlp,mr,rf,ea)

dr =(rf-r0)/dble(np)

print *,’initial radius, potential=’,r0,a/r0

print *,’final radius, potential=’,rf,ea/rf

print *,’initial energy utt=’,sqrt(exp(2.d0*a/r0) +am2/r0**2)

print *,’final energy utt=’,sqrt(exp(2.d0*ea/rf)+am2/rf**2)

c =================r_{max},xi,utt(r_{max})======================

do i=0,np-1

r(i)=r0+dble(i)*dr

call phi1(mr,r(i),a,up)

e2p=exp(2.d0*a/r(i))

utt=sqrt(e2p+am2/r(i)**2)

c the new xi at r(i) is

xi=utlp/(exp(a/r(i))*up*r(i)**2)

c write fort.10 : (r,utt,xi)

write(10,*) r(i),utt,xi

c the total energy is then

etot=mr*utt

xi2=xi**2

c calculate detot/dr

dedr=(a*r(i)*(4.d0-7.d0*xi2)+a**2*2.d0*xi2+r(i)**2*4.d0

$ *(xi2-2.d0))/(xi2*r(i)**3*(7.d0*a*r(i)-2.d0*a**2-

$ 4.d0*r(i)**2))

dedr=mr*dedr*am2/utt

c calculate detot/dt

npo2pi=sqrt(2.d0*r(i)**3/(a*(xi2-2.d0)**3))

dedt=-(sqrt(2.d0)/9.d0)*mr**2*(sqrt(-a)**5/sqrt(r(i))**7)

$ *((1.d0-xi2)**2/xi**7)*(5.d0-2.d0*xi2+xi**4)/npo2pi

c calculate dr/dt

dtdr(i)=dedr/dedt

enddo

c ====================t,r_max===================================

write(14,*) 0,r0

c integrate (dt/dr) to get t(r)

tt=.5d0*dtdr(1)

do i=1,np-1

tt=tt+dtdr(i)

c make graph (t(r),r)

write(14,*) dr*(tt-.5d0*dtdr(i)),r(i)

enddo

30 stop

end

This is the code used for the quasistatic
integration.

Cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c 1 SHELL QUASISTATIC CLUSTER

c

c INPUT rp=shell radius

c mr=shell rest mass

c xi=up/up(circular)

c dt=integration timestep

c time=simulation duration

c OUTPUT

c fort.18 = (t,rp)

c fort.19 = (rp,utt,utlr)

c erp=equilibrium radius

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

implicit none

c INPUT

real*8 rp,mr,xi,dt,time

c OUTPUT

real*8 utlr,utt,erp,ea

c INTERNAL

real*8 am2,e2p,e2ppr

real*8 up,a,utlp

integer tsteps,dimt

c ========================INPUT DATA============================

write(*,*) ’initial radius rp’

read(*,*) rp

write(*,*) ’rest mass mr’

read(*,*) mr

write(*,*) ’ratio utlp/utlp(circular)’

read(*,*) xi

write(*,*) ’time step dt’

read(*,*) dt

write(*,*) ’time lenght’

read(*,*) time

dimt=int(time/dt)

c =====================INITIAL CONDITION========================

tsteps=0

c ----------particle------------------------------------

c tangential orbit (utlr=0)

utlr=0.d0

c find angular velocity for the circular orbit at rp

call phi1(mr,rp,a,up)

c angular momentum for circular orbits (in a time

c independent field) is:

c utlp(circ)=ulp(circ)*exp(phi)=up(circ)*r*r*exp(phi)

c set utlp=xi*utlp(circ) = constant of motion

utlp=xi*rp**2*exp(a/rp)*up

am2 =utlp**2

c ----------field---------------------------------------

c phi(r)=a/rp for r<=rp

c phi(r)=a/r for r> rp

c =====================NEXT TIMESTEP============================

100 tsteps= tsteps+1

e2p=exp(2.d0*a/rp)

c find e2ppr=e2p*(phi,r(rp-)+phi,r(rp+))/2

e2ppr=-e2p*.5d0*a/rp**2

c ----------particle-----------------------------------------

c evolve with 4-th order Runge-Kutta

call runge4(am2,e2p,e2ppr,dt,rp,utlr,rp,utlr)

if (rp.le.0.d0) then

print *,’particle fallen in to the origin !!!’

stop

endif

c ----------field--------------------------------------------

call phi1(mr,rp,a,up)

c write fort.18 :[t,r(t)] and fort.19 :[t,utt(t),utlr(t)]

write(18,*) tsteps*dt,rp,a/rp

c calculate utt

utt=sqrt(e2p+utlr**2+am2/rp**2)

write(19,*) rp,utt,utlr

if(tsteps.eq.dimt) goto 200

goto 100

c estimate the final equilibrium radius erp

200 call eqrp1(utlp,mr,erp,ea)

c write erp and the field at erp (ea/erp)

print*,erp,ea/erp

stop

end
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tion of time for the case α ∼ 1 and ξ < 1. . . . . . . . . . . . . . 13

3.2 Energy conservation at two selected radii as a function of time.
The solid line shows the left-hand side of equation (3.39) (volume
integral plus integrated flux), the dotted line shows the second
term alone (integrated flux), and the dashed line shows the right-
hand side (volume integral at t = 0). The radii are (a) rec < rp(t)
at all times, (b)rec > rp(t) at all times. The degree to which the
solid and dashed lines coincide compared with the magnitude of
the dotted line is a measure of the code’ s ability to conserve
energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 For the case α ∼ 1, ξ < 1, shows a snapshot at t = to of the field
Φ(to, r), the first order radiation part (3.50), and the first order
radiation part plus the zeroth order −m/r. . . . . . . . . . . . . 16

3.4 Shows the relaxation to the virial equilibrium state for an α ∼ 1
shell with two different values of ξ: ξ < 1 and ξ > 1. . . . . . . . 18

3.5 Expected shell behaviour for ξ > ξe. . . . . . . . . . . . . . . . . 20

4.1 For the α ∼ 1, ξ < 1 case, shows ũ0 as a function of the shell
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