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We present the main computer experiment results for Jellium. Either in its ground state
and at finite temperatures.
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I. THE MODEL

The Jellium model of Wigner (Ichimaru, 1982; March and Tosi, 1984; Martin, 1988; Singwi and Tosi, 1981) is an
assembly of N+ spin up pointwise electrons and N− spin down pointwise electrons of charge e moving in a positive
inert background that ensures charge neutrality. The total number of electrons is N = N+ + N− and the average
particle number density is n = N/Ω, where Ω is the volume of the electron fluid. In the volume Ω there is a uniform
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neutralizing background with a charge density ρb = −en. So that the total charge of the system is zero. The fluid
polarization is then ξ = |N+ −N−|/N : ξ = 0 in the unpolarized (paramagnetic) case and ξ = 1 in the fully polarized
(ferromagnetic) case.
Setting lengths in units of a = (4πn/3)−1/3 and energies in Rydberg’s units, Ry = ~

2/2ma20, wherem is the electron
mass and a0 = ~

2/me2 is the Bohr radius, the Hamiltonian of Jellium is

H = − 1

r2s

N
∑

i=1

∇∇∇2
ri
+ V (R) , (1.1)

V =
1

rs



2
∑

i<j

1

|ri − rj |
+

N
∑

i=1

r2i + v0



 , (1.2)

where R = (r1, r2, . . . , rN ) with ri the coordinate of the ith electron, rs = a/a0, and v0 a constant containing the self
energy of the background.
The kinetic energy scales as 1/r2s and the potential energy (particle-particle, particle-background, and background-

background interaction) scales as 1/rs, so for small rs (high electronic densities), the kinetic energy dominates and the
electrons behave like an ideal gas. In the limit of large rs, the potential energy dominates and the electrons crystallize
into a Wigner crystal (Wigner, 1934). No liquid phase is realizable within this model since the pair-potential has no
attractive parts even though a superconducting state (Leggett, 1975) may still be possible (see chapter 8.9 of Ref.
(Giuliani and Vignale, 2005) and Ref. (Pollock and Ceperley, 1987)).
The Jellium has been solved either by integral equation theories in its ground state (Singwi et al., 1968) or by

computer experiments in its ground state (Ceperley and Alder, 1980) and at finite temperature (Brown et al., 2013).
Some details on the linear response theory for the Jellium can be found in appendixes 4 and 5 of Ref. (March and Tosi,

1984). Some details on the sum rules for the dielectric function can be found in appendix 6 of Ref. (March and Tosi,
1984). Some details on the moments of density fluctuation spectrum in the plasma can be found in appendix 7 of Ref.
(March and Tosi, 1984). And some details on the Lindhard theory of dynamic screening can be found in appendix 8
of Ref. (March and Tosi, 1984).

A. Lindhard theory of static screening in Jellium ground state

Suppose we switch on an appropriately screened test charge potential δV , actually the so called Hartree potential,
in a free electron gas. The Hartree potential δV (r) created at a distance r from a static point charge of magnitude e
at the origin, should be evaluated self-consistently from the Poisson equation,

∇2δV (r) = −4πe2[δ(r) + δn(r)] , (1.3)

where δn(r) is the change in electronic density induced by the foreign charge. The electron density n(r) may be
written as

n(r) = 2
∑

k

|ψk(r)|2 , (1.4)

where ψk(r) are single-electron orbitals, the sum over k is restricted to occupied orbitals (|k| ≤ kF , where kF is
the Fermi wave vector) and the factor 2 comes from the sum over spin orientations. We must now calculate how
the orbitals in the presence of the foreign charge, differ from plane waves exp(ik · r). We use for this purpose the
Schrödinger equation,

∇2ψk(r) + [k2 − 2m

~2
δV (r)]ψk(r) = 0 , (1.5)

having imposed that the orbitals reduce to plane waves with energy ~
2k2/(2m) at large distance 1.

With the aforementioned boundary condition the Schrödinger equation may be converted into an integral equation,

ψk(r) =
1√
Ω
eik·r +

2m

~2

∫

Gk(r− r
′)δV (r′)ψk(r

′)dr′ , (1.6)

1 This approach (which lead to the Random Phase Approximation, RPA) is approximate insofar as the potential entering the Schrödinger
equation has been taken as the Hartree potential, thus neglecting exchange and correlation between an incoming electron and the
electronic screening cloud.
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with Gk(r) = − exp(ik · r)/(4πr) and Ω the volume of the system.
Within linear response theory we can replace ψk(r) by Ω−1/2 exp(ik · r) inside the integral. This yields

δn(r) = − mk2F
2π3~2

∫

j1(2kF |r− r
′|) δV (r′)

|r − r′|2 dr
′ , (1.7)

with j1(x) being the first-order spherical Bessel function [sin(x) − x cos(x)]/x2. Using this result in the Poisson
equation we get

∇2δV (r) = −4πe2δ(r) +
2mk2F e

2

π2~2

∫

j1(2kF |r− r
′|) δV (r′)

|r− r′|2 dr
′ , (1.8)

which is easily soluble in Fourier transform. Writing δV (k) = 4πe2/[k2ε(k)] we find,

ε(k) = 1 +
2mkF e

2

πk2~2

[

1 +
kF
k

(

k2

4k2F
− 1

)

ln

∣

∣

∣

∣

k − 2kF
k + 2kF

∣

∣

∣

∣

]

, (1.9)

which is the static dielectric function in RPA.
For k → 0 this expression gives ε(k) → 1 + k2TF /k

2 with kTF = 3ω2
p/v

2
F (ωp being the plasma frequency and vF

the Fermi velocity) i.e. the result of the Thomas-Fermi theory. However ε(k) has a singularity at k = ±2kF , where
its derivative diverges logarithmically 2. This singularity in δV (k) determines, after Fourier transform, the behavior
of δV (r) at large r. δV (r) turns out to be an oscillating function 3 rather than a monotonically decreasing function
as in the Thomas-Fermi theory. Indeed,

δV (r) =

∫

dk

(2π)3
4πe2

k2ε(k)
eik·r =

e2

iπr

∫ ∞

−∞
dk

eikr

kε(k)
, (1.10)

and the integrand has non-analytic behavior at q = ±2kF ,
[

1

kε(k)

]

k→±2kF

= −A(k − (±)2kf ) ln |k − (±)2kF |+ regular terms , (1.11)

with A = (k2TF /4k
2
F )/(k

2
TF + 8k2F ). Hence,

δV (r)|r→∞ = −Ae
2

iπr

∫ ∞

−∞
dk eikr[(k − 2kF ) ln |k − 2kF |

+(k + 2kF ) ln |k + 2kF |] = −2Ae2
cos(2kF r)

r3
. (1.12)

This result is based on a theorem on Fourier transforms 4, stating that the asymptotic behavior of δV (r) is determined
by the low-k behavior as well as the singularities of δV (k). Obviously, in the present case the asymptotic contribution
from the singularities is dominant over the exponential decay of Thomas-Fermi type. The result implies that the
screened ion-ion interaction in a metal has oscillatory character and ranges over several shells of neighbors.

B. Ewald sums

Periodic boundary conditions are necessary for extrapolating results of the finite system to the thermodynamic
limit. Suppose the bare pair-potential, in infinite space, is v(r),

v(r) =

∫

dk

(2π)3
e−ik·rṽ(k) , ṽ(k) =

∫

dr eik·rv(r) . (1.13)

The best pair-potential of the finite system is given by

vI(r) =
∑

L

v(|r+ L|) − ṽ(0)/Ω . (1.14)

2 The discontinuity in the momentum distribution across the Fermi surface introduces a singularity in elastic scattering processes with
momentum transfer equal to 2kF .

3 J. Friedel, N. Cimento Suppl. 7, 287 (1958).
4 M. Lighthill, “Introduction to Fourier Analysis and Generalized Functions” (University Press, Cambridge 1958)
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where the L sum is over the Bravais lattice of the simulation cell L = (mxL,myL,mzL) where mx,my,mz range over
all positive and negative integers and Ω = L3. We have also added a uniform background of the same density but
opposite charge. Converting this to k-space and using the Poisson sum formula we get

vI(r) =
1

Ω

′
∑

k

ṽ(k)e−ik·r , (1.15)

where the prime indicates that we omit the k = 0 term; it cancels out with the background. The k sum is over
reciprocal lattice vectors of the simulation box kn = (2πnx/L, 2πny/L, 2πnz/L) where nx, ny, nz range over all
positive and negative integers.
Because both sums, Eq. (1.14) and Eq. (1.15), are so poorly convergent (Allen and Tildesley, 1987) we follow the

scheme put forward by Natoli et al. (Natoli and Ceperley, 1995) for approximating the image potential by a sum in
k-space and a sum in r-space,

va(r) =
∑

L

vs(|r+ L|) +
∑

|k|≤kc

vl(k)e
ik·r − ṽ(0)/Ω , (1.16)

where vs(r) is chosen to vanish smoothly as r approaches rc, where rc is less than half of the distance across the
simulation box in any direction. If either rc or kc go to infinity then va → vI . Natoli et al. show that in order
to minimize the error in the potential, it is appropriate to minimize χ2 =

∫

Ω
[vI(r) − va(r)]

2 dr/Ω. And choose for
vs(r) an expansion in a fixed number of radial functions. This same technique has also been applied to treat the
pseudo-potential described in section II.C.1.
Now let us work with N particles of charge e in a periodic box and let us compute the total potential energy of the

unit cell. Particles i and j are assumed to interact with a potential e2v(rij) = e2v(|ri − rj |). The potential energy for
the N particle system is

V =
∑

i<j

e2vI(rij) +
∑

i

e2vM , (1.17)

where vM = 1
2 limr→0[vI(r) − v(r)] is the interaction of a particle with its own images; it is a Madelung constant

(March and Tosi, 1984) for particle i interacting with the perfect lattice of the simulation cell. If this term were not
present, particle i would only see N − 1 particles in the surrounding cells instead of N .

II. JELLIUM IN ITS GROUND STATE

The ground state properties of Jellium has been for the first time found by Ceperley and Alder (Ceperley and Alder,
1980) through a diffusion Monte Carlo method (Kolorenc and Mitas, 2011). Since then better wave-functions and
optimization methods have been developed, better schemes to minimize finite-size effect have been devised, and vastly
improved computational facilities are available. Today, new modern techniques are available to optimize Slater-Jastrow
wave-functions (Foulkes et al., 2001) with backflow and three-body correlations (Kwon et al., 1998) and Helmann and
Feynman (HF) measures (Toulouse et al., 2007) to calculate the RDF, particularly the on-top value, which suffers
from poor statistical sampling in its conventional histogram implementation. Other useful tools are the twist-averaged
boundary conditions (Lin et al., 2001) and RPA-based corrections (Chiesa et al., 2006) to minimize finite-size effects.

A. Monte Carlo simulation (Diffusion)

Consider the Schrödinger equation for the many-body wave-function, φ(R, t) (the wave-function can be assumed to
be real, since both the real and imaginary parts of the wave-function separately satisfy the Schrödinger equation), in
imaginary time, with a constant shift ET in the zero of the energy. This is a diffusion equation in a 3N -dimensional
space (Anderson, 1976). If ET is adjusted to be the ground-state energy, E0, the asymptotic solution is a steady state
solution, corresponding to the ground-state eigenfunction φ0(R) (provided φ(R, 0) is not orthogonal to φ0).
Solving this equation by a random-walk process with branching is inefficient, because the branching rate, which

is proportional to the total potential V (R), can diverge to +∞. This leads to large fluctuations in the weights
of the diffusers and to slow convergence when calculating averages. However, the fluctuations, and hence the
statistical uncertainties, can be greatly reduced (Kalos et al., 1974) by the technique of importance sampling
(Hammersley and Handscomb, 1964).
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One simply multiplies the Schrödinger equation by a known trial wave-function Ψ(R) that approximate the unknown
ground-state wave-function, and rewrites it in terms of a new probability distribution

f(R, t) = φ(R, t)Ψ(R) , (2.1)

whose normalization is given in Eq. (B1). This leads to the following diffusion equation

−∂f(R, t)
∂t

= −λ∇∇∇2f(R, t) + [EL(R)− ET ]f(R, t) + λ∇∇∇ · [f(R, t)F(R)] . (2.2)

Here λ = ~
2/(2m), t is the imaginary time measured in units of ~, EL(R) = [HΨ(R)]/Ψ(R) is the local energy of the

trial wave-function, and

F(R) =∇∇∇ lnΨ2(R) . (2.3)

The three terms on the right hand side of Eq. (2.2) correspond, from left to right, to diffusion, branching, and drifting,
respectively.

At sufficiently long times the solution to Eq. (2.2) is

f(R, t) ≈ N0Ψ(R)φ0(R) exp[−(E0 − ET )t] , (2.4)

where N0 =
∫

φ0(R)φ(R, 0) dR. If ET is adjusted to be E0, the asymptotic solution is a stationary solution and the
average 〈EL(R)〉f of the local energy over the stationary distribution gives the ground-state energy E0. If we set the
branching to zero EL(R) = ET then this average would be equal to the expectation value

∫

Ψ(R)HΨ(R) dR, since
the stationary solution to Eq. (2.2) would then be f = fvmc = Ψ2. In other words, without branching we would
obtain the variational energy of Ψ, rather than E0, as in a Variational Monte Carlo (VMC) calculation.

The time evolution of f(R, t) is given by

f(R
′

, t+ τ) =

∫

dRG(R
′

, R; τ)f(R, t) , (2.5)

where the Green’s function G(R
′

, R; τ) = Ψ(R′)〈R′| exp[−τ(H−ET )]|R〉Ψ−1(R) is a transition probability for moving
the set of coordinates from R to R

′

in a time τ . Thus G is a solution of the same differential equation, Eq. (2.2), but
with the initial condition G(R

′

, R; 0) = δ(R
′ −R). For short times τ an approximate solution for G is

G(R
′

, R; τ) = (4πλτ)−3N/2e−|R′−R−λτF(R)|2/4λτe−τ{[EL(R)+EL(R′)]/2−ET } +O(τ2) . (2.6)

To compute the ground-state energy and other expectation values, the N -particle distribution function f(R, t) is
represented, in diffusion Monte Carlo, by an average over a time series of generations of walkers each of which consists
of a fixed number of nw walkers. A walker is a pair (Rα, ωα), α = 1, 2, . . . , nw, with Rα a 3N -dimensional particle
configuration with statistical weight ωα. At time t, the walkers represent a random realization of the N -particle
distribution, f(R, t) =

∑nw

α=1 ω
t
αδ(R − Rt

α). The ensemble is initialized with a VMC sample from f(R, 0) = Ψ2(R),
with ω0

α = 1/nw for all α. Note that if the trial wave-function were the exact ground-state then there would be
no branching and it would be sufficient nw = 1. A given walker (Rt, ωt) is advanced in time (diffusion and drift)
as Rt+τ = Rt + χ + λτ∇∇∇ lnΨ2(Rt) where χ is a normally distributed random 3N -dimensional vector with variance
2λτ and zero mean (Kalos and Whitlock, 2008). In order to satisfy detailed balance we accept the move with a
probability A(R,R′; τ) = min[1,W (R,R′)], where W (R,R′) = [G(R,R′; τ)Ψ2(R′)]/[G(R′, R; τ)Ψ2(R)]. This step
would be unnecessary if G were the exact Green’s function, sinceW would be unity. Finally, the weight ωt

α is replaced
by ωt+τ

α = ωt
α∆ω

t
α (branching), with ∆ωt

α = exp{−τ [(EL(R
t
α) + EL(R

t+τ
α ))/2− ET ]}.

However, for the diffusion interpretation to be valid, f must always be positive, since it is a probability distribution.
But we know that the many-fermions wave-function φ(R, t), being antisymmetric under exchange of a pair of particles
of the parallel spins, must have nodes, i.e. points R where it vanishes. In the fixed-nodes approximation one restricts
the diffusion process to walkers that do not change the sign of the trial wave-function. One can easily demonstrate
that the resulting energy, 〈EL(R)〉f , will be an upper bound to the exact ground-state energy; the best possible upper
bound with the given boundary condition (Ceperley, 1991).

A detailed description of the algorithm used for the DMC calculation can be found in Ref. (Umrigar et al., 1993).
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B. Expectation values in DMC

In a DMC calculation there are various different possibilities to measure the expectation value of a physical observ-
able, as for example the RDF. If 〈O〉f is the measure and 〈. . .〉f the statistical average over the probability distribution
f we will, in the following, use the word estimator to indicate the function O itself, unlike the more common use of
the word to indicate the usual Monte Carlo estimator

∑N
i=1 Oi/N of the average, where {Oi} is the set obtained eval-

uating O over a finite number N of points distributed according to f . Whereas the average from different estimators
must give the same result, the variance, the square of the statistical error, can be different for different estimators.

1. The local estimator and the extrapolated measure

To obtain ground-state expectation values of quantities O that do not commute with the Hamiltonian we introduce
the local estimator OL(R) = [OΨ(R)]/Ψ(R) and then compute the average over the DMC walk, the so called mixed

measure, Omix
= 〈OL(R)〉f =

∫

φ0(R)OΨ(R) dR/
∫

φ0(R)Ψ(R) dR. This is inevitably biased by the choice of the
trial wave-function. A way to remedy to this bias is the use of the forward walking method (Barnett et al., 1991;
Liu et al., 1974) or the reptation quantum Monte Carlo method (Baroni and Moroni, 1999) to reach pure estimates.
Otherwise this bias can be made of leading order δ2, with δ = φ0 −Ψ, introducing the extrapolated measure

Oext
= 2Omix −Ovar

, (2.7)

where Ovar
= 〈OL〉fvmc

is the variational measure. If the mixed measure equals the variational measure then the trial
wave-function has maximum overlap with the ground-state.

2. The Hellmann and Feynman measure

Toulouse et al. (Assaraf and Caffarel, 2003; Toulouse et al., 2007) observed that the zero-variance property of the
energy (Ceperley and Kalos, 1979) can be extended to an arbitrary observable, O, by expressing it as an energy
derivative through the use of the Hellmann-Feynman theorem.
In a DMC calculation the Hellmann-Feynman theorem takes a form different from the one in a VMC calculation.

Namely we start with the eigenvalue expression (Hλ −Eλ)Ψλ = 0 for the ground-state of the perturbed Hamiltonian
Hλ = H + λO, take the derivative with respect to λ, multiply on the right by the ground-state at λ = 0, φ0, and
integrate over the particle coordinates to get

∫

dRφ0(H
λ − Eλ)

∂Ψλ

∂λ
=

∫

dRφ0

(

∂Eλ

∂λ
− ∂Hλ

∂λ

)

Ψλ . (2.8)

Then we notice that due to the Hermiticity of the Hamiltonian, at λ = 0 the left hand side vanishes, so that we get
(Fantoni, 2013)

∫

dRφ0OΨλ

∫

dRφ0Ψλ

∣

∣

∣

∣

λ=0

=
∂Eλ

∂λ

∣

∣

∣

∣

λ=0

. (2.9)

This relation holds only in the λ → 0 limit unlike the more common form (Landau and Lifshitz, 1977) which holds
for any λ. Also it resembles Eq. (3) of Ref. (Gaudoin and Pitarke, 2007).
Given Eλ =

∫

dRφ0(R)H
λΨλ(R)/

∫

dRφ0(R)Ψ
λ(R) the “Helmann and Feynman” (HF) measure in a DMC calcu-

lation is

OHF
=
dEλ

dλ

∣

∣

∣

∣

λ=0

≈ 〈OL(R)〉f + 〈∆Oα
L(R)〉f + 〈∆Oβ

L(R)〉f . (2.10)

The α correction is (Fantoni, 2013)

∆Oα
L(R) =

[

HΨ′

Ψ′ − EL(R)

]

Ψ′(R)
Ψ(R)

. (2.11)

This expression coincides with Eq. (18) of Ref. (Toulouse et al., 2007). In a VMC calculation this term, usually,
does not contribute to the average, with respect to fvmc = Ψ2, due to the Hermiticity of the Hamiltonian. This is of
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course not true in a DMC calculation. We will then define a Hellmann and Feynman variational (HFv) estimator as
OHFv = OL(R) + ∆Oα

L(R). The β correction is (Fantoni, 2013)

∆Oβ
L(R) = [EL(R)− E0]

Ψ′(R)

Ψ(R)
, (2.12)

where E0 = Eλ=0. Which differs from Eq. (19) of Ref. (Toulouse et al., 2007) by a factor of one half. This term
is necessary in a DMC calculation not to bias the measure. The extrapolated Hellmann and Feynman measure will
then be

OHF-ext
= 2OHF − 〈OHFv〉fvmc

. (2.13)

Both corrections α and β to the local estimator depends on the auxiliary function, Ψ′ = ∂Ψλ/∂λ|λ=0. Of course if
we had chosen Ψλ=0, on the left hand side of Eq. (2.10), as the exact ground state wave-function, φ0, instead of
the trial wave-function, then both corrections would have vanished. When the trial wave-function is sufficiently close
to the exact ground state function a good approximation to the auxiliary function can be obtained from first order
perturbation theory for λ ≪ 1. So the Hellmann and Feynman measure is affected by the new source of bias due to
the choice of the auxiliary function independent from the bias due to the choice of the trial wave-function.

It is convenient to rewrite Eqs. (2.11) and (2.12) in terms of the logarithmic derivative Q(R) = Ψ′(R)/Ψ(R) as
follows

∆Oα
L(R) = − 1

r2s

N
∑

k=1

[∇∇∇2
rk
Q(R) + 2vk(R) · ∇∇∇rkQ(R)] , (2.14)

∆Oβ
L(R) = [EL(R)− E]Q(R) , (2.15)

where vk(R) = ∇∇∇rk lnΨ(R) is the drift velocity of the trial wave-function. For each observable a specific form of Q
has to be chosen.

C. Trial wave-function

We chose the trial wave-function of the Bijl-Dingle-Jastrow (Bijl, 1940; Dingle, 1949; Jastrow, 1955) or product
form

Ψ(R) ∝ D(R) exp



−
∑

i<j

u(rij)



 . (2.16)

The function D(R) is the exact wave-function of the non-interacting fermions (the Slater determinant) and serves
to give the trial wave-function the desired antisymmetry

D(R) =
1

√

N+!
det(ϕ+

n,m)
1

√

N−!
det(ϕ−

n,m) , (2.17)

where for the fluid phase ϕσ
n,m = eikn·rmδσm,σ/

√
Ω with kn a reciprocal lattice vector of the simulation box such that

|kn| ≤ kσF , σ the z-component of the spin (±1/2), rm the coordinates of particle m, and σm its spin z-component.
For the unpolarized fluid there are two separate determinants for the spin-up and the spin-down states because the
Hamiltonian is spin independent. For the polarized fluid there is a single determinant. For the general case of N+

spin-up particles the polarization will be ξ = |N+ − N−|/N and the Fermi wave-vector for the spin-up (spin-down)
particles will be k±F = (1±ξ)1/3kF with kF = (3π2n)1/3 = (9π/4)1/3/(a0rs) the Fermi wave-vector of the paramagnetic
fluid. On the computer we fill closed shells so that Nσ is always odd. We only store kn for each pair (kn,−kn) and
use sines and cosines instead of exp(ikn · ri) and exp(−ikn · rj).
The second factor (the Jastrow factor) includes in an approximate way the effects of particle correlations, through

the “pseudo-potential”, u(r), which is repulsive.

In the crystal phase, the orbitals are Gaussians centered around body-centered-cubic lattice sites with a width
chosen variationally.
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1. The pseudo-potential

Here we will consider a system where the particles interact with a bare potential

vµ(r) =
erf(µr)

r
, (2.18)

whose Fourier transform is

ṽµ(k) =
4π

k2
e−k2/4µ2

, (2.19)

so that for µ→ ∞ we recover the Jellium and in the opposite limit µ→ 0 we recover the non-interacting electron gas.
Neglecting the cross term between the Jastrow and the Slater determinant in Eq. (B6) (third term) and the

Madelung constant, the variational energy per particle can be approximated as follows,

eV =
〈EL(R)〉f

N
=

∫

Ψ(R)HΨ(R) dR

N
≈ eF +

1

2Ω

′
∑

k

[e2ṽµ(k)− 2λk2ũ(k)][S(k)− 1] +

1

NΩ2

′
∑

k,k′

λk · k′ũ(k)ũ(k′)〈ρk+k′ρ−kρ−k′〉f + . . . , (2.20)

where eF = (3/5)λ
∑

σNσ(k
σ
F )

2/N is the non-interacting fermions energy per particle, ũ(k) is the Fourier transform
of the pseudo-potential u(r), ṽµ(k) = 4π exp(−k2/4µ2)/k2 is the Fourier transform of the bare pair-potential, S(k) is

the static structure factor for a given u(r) (see Sec. II.D.3), ρk =
∑N

i=1 exp(ik ·ri) is the Fourier transform of the total
number density ρ(r) =

∑

i δ(r − ri), and the trailing dots stand for the additional terms coming from the exclusion
of the j = k term in the last term of Eq. (B6). Next we make the Random Phase Approximation (Feynman, 1972)
and we keep only the terms with k+ k

′ = 0 in the last term. This gives

eV ≈ eF +
1

2Ω

′
∑

k

{

[e2ṽµ(k)− 2λk2ũ(k)][S(k)− 1]− 2nλ[kũ(k)]2S(k)
}

+ . . . . (2.21)

In the limit k → 0 we have to cancel the Coulomb singularity and we get ũ2(k) = me2ṽµ(k)/(~
2nk2) ≃ [(4πe2/k2)/(~ωp)]

2

(where ωp =
√

4πne2/m is the plasmon frequency) or in adimensional units

ũ(k) =

√

rs
3

4π

k2
, small k . (2.22)

This determines the correct behavior of ũ(k) as k → 0 or the long range behavior of u(r)

u(r) =

√

rs
3

1

r
, large r . (2.23)

Now to construct the approximate pseudo-potential, we start from the expression

ǫ = eF +
1

2Ω

′
∑

k

[e2ṽµ(k)−Aλk2ũ(k)][S(k)− 1] , (2.24)

and use the following perturbation approximation, for how S(k) depends on ũ(k) (Gaskell, 1961, 1962),

1

S(k)
=

1

Sx(k)
+ Bnũ(k) , (2.25)

where A and B are constant to be determined and Sx(k) the structure factor for the non-interacting fermions (see
Eq. (D5)), which is Sx =

∑

σ S
x
σ,σ with

Sx
σ,σ(k) =







nσ

n

yσ
2
(3 − y2σ) yσ < 1

nσ

n
else

(2.26)

where nσ = Nσ/Ω and yσ = k/(2kσF ).
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Minimizing ǫ with respect to u(k), we obtain (Ceperley, 2004)

Bnũ(k) = − 1

Sx(k)
+

[

1

Sx(k)
+

Bne2ṽµ(k)
λAk2

]1/2

, (2.27)

This form is optimal at both long and short distances but not necessarily in between. In particular, for any value of
ξ, the small k behavior of ũ(k) is

√

2rs/3AB(4π/k2) which means that

u(r) =

√

2rs
3AB

1

r
, large r . (2.28)

The large k behavior of ũ(k) is (rs/A)ṽµ(k)/k
2, for any value of ξ, which in r space translates into

du(r)

dr

∣

∣

∣

∣

r=0

=

{

− rs
2A µ→ ∞

0 µ finite
(2.29)

In order to satisfy the cusp condition for particles of antiparallel spins (any reasonable pseudo-potential has to obey
to the cusp conditions (see Ref. (Foulkes et al., 2001) Section IVF) which prevent the local energy from diverging
whenever any two electrons (µ = ∞) come together) we need to choose A = 1, then the correct behavior at large r
(2.22) is obtained fixing B = 2 5. We will call this Jastrow J1 in the following.
It turns out that, at small µ, but not for the Coulomb case, a better choice is given by (Ceperley, 1978)

2nũ(k) = − 1

Sx(k)
+

[

(

1

Sx(k)

)2

+
2ne2ṽµ(k)

λk2

]1/2

, (2.30)

which still has the correct long (2.28) and short (2.29) range behaviors. We will call this Jastrow J2 in the following.
This is expected since, differently from J1, J2 satisfies the additional exact requirement limµ→0 u(r) = 0, as immedi-
ately follows from the definition (2.30). Then at small µ (and any rs), the trial wave-function is expected to be very
close to the stationary solution of the diffusion problem.

2. The backflow and three-body correlations

As shown in Appendix B, the trial wave-function of Eq. (2.16) can be further improved by adding three-body (3B)
and backflow (BF) correlations (Kwon et al., 1993, 1998) as follows

Ψ(R) = D̃(R) exp



−
∑

i<j

ũ(rij)−
N
∑

l=1

G(l) ·G(l)



 . (2.31)

Here

D̃(R) =
1

√

N+!
det(ϕ̃+

n,m)
1

√

N−!
det(ϕ̃−

n,m) , (2.32)

with ϕ̃σ
n,m = eikn·xmδσm,σ/

√
Ω and xm quasi-particle coordinates defined as

xi = ri +
N
∑

j 6=i

η(rij)(ri − rj) . (2.33)

The displacement of the quasi-particle coordinates xi from the real coordinate ri incorporates effects of hydrodynamic
backflow (Feynman and Cohen, 1956), and changes the nodes of the trial wave-function. The backflow correlation
function η(r), is parametrized as (Kwon et al., 1998)

η(r) = λB
1 + sBr

rB + wBr + r4
, (2.34)

5 Note that the probability distribution in a variational calculation is (from Eq. (2.16)) Ψ2(R) ∝ D2(R) exp[−2U(R)] with U(R) =∑
i<j u(rij). Then if one formally writes D2(R) = exp[−2W (R)], Ψ2 becomes the probability distribution for a classical fluid with

potential W + U at an inverse temperature β = 2. Then one sees that with the choice B = 2, Eq (2.25) coincides with the well known
Random Phase Approximation in the theory of classical fluids (see Ref. (Hansen and McDonald, 1986) Section 6.5) where W is the
potential of the reference fluid and U the perturbation.
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which has the long-range behavior ∼ 1/r3.

Three-body correlations are included through the vector functions

G(i) =

N
∑

j 6=i

ξ(rij)(ri − rj) . (2.35)

We call ξ(r) the three-body correlation function which is parametrized as (Panoff and Carlson, 1989)

ξ(r) = a exp
{

−[(r − b)c]2
}

. (2.36)

To cancel the two-body term arising from G(l) ·G(l), we use ũ(r) = u(r)− 2ξ2(r)r2

The backflow and three-body correlation functions are then chosen to decay to zero with a zero first derivative at
the edge of the simulation box.

D. The radial distribution function

The radial distribution function (RDF) is proportional to the probability of finding another particle of the fluid
inside a spherical shell of radius r and thickness dr centered on any one particle on which you sit. This observable
gives us informations about the structure of the fluid. We will see here how it can be measured in a DMC calculation.
In appendix D we give some details on the determination of the RDF for the ideal gas and in appendix E we give
some details on exact relationships that must be satisfied by the RDF of the interacting fluid, the sum rules.

1. Definition of the radial distribution function

The spin-resolved RDF is defined as (Feenberg, 1967; Hill, 1956)

gσ,σ′(r, r
′

) =

〈

∑

i,j 6=i δσ,σiδσ′,σj δ(r− ri)δ(r
′ − rj)

〉

nσ(r)nσ′ (r′)
, (2.37)

nσ(r) =

〈

N
∑

i=1

δσ,σiδ(r− ri)

〉

, (2.38)

where here, and in the following, 〈. . .〉 will denote the expectation value respect to the ground-state. Two exact
conditions follow immediately from the definition: i. the zero-moment sum rule

∑

σ,σ′

∫

drdr′ nσ(r)nσ(r
′)[gσ,σ′(r, r

′

)− 1] = −N , (2.39)

also known as the charge (monopole) sum rule in the sequence of multipolar sum rules in the framework of charged
fluids (Martin, 1988), ii. gσ,σ(r, r) = 0 due to the Pauli exclusion principle.

For the homogeneous and isotropic fluid nσ(r) = Nσ/Ω where Nσ is the number of particles of spin σ and gσ,σ′

depends only on the distance r = |r− r
′ |, so that

gσ,σ′(r) =
1

4πr2
Ω

NσNσ′

〈

∑

i,j 6=i

δσ,σiδσ′,σjδ(r − rij)

〉

. (2.40)

The total (spin-summed) radial distribution function will be

g(r) =
1

n2

∑

σ,σ′

nσnσ′gσ,σ′(r)

=

(

1 + ξ

2

)2

g+,+(r) +

(

1− ξ

2

)2

g−,−(r) +
1− ξ2

2
g+,−(r) . (2.41)
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2. From the structure to the thermodynamics

As it is well known the knowledge of the RDF gives access to the thermodynamic properties of the system. The
mean potential energy per particle can be directly obtained from g(r) and the bare pair-potential vµ(r) as follows

ep =
∑

σ,σ′

nσnσ′

2n

∫

dr e2vµ(r)[gσ,σ′ (r) − 1] , (2.42)

where we have explicitly taken into account of the background contribution. Suppose that ep(rs) is known as a
function of the coupling strength rs. The virial theorem for a system with Coulomb interactions (v∞(r) = 1/r) gives
N(2ek + ep) = 3PΩ with P = −d(Ne0)/dΩ the pressure and e0 = ek + ep the mean total ground-state energy per
particle. We then find

ep(rs) = 2e0(rs) + rs
de0(rs)

drs
=

1

rs

d

drs
[r2se0(rs)] , (2.43)

which integrates to

e0(rs) = eF +
1

r2s

∫ rs

0

dr′s r
′
sep(r

′
s) . (2.44)

We can rewrite the ground-state energy per particle of the ideal Fermi gas, in reduced units, as

eF =

(

9π

4

)2/3
3

10
φ5(ξ)

1

r2s
, (2.45)

where φn(ξ) = (1− ξ)n/3 + (1 + ξ)n/3. And for the exchange potential energy per particle in the Coulomb case

exp = −
(

2

3π5

)1/3
9π

8
φ4(ξ)

1

rs
, (2.46)

which follows from Eq. (2.42) and Eqs. (D2)-(D3). The expression for finite µ can be found in Ref. (Paziani et al.,
2006) (see their Eqs. (15)-(16)).

3. Definition of the static structure factor

If we introduce the microscopic spin dependent number density

ρσ(r) =
N
∑

i=1

δσ,σiδ(r− ri) , (2.47)

and its Fourier transform ρk,σ, then the spin-resolved static structure factors are defined as Sσ,σ′(k) = 〈ρk,σρ−k,σ′〉/N ,
which, for the homogeneous and isotropic fluid, can be rewritten as

Sσ,σ′(k) =
nσ

n
δσ,σ′ +

nσnσ′

n

∫

[gσ,σ′(r) − 1]e−ik·r dr+
nσnσ′

n
(2π)3δ(k) , (2.48)

From now on we will ignore the delta function at k = 0. The total (spin-summed) static structure factor is S =
∑

σ,σ′ Sσ,σ′ . Due to the charge sum rule (2.39) we must have limk→0 S(k) = 0. In Sec. E.2 we will show that the

small k behavior of S(k) has to start from the term of order k2.

E. Results for the radial distribution function and structure factor

The radial distribution function and structure factor have been calculated through DMC by Ortiz and Ballone
(Ortiz and Ballone, 1994). In Fig. 1 we show their results for the radial distribution function and in Fig. 2 their
results for the structure factor.
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FIG. 1 Radial distribution function g(r) computed by DMC method (mixed estimator) for the unpolarized ξ = 0 case and the
fully polarized ξ = 1 case. rs = 1 (dotted line), rs = 3 (dash-dotted line), rs = 5 (dashed line), and rs = 10 (full line). r is in
units of a Bohr radius. (Figure reproduced here by courtesy of the authors of Ref. (Ortiz and Ballone, 1994))

F. Results for the internal energy

The behavior of the internal energy of the Jellium in its ground state has been determined through DMC by
Ceperley and Alder (Ceperley and Alder, 1980). Their result is shown in Fig. 3. Three phases of the fluid appeared,
for rs < 75 the stable phase is the one of the unpolarized Jellium, for 75 < rs < 100 the one of the polarized fluid,
and for rs > 100 the one of the Wigner crystal. The Wigner formula of Eq. (D11) turns out to be a rather good
approximation. They used systems from N = 38 to N = 246 electrons.

III. JELLIUM AT FINITE TEMPERATURE

For the Jellium at finite temperature it is convenient to introduce the electron degeneracy parameter Θ = T/TF ,
where TF is the Fermi temperature

TF = TD
(2π)2

2[(2− ξ)α3]2/3
, (3.1)
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FIG. 2 Structure factor S(k) computed by the DMC method (mixed estimator). The rs considered and the symbols are the
same as those of Fig. 1. (Figure reproduced here by courtesy of the authors of Ref. (Ortiz and Ballone, 1994))

here ξ is the polarization of the fluid that can be either ξ = 0, for the unpolarized case, and ξ = 1, for the fully
polarized case, α3 = 4π/3, and

TD =
n2/3

~
2

mkB
, (3.2)

is the degeneracy temperature, for temperatures higher than TD quantum effects are less relevant.
The state of the fluid will then depend also upon the Coulomb coupling parameter, Γ = e2/rsa0kBT (Brown et al.,

2013).

A. Monte Carlo simulation (Path Integral)

The density matrix of a many-fermion system at temperature kBT = β−1 can be written as an integral over all
paths {Rt}

ρF (Rβ , R0;β) =
1

N !

∑

P
(−1)P

∮

PR0→Rβ

dRt exp(−S[Rt]). (3.3)
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FIG. 3 The energy of the four phases studied relative to that of the lowest boson state times r2s in Rydbergs as a function of
rs in Bohr radii. The boson system undergoes Wigner crystallization at rs = 160 ± 10. The fermion system has two phase
transitions, crystallization at rs = 100 ± 20 and depolarization at rs = 75 ± 5. (Figure reproduced here by courtesy of the
authors of Ref. (Ceperley and Alder, 1980))

the path R(t) begins at PR0 and ends at Rβ and P is a permutation of particles labels. For nonrelativistic particles
interacting with a potential V (R) the action of the path, S[Rt], is given by (see appendix F)

S[Rt] =

∫ β

0

dt

[

r2s
4

∣

∣

∣

∣

dR(t)

dt

∣

∣

∣

∣

2

+ V (Rt)

]

. (3.4)

Thermodynamic properties, such as the energy, are related to the diagonal part of the density matrix, so that the
path returns to its starting place or to a permutation P after a time β.
To perform Monte Carlo calculations of the integrand, one makes imaginary time discrete, so that one has a finite

(and hopefully small) number of time slices and thus a classical system of N particles in M time slices; an equivalent
NM particle classical system of “polymers” (Ceperley, 1995).
Note that in addition to sampling the path, the permutation is also sampled. This is equivalent to allowing the

ring polymers to connect in different ways. This macroscopic “percolation” of the polymers is directly related to
superfluidity as Feynman (Feynman, 1953a,b,c) first showed. Any permutation can be broken into cycles. Superfluid
behavior can occur at low temperature when the probability of exchange cycles on the order of the system size is
non-negligible. The superfluid fraction can be computed in a path integral Monte Carlo calculation as described in
Ref. (Pollock and Ceperley, 1987). The same method could be used to calculate the superconducting fraction in
Jellium at low temperature. However, the straightforward application of those techniques to Fermi systems means
that odd permutations subtract from the integrand. This is the “fermion sign problem” (Ceperley, 1991) which will
be discussed in the next section.
Thermodynamic properties are averages over the thermal N−fermion density matrix which is defined as a thermal

occupation of the exact eigenstates φi(R)

ρF (R,R
′;β) =

∑

i

φ∗i (R)e
−βEiφi(R

′). (3.5)

The partition function is the trace of the density matrix

Z(β) = e−βF =

∫

dRρF (R,R;β) =
∑

i

e−βEi. (3.6)

Other thermodynamic averages are obtained as

〈O〉 = Z(β)−1

∫

dRdR′ 〈R|O|R′〉ρ(R′, R;β). (3.7)
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Note that for any density matrix the diagonal part is always positive

ρ(R,R;β) ≥ 0, (3.8)

so that Z−1ρ(R,R;β) is a proper probability distribution. It is the diagonal part which we need for many observables,
so that probabilistic ways of calculating those observables are, in principle, possible.
Path integrals are constructed using the product property of density matrices

ρ(R2, R0;β1 + β2) =

∫

dR1 ρ(R2, R1;β2)ρ(R1, R0;β1), (3.9)

which holds for any sort of density matrix. If the product property is used M times we can relate the density
matrix at a temperature β−1 to the density matrix at a temperature Mβ−1. The sequence of intermediate points
{R1, R2, . . . , RM−1} is the path, and the time step is τ = β/M . As the time step gets sufficiently small the Trotter
theorem tells us that we can assume that the kinetic T and potential V operator commute so that: e−τH = e−τT e−τV

and the primitive approximation for the Boltzmannon density matrix is found (Ceperley, 1995). The Feynman-Kac
formula for the Boltzmannon density matrix results from taking the limit M → ∞. The price we have to pay for
having an explicit expression for the density matrix is additional integrations; all together 3N(M − 1). Without
techniques for multidimensional integration, nothing would have been gained by expanding the density matrix into a
path. Fortunately, simulation methods can accurately treat such integrands. It is feasible to make M rather large,
say in the hundreds or thousands, and thereby systematically reduce the time-step error.
In addition to the internal energy and the static structure of the Jellium one could also measure its dynamic

structure, the “superconducting fraction”, the specific heat, and the pressure (Ceperley, 1995).

1. The direct path integral method

In the direct fermion method one sums over permutations just as bosonic systems. Odd permutations then contribute
with a negative weight. The direct method has a major problem because of the cancellation of positive and negative
permutations. This was first noted by Feynman and Hibbs (Feynman and Hibbs, 1965) who after describing the path
integral theory for boson superfluid 4He, noted: “The [path integral] expression for Fermi particles, such as 3He, is also
easily written down. However in the case of liquid 3He, the effect of the potential is very hard to evaluate quantitatively
in an accurate manner. The reason for this is that the contribution of a cycle to the sum over permutations is either
positive or negative depending whether the cycle has an odd or an even number of atoms in its length L. At very
low temperature, the contributions of cycles such as L = 51 and L = 52 are very nearly equal but opposite in sign,
and therefore they very nearly cancel. It is necessary to compute the difference between such terms, and this requires
very careful calculation of each term separately. It is very difficult to sum an alternating series of large terms which
are decreasing slowly in magnitude when a precise analytic formula for each term is not available.
Progress could be made in this problem if it were possible to arrange the mathematics describing a Fermi system

in a way that corresponds to a sum of positive terms. Some such schemes have been tried, but the resulting terms
appear to be much too hard to evaluate even qualitatively.
[. . .]
The [explanation] of the superconducting state was first answered in a convincing way by Bardeen, Cooper, and

Schrieffer. The path integral approach played no part in their analysis and in fact has never proved useful for
degenerate Fermi systems. [D. M. Ceperley italics]”
When we measure a property O in a Monte Carlo calculation (Ceperley, 1991, 1996)

〈O〉 =
∫

ΠO
∫

Π
, (3.10)

where π is a function with both positive and negative pieces and the integrals are not only over coordinates but a
sum over permutations is also tacitly assumed.
One introduces the distribution function for the importance sampling P

〈O〉 =
∫

P [ΠO/P ]
∫

P [Π/P ]
, (3.11)

and calculates

〈O〉 =
∑

i ωiOi
∑

i ωi
, (3.12)
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where ωi = Πi/Pi and the sums are over M points distributed according to P . Then the variance of the measure is

σ2
O =

〈

(∑

i ωiOi
∑

i ωi
− 〈O〉

)2
〉

P

=
1

(
∑

i ωi)
2

〈[

∑

i

ωi(Oi − 〈O〉)
]2〉

P

≈ 1

(
∑

i ωi)
2

〈

∑

i

ω2
i (Oi − 〈O〉)2

〉

P

=
1

M
(∫

Π
)2

〈

ω2(O − 〈O〉)2
〉

P

=
1

M
(∫

Π
)2

∫

Π2(O − 〈O〉)2
P

, (3.13)

where we assumed that the sampled points were uncorrelated. Choosing P = q2/
∫

q2 and solving δσ2
O/δq = 0 we

find as the optimal distribution

P ∗ ∝ |Π(O − 〈O〉)| . (3.14)

The usually one chooses P = |Π|/
∫

|Π|. For bosons there are no problems since Π is everywhere positive, but for
fermions one finds

σ2
F = σ2

B/ξ , (3.15)

where the efficiency is

ξ =

[
∫

Π
∫

|Π|

]2

=

[

M+ −M−
M

]2

=

[

ΘF

ΘB

]2

= e−2β(ΩF−ΩB) . (3.16)

The average time that the simulation spend in the positive region of P is M+/M and M−/M is the average time
spent in the negative region. The efficiency for the fermionic case is proportional to the square of the average sign:
the positive sampled points in excess over the negative ones. From the expressions for the grand-thermodynamic
potentials for the ideal Bose, ΩB, and Fermi, ΩF , gas we find for example

ξ =

{

e−Nρ3Λ3/(
√
2g) z → 0

e−Nρ2g(b5/2(1)−f5/2(1))/Λ
3

z → 1
, (3.17)

where b5/2(1)−f5/2(1) ≈ 0.4743. We then see that for any z the efficiency becomes exponentially small in the number

of particles. Moreover for a fixed N we find ξ = e−2β(FF−FB), with FB the Helmholtz free energy of the Bose gas and
FF the one of the Fermi gas, and in the high temperature limit we find (Landau and Lifshitz, 1951)

ξ ≈ e−2ρN(2πλβ)3/2/g. (3.18)

Whereas in the low temperature limit

FF = F 0
F − 1

4λ

N

β2

(

π

3ρ

)2/3

, (3.19)

FB = −N
β

b5/2(1)

b3/2(1)

(

T

Tc

)3/2

, (3.20)

where Tc ≃ TD2π/(2.612g)2/3 is the Bose-Einstein condensation temperature, F 0
F = NǫF +Ω0

F with ǫF = µ the Fermi

energy and Ω0
F = −gV ǫ5/2F /(15π2λ3/2), and N = gV (2mǫF )

3/2/6π2
~
3. So that in the limit β → ∞ we find

ξ = e−2βF 0
F , (3.21)

with F 0
F = g(1/6− 1/15)V ǫ

5/2
F /(π2λ3/2) > 0, which shows how the efficiency of a direct Monte Carlo calculation on

fermions becomes exponentially small as β and N increases. Exactly where the physics becomes more interesting.
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2. Restricted Path Integral Monte Carlo

The Fermion density matrix is defined (Ceperley, 1991, 1996) by the Bloch equation which describes its evolution
in imaginary time

∂

∂β
ρF (R,R0;β) = −HρF (R,R0;β), (3.22)

ρF (R,R0; 0) = Aδ(R −R0), (3.23)

where β = 1/kBT with T the absolute temperature and A is the operator of antisymmetrization. The reach of R0,
γ(R0, t), is the set of points {Rt} for which

ρF (Rt′ , R0; t
′) > 0 0 ≤ t′ ≤ t, (3.24)

where t is the imaginary thermal time. Note that

the reach γ

R 0

0

t

FIG. 4 Illustration of the reach γ(R0, t) of the fermion density matrix.

ρF (R0, R0; t) > 0, (3.25)

and clearly

ρF (R,R0; t)|R∈∂γ(R0,t) = 0. (3.26)

We want to show that (3.26) uniquely determines the solution. Suppose δ(R, t) satisfies the Bloch equation
(

H +
∂

∂t

)

δ(R, t) = 0, (3.27)

in a space-time domain α = {t1 ≤ t ≤ t1, R ∈ Ωt}. And the two conditions

δ(R, t1) = 0, (3.28)

δ(R, t)|R∈∂Ωt = 0 t1 ≤ t ≤ t2, (3.29)

are also satisfied. Consider
∫ t2

t1

dt

∫

Ωt

dR e2V0tδ(R, t)

(

H+
∂

∂t

)

δ(R, t) = 0, (3.30)

where V0 is a lower bound for V (R).
We have

∂

∂t

[

e2V0tδ2(R, t)
]

= 2V0e
2V0tδ2(R, t) + 2e2V0tδ(R, t)

∂

∂t
δ(R, t). (3.31)
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Since
∫ t2

t1

dt

∫

Ωt

dR
∂

∂t

(

e2V0t

2
δ2(R, t)

)

=

∫ t2

t1

dt
∂

∂t

(

e2V0t

2

∫

Ωt

dR δ2(R, t)

)

=
e2V0t2

2

∫

Ωt2

dR δ2(R, t2), (3.32)

where in the last equality we used Eq. (3.28). Then from Eq. (3.30) follows

e2V0t

2

∫

Ωt2

dR δ2(R, t2)− e2V0t

∫ t2

t1

dt

∫

Ωt

dR
[

V0δ
2(R, t)− δ(R, t)Hδ(R, t)

]

= 0. (3.33)

Then using Eq. (3.29) we find

e2V0t

2

∫

Ωt2

dR δ2(R, t2) + e2V0t

∫ t2

t1

dt

∫

Ωt

dR
[

(V (R)− V0)δ
2(R, t) + λ (∇∇∇δ(R, t))2

]

= 0. (3.34)

Each term in Eq. (3.34) is non-negative so it must be

δ(R, t) = 0 in α. (3.35)

Let ρ1 and ρ2 be two solutions of the restricted path problem and let δ = ρ1 − ρ2. Then δ(R, t)|R∈∂γ(R0,t) = 0 for
t1 ≤ t ≤ t2. By taking t2 to infinity and t1 to zero we conclude that the fermion density matrix is the unique solution.
Eq (3.34) also shows that the reach γ has the tiling property (Ceperley, 1991). Suppose it did not. Then there

would exist a space-time domain with the density matrix non-zero inside and from which it is only possible to reach
R0 or any of its images PR0, with P any permutation of the particles, crossing the nodes of the density matrix. But
such a domain cannot extend to t = 0 because in the classical limit there are no nodes. Then this density matrix
satisfies for some t1 > 0 the boundary conditions (3.28) and (3.29) and as a consequence it must vanish completely
inside the domain contradicting the initial hypothesis.
We now derive the restricted path identity. Suppose ρF is the density matrix corresponding to some set of quantum

numbers which is obtained by using the projection operator A on the distinguishable particle density matrix. Then it
is a solution to the Bloch equation (3.22) with boundary condition (3.23). Thus we have proved the Restricted Path
Integral identity

ρF (Rβ , R0;β) =

∫

dR′ ρF (R
′, R0; 0)

∮

R′→Rβ∈γ(R0)

dRt e
−S[Rt], (3.36)

where the subscript means that we restrict the path integration to paths starting at R′, ending at Rβ and node-
avoiding. The weight of the walk is ρF (R

′, R0; 0). It is clear that the contribution of all the paths for a single element
of the density matrix will be of the same sign; positive if ρF (R

′, R0; 0) > 0, negative otherwise.
Important in this argument is that the random walk is a continuous process so we can say definitely that if sign of

the density matrix changed, it had to have crossed the nodes at some point.
The restricted path identity is one solution to Feynman’s task of rearranging terms to keep only positive contributing

paths for diagonal expectation values.
The problem we now face is that the unknown density matrix appears both on the left-hand side and on the right-

hand side of Eq. (3.36) since it is used to define the criterion of node-avoiding paths. To apply the formula directly,
we would somehow have to self-consistently determine the density matrix. In practice what we need to do is make an
ansatz, which we call ρT , for the nodes of the density matrix needed for the restriction. The trial density matrix, ρT ,
is used to define trial nodal cells: γT (R0).
Then if we know the reach of the fermion density matrix we can use the Monte Carlo method to solve the fermion

problem restricting the path integral (RPIMC) to the space-time domain where the density matrix has a definite
sign (this can be done, for example, using a trial density matrix whose nodes approximate well the ones of the true
density matrix) and then using the antisymmetrization operator to extend it to the whole configuration space. This
will require the complicated task of sampling the permutation space of the N−particles (Ceperley, 1995). Recently it
has been devised an intelligent method to perform this sampling through a new algorithm called the worm algorithm
(Boninsegni et al., 2006). In order to sample the path in coordinate space one generally uses various generalizations
of the Metropolis rejection algorithm (Metropolis et al., 1953) and the bisection method (Ceperley, 1995) in order to
accomplish multislice moves which becomes necessary as τ decreases.
The pair-product approximation was used (Brown et al., 2013) (see appendix G) to write the many-body density

matrix as a product of high-temperature two-body density matrices (Ceperley, 1995). The pair Coulomb density
matrix was determined using the results of Pollock (Pollock, 1988) even if these could be improved using the results
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of Vieillefosse (Vieillefosse, 1994, 1995). This procedure comes with an error that scales as ∼ τ3/r2s where τ = β/M
is the time step, with M the number of imaginary time discretizations. A more dominate form of time step error
originates from paths which cross the nodal constraint in a time less than τ . To help alleviate this effect, Brown et
al. (Brown et al., 2013) use an image action to discourage paths from getting too close to nodes. Additional sources
of error are the finite size one and the sampling error of the Monte Carlo algorithm itself. For the highest density
points, statistical errors are an order of magnitude higher than time step errors.
The results at a given temperature T where obtained starting from the density matrix in the classical limit, at

small thermal times, and using repetitively the squaring method

ρF (R1, R2;β) =

∫

dR′ ρF (R1, R
′;β/2)ρF (R

′, R2;β/2). (3.37)

Time doubling is an improvement also because if we have accurate nodes down to a temperature T , we can do
accurate simulations down to T/2. Eq. (3.37) is clearly symmetric in R1 and R2. The time doubling cannot be
repeated without reintroducing the sign problem.
Brown et al. (Brown et al., 2013) use N = 33 electrons for the fully spin polarized system and N = 66 electrons

for the unpolarized system.

B. Results for the radial distribution function and structure factor

In the classical Debye-Hückel limit one has (Hansen, 1973; Hansen and McDonald, 1986)

gDH(r) = exp

[

−Γ

r
exp(−kDrsa0r)

]

, (3.38)

were kD =
√

4πβne2. And for the structure factor, after linearizing Eq. (3.38) for r ≫ 1/kDrsa0,

SDH(k) =
k2

k2 + 3Γ
. (3.39)

A serious weakness of the linearized approximation is the fact that it allows g(r) to become negative at small r. This
failing is rectified in the non-linear version (3.38).
In the ground state the radial distribution function and structure factor have been calculated by Ortiz and Ballone

(Ortiz and Ballone, 1994).
In Fig. 5 we present the RPIMC results of Brown et al. (Brown et al., 2013).

C. Results for the internal energy

Given the total internal energy per particle of the fluid etot, the exchange and correlation energy per particle is

exc(T ) = etot(T )− e0(T ). (3.40)

where e0(T ) is the kinetic energy of a free Fermi gas at temperature T . And

exc(T ) = ex(T ) + ec(T ). (3.41)

where ex(T ) is the Hartree-Fock exchange energy for a Fermi gas at temperature T (see Eq. (7) of Ref. (Perdew and Zunger,
1981)).
For fixed polarizations ξ = 0, the unpolarized case, and for ξ = 1, the fully polarized case, one has

e0 = (2 − ξ)
r3s

3πβ5/2

1

Ry5/2
I(3/2, κ), (3.42)

ex = −(2− ξ)
r3s

6π2β2

1

Ry2

∫ ∞

0

dx

1 + ex−κ

∫ ∞

0

dy

1 + ey−κ

∫ 1

−1

dz
√

x/y +
√

y/x− 2z
, (3.43)

where

I(ν, κ) =

∫ ∞

0

xν

1 + ex−κ
dx, (3.44)
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FIG. 5 Pair correlation functions (on the left) for rs = 1.0 and rs = 10.0 in the unpolarized state. Also shown is the small r
part of the classical Debye-Hückel limit at Θ = 8.0; see Eq. (3.38). The Debye-Hückel limit is not yet reached at Θ = 8.0 for
the lower density rs = 10.0. Static structure factors (on the right) for rs = 1.0 and rs = 10.0 in the unpolarized state. Also
shown is the small k part of the classical Debye-Hückel limit at Θ = 8.0; see Eq. (3.39). (Figure reproduced here by courtesy
of the authors of Ref. (Brown et al., 2013))

and κ is determined from

I(1/2, κ) =
2

3
Θ−3/2. (3.45)

For the expressions at an intermediate polarization 0 < ξ < 1 see the appendix A. It is still missing an analysis of
the finite temperature Jellium at intermediate polarizations. This would be important for a clearer determination of
the Jellium phase diagram.

In Fig. 6 we present the RPIMC results of Brown et al. (Brown et al., 2013).

In Ref. (Brown et al., 2014) a comparison is given between these calculations to previous estimations of the Jellium
correlation energy. Such parameterizations generally fall into two categories: those which extend down from the
classical regime and those which assume some interpolation between the T = 0 and high-T regimes. From the former
group, in Fig. 7, Brown et al. plot ec coming from Debye-Hückel (DH) theory which solves for the Poisson-Boltzmann
equations for the classical one-component plasma and the quantum corrections of Hansen et al. (Hansen, 1973;
Hansen and Vieillefosse, 1975) of the Coulomb system both with Wigner-Kirkwood corrections (H+WK) and without
(H). Clearly these methods do not perform well in the quantum regime below the Fermi temperature since they lack
quantum exchange.

The Random Phase Approximation (RPA) (Gupta and Rajagopal, 1980; Perrot and Dharma-wardana, 1984) is
a reasonable approximation in the low-density, high-temperature limit (where it reduces to DH) and the low-
temperature, high-density limit, since these are both weakly interacting regimes. Its failure, however, is most apparent
in its estimation of the equilibrium, radial distribution function g(r) which becomes negative for stronger coupling.
Extensions of the RPA into intermediate densities and temperatures have largely focused on constructing local-field
corrections (LFC) through interpolation since diagrammatic resummation techniques often become intractable in
strongly-coupled regimes. Singwi et al. (Singwi et al., 1968) introduced one such strategy. Tanaka and Ichimaru
(Tanaka and Ichimaru, 1986) (TI) extended this method to finite temperatures and provided the shown parameter-
ization of the Jellium correlation energy. This method appear to perform marginally better than the RPA at all
temperatures, though it still fails to produce a positive-definite g(r) at values of rs > 2. A third, more recent ap-
proach introduced by Perrot and Dharma-wardana (PDW) (Perrot and Dharma-wardana, 2000) relies on a classical
mapping where the distribution functions of a classical system at temperature Tcf , solved for through the hypernetted-
chain equation, reproduce those for the quantum system at temperature T. In a previous work, PDW showed such a
temperature Tq existed for the classical system to reproduce the correlation energy of the quantum system at T = 0
(Dharma-wardana and Perrot, 2000). To extend this work to finite temperature quantum systems, they use the simple
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FIG. 6 Excess energies Exc = exc (on the left) for rs = 4.0 and rs = 40.0 for the polarized state (E0 = e0). For both
densities the high temperature results fall smoothly on top of previous Monte Carlo energies for the classical electron gas
(Pollock and Hansen, 1973) (solid line). Differences from the classical Coulomb gas occur for Θ < 2.0 for rs = 4.0 and Θ < 4.0
for rs = 40.0. Simulations with the Fermion sign (squares) confirm the fixed-node results at Θ = 1.0 and 8.0. The zero-
temperature limit (dotted line) smoothly extrapolates to the ground state QMC results of Ceperley-Alder (Ceperley and Alder,
1980) (dashed line). Correlation energy Ec(T ) = ec(T ) (on the right) of the 3D Jellium at several temperatures and densities
for the unpolarized (top) and fully spin-polarized (bottom) states. Exact (signful) calculations (squares) confirm the fixed-node
results where possible (Θ = 8.0 for ξ = 0 and Θ = 4.0, 8.0 for ξ = 1). (Figure reproduced here by courtesy of the authors of
Ref. (Brown et al., 2013))

interpolation formula Tcf =
√

T 2 + T 2
q . This interpolation is clearly valid in the low-T limit where Fermi liquid theory

gives the quadratic dependence of the energy on T . Further in the high-T regime, T dominates over Tq as the system
becomes increasingly classical. The PDW line in Fig. 7 clearly matches well with the RPIMC results in these two lim-
its. It is not surprising, however, that in the intermediate temperature regime, where correlation effects are greatest,
the quadratic interpolation fails. A contemporary, but similar approach by Dutta and Dufty (Dutta and Dufty, 2013)
uses the same classical mapping as PDW which relies on matching the T = 0 pair correlation function instead of the
correlation energy. While we expect this to give more accurate results near T = 0, we would still expect a breakdown
of the assumed Fermi liquid behavior near the Fermi temperature. Future Jellium work will include creating a new
parameterization of the correlation energy which uses the RPIMC data directly. In doing so, simulations at higher
densities and both lower and higher temperatures may be necessary in order to complete the interpolation between
the ground state and classical limits.

D. Phase diagram

The worm-dense regime for both the fully spin-polarized ξ = 1 and unpolarized ξ = 0 systems has been studied
through RPIMC by Brown et al. (Brown et al., 2013). This study complements the previous Monte Carlo studies on
the classical one-component plasma (Pollock and Hansen, 1973) and the inclusion of first order quantum mechanical
effects by Jancovici (Jancovici, 1978) and Hansen and Vieillefosse (Hansen and Vieillefosse, 1975). However, the
accuracy of these results quickly deteriorates as the temperature is lowered and quantum correlations play a greater
role (Jones and Ceperley, 1996). This breakdown is most apparent in the warm-dense regime where both Γ and Θ
are close to unity as shown in Fig. 8.
In the RPIMC of Brown et al. (Brown et al., 2013) the trial density matrix was taken as the free electron density

matrix

ρT (R,R
′; τ) = (4πτ/r2s )

−3N/2A exp

[

− (R−R′)2

4τ/r2s

]

, (3.46)

where τ = β/M with M the number of imaginary time discretizations. This approximation should be best at high



23

FIG. 7 Correlation energy Ec(T ) = ec(T ) of the Jellium at rs = 4.0 for the unpolarized ξ = 0 state from the RPIMC
calculations (RPIMC) and several previous parameterizations as a function of Θ. The latter include Debye-Hückel (DH),
Hansen (H), Hansen+Wigner-Kirkwood (H+WK), Random Phase Approximation (RPA), Tanaka and Ichimaru (TI), and
Perrot and Dharma-wardana (PDW). Also included is the ground state Θ = 0.0 result for comparison. (Figure reproduced
here by courtesy of the authors of Ref. (Brown et al., 2014))

temperature and low density when correlation effects are weak. The free-particle nodal approximation performs well
for the densities studied by Brown et al. (Brown et al., 2013). Further investigation is needed at even smaller values
of rs and lower temperatures in order to determine precisely where this approximation begins to fail. Such studies
will necessarily require algorithmic improvements, however, because of difficulty in sampling paths at low density and
low temperature.

IV. SOME PHYSICAL REALIZATIONS AND PHENOMENOLOGY

The Jellium model is a system of pointwise electrons of charge e and number density n in the three dimensional
Euclidean space filled with an uniform neutralizing background of charge density −en. The zero temperature, ground-
sate, properties of the statistical mechanical system thus depends just on the electronic density n, or the Wigner-Seitz
radius rs = (3/4πn)1/3/a0 where a0 is Bohr radius, or the Coulomb coupling parameter Γ.

The model can be used for example as a first approximation to describe free electrons in metallic elements
(Ashcroft and Mermin, 1976) (2 . rs . 4) or the interior of a white dwarf (Shapiro and Teukolsky, 1983) (rs ≃ 0.01).
More generally it is an essential ingredient for the study of ionic liquids (see Ref. (Hansen and McDonald, 1986)
Chapter 10 and 11): molten-salts, liquid-metals, and ionic-solutions. In molten alkali halides the masses of the cation
and the anion are comparable whereas in liquid metals the anions are replaced by electrons from the valence or
conduction bands. The very small mass of the electron leads to a pronounced disymmetry between the two species
present in the metal. In particular, whereas the behavior of the cations can be discussed in the framework of clas-
sical statistical mechanics, the electron form a degenerate Fermi gas for which a quantum-mechanical treatment is
required. Restricting to the class of simple metals in which the electronic valence states are well separated in energy
from the tightly-bound core states; their properties are reasonably well described by the nearly-free-electron model.
Metals that are classified in this sense include the alkali metals, magnesium, zinc, mercury, gallium, and alluminium.
Other liquid metals (noble and transition metals, alkaline earths, lanthanides, and actinides) have more complicated
electronic structures, and the theory of such systems is correspondingly less well advanced. Molten-salt solutions are
mixtures of liquid metals and molten salts. Ionic-solutions are liquids consisting of a solvent formed by neutral, polar
molecules, and a solute that dissociates into positive and negative ions. They vary widely in complexity: in the classic



24

FIG. 8 Temperature-density phase diagram showing the points considered in Ref. (Brown et al., 2013). Several values of the
Coulomb coupling parameter Γ (dashed lines) and the electron degeneracy parameter Θ (dotted lines) are also shown. (Figure
reproduced here by courtesy of the authors of Ref. (Brown et al., 2013))

electrolyte solutions, the cations and anions are comparable in size and absolute charge, whereas macromolecular
ionic solutions contain both macroions (charged polymers chains or coils, micelles, charged colloidal particles, etc.)
and microscopic counterions.

Experimentally, Wigner crystallization was first unambiguously observed to occur in a quasi-classical, quasi-two-
dimensional fluid of electrons floating on top of liquid 4He substrate (Grimes and Adams, 1979). Such quasi-two-
dimensional electron systems are currently realized in the laboratory in various semiconductors structures, but is
has proven difficult to reach the very low temperatures needed for Wigner crystallization of electrons in the quantal
regime without losing their collective behavior through the unavoidable presence of impurities. Furthermore, the
application of a strong magnetic field to a quasi-two-dimensional electron fluid in semiconductor structures provides
a very effective way to squeeze out the translational kinetic energy without going to very low densities. The Wigner
crystallization in the exactly-two-dimensional Jellium has been found by DMC calculations to be past rs = 37 ± 5
(Tanatar and Ceperley, 1989).

Whereas the finite temperature properties of Jellium depends additionally on the electron degeneracy parameter
Θ. Apart from its purely speculative interest, the temperature dependence of the Jellium properties are certainly of
great astrophysical relevance. Examples are dense plasmas in the interior of giant planets (Knudson, 2012) and brown
dwarfs atmospheres. Other uses could be in highly compressed laboratory plasmas, such as laser plasmas (Ernstorfer,
2009), inertial confinement fusion plasmas (Fletcher, 2014), and pressure-induced modifications of solids, such as
insulator-metal transitions (Mazzola et al., 2014). These examples justify the growing interest recently emerged in
matter under extreme conditions in the warm-dense regime (Dornheim et al., 2016).

It would be desirable to perform a full quantum Monte Carlo simulation for the Restricted Primitive Model (RPM),
an electrically neutral fluid of particles of opposite charge made thermodynamically stable by preventing the particles
collapse through the inclusion of a hard core of a certain radius centered on each particle. Some attempts have been
made for large mass asymmetries between the positive and negative charges requiring a mixed MC (classical) - DMC
(quantum) treatment (Ceperley et al., 2002; Dewing and Ceperley, 2002) where one treats the slow ions through the
Born-Oppenheimer approximation and the fast ones at zero temperature. Other alternatives could be a mixed MC -
PIMC or more generally a full PIMC one.

Follows an excerpt from the last March and Tosi book (March and Tosi, 2002).
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A. Molten halides and some alloys of metallic elements

Unlike monatomic fluid like liquid argon already for liquid sodium it is necessary to view it as formed of positive
ions and conduction electrons. More obviously, one has to start from an ionic picture in describing a sodium chloride
melt or liquid lithium iodide.

The crystal structures of halide compounds arise from electronic charge transfer and local compensation of positive
and negative ionic charges through chemical order. Nature achieves charge compensation in two qualitatively distinct
ways. The first involves halogen sharing and high coordination for the metal ions, as for example in alkali, alkaline-
earth and lanthanide metal halides. In the second type charge compensation takes place within well defined molecular
units, either monomeric ones as for example in HgC12 and SbC13 or dimeric ones as in A1Br3.

Neutron diffraction studies of metal halide melts have shown that melting usually preserves the type of chemical
order found in the crystal. For example, the melting of MgC12 or YC13 can be viewed as a transition from an
ionic crystal to an ionic liquid (ionic-to-ionic, in short) and that of SbC13 or A1Br3 as a molecular-to-molecular
transition. However, A1Br3 and FeC13 are known instances of ionic-to-molecular melting. Intermediate-range order
(IRO), extending over distances of 5 to 10 Å say, has been revealed in both network-type and molecular-type melts.
This type of order is well known in glassy materials.

1. Alkali halide vapours

Even for alkali halides, the vapour at coexistence with the hot melt is made of molecular monomers and dimers. The
same basic ionic model can account for cohesion in these molecules as in the solid and dense liquid states, provided
that distortions of the electron shells of the ions from electrical and overlap effects are accounted for.

2. Coulomb ordering in monohalides and dihalides

3. Alkali halides

The nature of Coulomb ordering in a molten salt like NaCl is such that the distribution of the screening charge
density around any given ion oscillates in space, rather than being a monotonic function of distance as in the Debye-
Hückel theory. Nevertheless, a meaningful definition of screening length in a dense ionic fluid can be based on the
Debye-Hückel concept of the potential drop across the dipole layer formed by an ion and by the screening charge
distribution.

4. Noble-metal halides

The monovalent Cu+ and Ag+ ions, with an outer shell of ten d-electrons, have small ionic radius and large
electronic polarisability in comparison with the corresponding alkali ions. These properties lead to some hybridisation
and covalent binding in copper and silver halides, tending to favor low coordination of first neighbors and promoting
remarkable transport behaviors.

The ionic conductivity of solid CuBr and CuI increases rapidly with temperature, already reaching values of ≈
0.1 Ω−1cm−1 before attaining, through two structural phase transitions, fast-ion (superionic) behavior of the Cu+

ions before melting. A phase transition is also exhibited by AgI at 147 ◦C and is accompanied by a jump in ionic
conductivity to a values of ≈ 1 Ω−1cm−1, typical of ionic melts. The Ag+ ions in the a phase are disordered over
many interstitial sites. Solid CuC1, AgC1 and AgBr also show premelting phenomena, with the ionic conductivity
rising to values of 0.1− 0.5 Ω−1cm−1.

These materials melt at relatively low temperature with a relatively low entropy change, while the ionic conductivity
of the melt is comparable to that of molten alkali halides. Excess entropy has been released in the crystal before
melting through the massive disordering of the metal ions. Diffraction data are available for all melts of this family:
overall, their liquid structure can be described in term of a random close-packing of halogens, accommodating the
metal ions in tetrahedral-like coordinations.
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5. Fluorite-type superionic conductors

Fluorite-type materials such as SrC12 undergo a diffuse transition to a high-conductivity state before melting. The
ionic conductivity and the entropy increase rapidly but continuously with temperature across the transition, whereas
the heat capacity shows a peak. A high dynamic concentration of anionic Frenkel defects (interstitial-vacancy pairs)
is gradually created across the transition, as revealed by neutron diffraction and diffuse quasi-elastic scattering studies
on a variety of materials including SrC12, CaF2, PbF2 and UO2. In other materials, such as BaC12 and SrBr2, a
superionic state is attained through a structural phase transition to the fluorite structure.
The liquid structure of BaC12 and SrC12 has been determined by neutron diffraction using isotopic substitution.

In both melts, within the frame of the divalent cations, the halogen ion component is more weakly ordered. The
liquid structure thus shows a remnant of the fast-ion conducting state that the solid attains through an extensive
disordering of the anions.
The observed short-range ordering in molten SrC12 and BaC12 suggests that freezing may be viewed as a process

in which the cationic component is independently crystallising and at the same time modulating the anions into the
lattice periodicity. The anionic component in the hot crystal near melting may thus be described as a modulated
“lattice liquid”. In turn, the diffuse transition from the superionic to the “normal” state on cooling the SrC12 crystal
may be viewed as a continuous process of anionic freezing inside the periodic force field of the metal-ion lattice.

6. Tetrahedral-network structure in ZnCl2

The pair structure is also experimentally known for a number of other dihalide melts. The evolution of the liquid
structure with increasing covalency versus ionicity of the bonding brings it from a cation-dominated structure to
one in which the anions provide a “deformable frame” accommodating the doubly-charged cations. The C1−-C1−

structural correlations are not especially affected: the C1-C1 bond length stays in the range 3.6 to 3.8 Å.
The state of pronounced IRO in molten ZnC12 arises from strongly stable local tetrahedral structures through the

formation of a network of chlorines. The partial distribution functions can be interpreted as describing a disordered
close-packed arrangement of chlorine ions which provides tetrahedral sites for the Zinc ions. Such a structural ar-
rangement is very similar to that of the glassy state of ZnC12: the Zn-C1 bond length is practically the same in the
two states and the average coordination number of Zn is reported as 3.8 in the glass and ≈ 4 in the melt.

B. Structure of trivalent-metal halides

Two main trends emerge from liquid structure studies on trichlorides: (i) the trend from cation-dominated Coulomb
ordering to loose octahedral-network structures across the series of lanthanide compounds including YC13, and (ii)
the stabilization of molecular structures with strong intermolecular correlations leading to IRO. The overall structural
evolution is governed by the increasing weight of covalency versus ionicity.

1. Octahedral-network formation in lanthanide chlorides

X-ray diffraction data on the series of molten rare-earth trichlorides show similar structural characters. The dMCl

bond length lies in the range 2.7-2.9 Å while the second-neighbor bond lengths are dMM ≈ 5 Å and dClCl ≈ 4 Å,
indicating a Coulomb ordering primarily ruled by the repulsion between the cations as discussed earlier for SrC12.
Ionic conductivity and Raman scattering data suggest that the coordination of the metal ions is becoming more stable
through the series, leading to a liquid structure which resembles a loose network of Cl-sharing octahedra.

2. Ionic-to-molecular melting in AlCl3 and FeCl3

YCl3 is structurally isomorphous to A1C13 in the crystal phase. The octahedral coordination of the Y, Al and Fe
ions in the crystal is apparent, which is basically preserved in YC13 on melting. The upper cluster illustrates the
cooperative mechanism of metal-ion displacements by which the A12C16 and Fe2Cl6 molecules can form on melting,
each dimer being in the shape of two tetrahedra sharing an edge. In A1Br3 such an arrangement of A1 ions in
tetrahedral sites already exists in the crystal. The melting of A1C13 and FeCl3 also involves expansion of the chlorine
packing.



27

3. Liquid haloaluminates

In A1Cl3 and A1Br3, while the pure melt is a molecular liquid, molten-salt behavior emerges on mixing with
alkali halides. Complex anions are formed with the alkalis playing the role of counterions. Thus, starting from
neutral A12C16 dimers in the A1C13 liquid, the (A12C17)

− anion in the shape of two tetrahedra sharing a corner
has been identified in mixtures with alkali chlorides. This anion is ultimately replaced by (A1C14)

− anions at 1 : 1
stoichiometry.
The fluoroaluminates behave quite differently. The Na3A1F4 compound, known as cryolite, presents special in-

terest because of its role in the industrial HaI1-Héroult process for the electrodeposition of A1 metal from alumina.
The Raman spectra of molten (A1F3)c. (NaF)l−c and other Al-alkali fluoride mixtures give evidence for a gradual
conversion of (A1F4)

− into (A1Fs)2− and (A1F6)
− as the solution becomes more basic with c decreasing below 0.5.

4. Molecular-to-molecular melting in GaCl3 and SbCl3

For other trihalides, such as GaCl3 and SbCl3 molecular units can be recognized as constituents in the crystal
structure. Crystalline GaC13 can be viewed as composed of Ga2C16 dimers. The crystal structure of SbC13 is instead
built by packing chains of monomers in the shape of trigonal pyramids with metal ions at the apices. The stable
molecular units in the vapour phase are the Ga2C16 dimer and the SbCl3 monomer.
The liquid structure of SbCl3 at 80 ◦C has been studied by a combination of X-ray and neutron diffraction. It

can be described as arising from separate monomeric units with strong intermolecular correlations. Each metal ion
has three additional chlorine neighbors from other molecules: such a strongly distorted octahedral arrangement could
result from stacking the monomers in chains like umbrellas, the dipole axes of molecules within a chain being strongly
correlated over at least one or two molecular diameters.
The neutron diffraction patterns measured for molten A1Br3, GaBr3 and GaI3 show three peaks at approximately

1.0, 1.9 and 3.4 Å−1. The corresponding pair distribution functions exhibit a very well defined coordination shell of
first neighbors, with coordination number 4.0± 0.2 for A1Br3 and GaBr3 and 3.75± 0.2 for GaI3. The intermolecular
correlations between halogens are quite significant, the corresponding coordination number being in the range typical
of a random close-packing in the liquid state.

C. Chemical short-range order in liquid alloys

Fully ionized salts with a large band gap, like the alkali halides, remain ionic across melting. At the opposite
extreme, melting of covalent semiconductors such as Ge and InSb involves a collapse of the covalent structure, which
is directly revealed by an increase of coordination from 4 to values in the range 6-8 and by a sharp increase in electrical
conductivity to an essentially metallic type. Between these extremes a number of systems have been identified which
show a variety of intermediate electronic behavior in the liquid phase.

1. The CsAu compound

The stoichiometric CsAu compound crystallizes in the CsCl-type structure and is a strongly polar semiconductor
with an optical band gap of 2.6 eV at room temperature. Its electrical conductivity drops on melting to a value which
is comparable to molten salts. Electromigration experiments give evidence that Cs migrates to the cathode and Au
to the anode, one Cs+ and one Au− being transported per elementary charge to the electrodes.
A neutron diffraction study of the liquid structure of the Cs-Au alloy shows a structure in the neutron structure

factor at k = 1.2 Å−1, which is interpreted as the “Coulomb prepeak” characteristic of chemical order. After Fourier
transform of these data, the Cs-Au first neighbor distance at 3.6 Å can be followed up to 80% Cs, while the Cs-Cs
distance at 5.3 Å characteristic of the pure Cs metal start emerging at 70% Cs.

2. Other alkali-based alloys with chemical short-range order

Interspecies ordering as shown by the Cs-Au system has been reported for a number of other alkali-based alloys,
the alloying partners being elements of group III, IV or V. The formation of chemical short-range order at certain
compositions is signalled by anomalies in electronic properties such as the electrical resistivity and the magnetic
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susceptibility, which reflect a minimum in the electron density of states at the Fermi level if not the opening of
a gap due to full charge transfer. Three different kinds of compound formation can be identified: (i) compound
formation near the electronic octet composition A4B as in Li-Pb or Li-Sn; (ii) compound formation near the equimolar
composition AB, as in K-Pb or Rb-Pb; and (iii) compound formation near both these compositions, as in Li-Si, Li-Ge
or Na-Sn. The data show increasing stability of the octet composition through the sequence Si, Ge, Sn and Pb, and
decreasing stability through the sequence from Li to Cs.
A neutron diffraction measurement of the Bhatia-Thornton 6 concentration-structure factor in Li4Pb has shown

chemical order extending over a range of about 20 Å in the corresponding gcc(r) distribution function. With regard
to alkali-group IV alloys in the second and third classes mentioned above, such as K-Pb or Na-Sn, it has proposed a
model for order at equimolar composition which invokes formation of essentially tetrahedral Pb4 or Sn4 polyanions.
Such tetrahedral “Zintl ions” are seen in the crystal structure of the equiatomic compound. In such a tetrahedral
cluster the p-type electron states of Pb, say, would be split into bonding and antibonding states and the former could
be filled by electron transfer from the alkali atoms.
The presence of polyanions in Zintl alloys also has dynamical consequences. A striking case is NaSn, in which the

Sn4 polyanions are observed to undergo jump reorientations and thereby to enhance the diffusivity of the Na cations
by a paddle-wheel mechanism. These two types of disorder appear simultaneously as the melting point is approached.

D. Liquid metals

Some properties of simple liquid metals having conduction electrons in s and p states, that specifically reflect
their nature as two-component liquids of ions and electrons are: (i) the effective interaction between pairs of ions as
determined by screening of their bare Coulomb repulsions by the conduction electrons; (ii) the structural correlation
functions involving the conduction electrons and supplementing the nuclear structure factor S(k) in a full description
of the liquid-metal structure; and (iii) the theory of electrical resistivity and viscosity of liquid metals. For a general
account of liquid metals the book of March (March, 1990) may be consulted. in the limit when the effects of the ionic
cores become negligible, we shall call the plasma particles “Jellium”.

Appendix A: Ideal gas energy and exchange energy as a function of polarization

For the general case of N+ spin-up particles the Fermi wave-vector for the spin-up (spin-down) particles will be

k±F = (1± ξ)1/3kF , (A1)

with

kF = (3π2n)1/3 = (9π/4)1/3/a0rs, (A2)

the Fermi wave-vector of the unpolarized fluid.
The Fermi energy will be

kBTF =
∑

σ

(~kσF )
2

2m
(A3)

=
~
2
[

(1 + ξ)2/3 + (1 − ξ)2/3
]

k2F
2m

. (A4)

The degeneracy parameter will then be

Θ =
2m

~2

(

1

3π2n

)2/3
(

kBT
[

(1 + ξ)2/3 + (1− ξ)2/3
]

)

. (A5)

Then finding κ+ and κ− from the following equations

I(1/2, κ+) =
2

3
Θ−3/2 (1 + ξ)

[

(1 + ξ)2/3 + (1− ξ)2/3
]3/2

, (A6)

I(1/2, κ−) =
2

3
Θ−3/2 (1− ξ)

[

(1 + ξ)2/3 + (1− ξ)2/3
]3/2

, (A7)

6 A. B. Bhatia and D. E. Thornton, Phys. Rev. B 2, 3004 (1970)
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we can determine the kinetic energy per particle of the partially polarized, 0 < ξ < 1, ideal Fermi gas

e0 =
2r3s

3πβ5/2

1

Ry5/2

[

I(3/2, κ+)

(1 + ξ)
+
I(3/2, κ−)
(1− ξ)

]

. (A8)

The exchange energy on the other hand will be

ex = − r3s
3π2β2

1

Ry2

[

1

(1 + ξ)

∫ ∞

0

dx

1 + ex−κ+

∫ ∞

0

dy

1 + ey−κ+

∫ 1

−1

dz
√

x/y +
√

y/x− 2z

+
1

(1− ξ)

∫ ∞

0

dx

1 + ex−κ−

∫ ∞

0

dy

1 + ey−κ−

∫ 1

−1

dz
√

x/y +
√

y/x− 2z

]

, (A9)

Appendix B: Jastrow, backflow, and three-body

In terms of the stochastic process governed by f(R, t) one can write, using Kac theorem (Kac, 1951, 1959)

∫

dRf(R, τ) =

〈

exp

[

−
∫ τ

0

dtEL(R
t)

]〉

DRW

, (B1)

where 〈. . .〉DRW means averaging with respect to the diffusing and drifting random walk. Choosing a complete set of
orthonormal wave-functions Ψi we can write for the true time dependent many-body wave-function

φ(R, τ) =
∑

i

Ψi(R)

∫

dR′Ψi(R
′)φ(R′, τ) ≈ Ψ(R)

∫

dR f(R, τ)

= Ψ(R)

〈

exp

[

−
∫ τ

0

dtEL(R
t)

]〉

DRW

, (B2)

where Ψ is the wave-function, of the set, of maximum overlap with the true ground-state, the trial wave-function.
Assuming that at time zero we are already close to the stationary solution, for sufficiently small τ we can approximate

〈

exp

[

−
∫ τ

0

dtEL(R
t)

]〉

DRW

≈ e−τEL(Rτ ) . (B3)

By antisymmetrising we get the Fermion wave-function

φF (R, τ) ≈ A
[

e−τEL(R)Ψ(R)
]

, (B4)

where given a function f(R) we define the operator (a symmetry of the Hamiltonian)

A[f(R)] =
1

NP

∑

P
(−1)Pf(PR) , (B5)

here NP = N+!N−! is the total number of allowed permutations P .
This is called the local energy method to improve a trial wave-function. Suppose we start from a simple unsymmetri-

cal product of single particle plane waves of N+ spin-up particles with k < k+F occupied and N− spin-up particles with
k < k−F occupied, for the zeroth order trial wave-function. Equation (B4) will give us a first order wave-function of
the Slater-Jastrow type (see equation (2.16)). If we start from an unsymmetrical Hartree-Jastrow trial wave-function
the local energy with the Jastrow factor has the form

EL = V − λ
∑

i






−k2i − 2iki · ∇∇∇i

∑

j<k

u(rjk)−∇∇∇2
i

∑

j<k

u(rjk) +

∣

∣

∣

∣

∣

∣

∇∇∇i

∑

j<k

u(rjk)

∣

∣

∣

∣

∣

∣

2





, (B6)

where V = V (R) is the total potential energy and rij = |rij | = |ri − rj |. Then the antisymmetrized second order
wave-function has the form in Eq. (2.31), which includes backflow (see the third term), which is the correction inside
the determinant and which affects the nodes, and three-body boson-like correlations (see last term) which do not
affect the nodes.
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Appendix C: The Random Phase Approximation

In this Appendix we will work on an unpolarized system.
Within the linear density response theory (Hansen and McDonald, 1986) 7 one introduces the space-time Fourier

transform, χ(k, ω), of the linear density response function. Which is related through the fluctuation dissipation
theorem, S(k, ω) = −(2~/n)Θ(ω)Imχ(k, ω), to the space-time Fourier transform, S(k, ω) (dynamic structure factor),
of the van Hove correlation function (van Hove, 1954), 〈ρ(r, t)ρ(0, 0)〉/n, where ρ(r, t) = exp(iHt/~)ρ(r) exp(−iHt/~).
In the Random Phase Approximation (RPA) we have (Pines and Nozières, 1966)

1

χRPA(k, ω)
=

1

χ0(k, ω)
− e2ṽµ(k) , (C1)

where χ0 is the response function of the non-interacting Fermions (ideal Fermi gas), known as the Lindhard sus-
ceptibility (Lindhard, 1954). This corresponds to taking the “proper polarizability” (the response to the Hartree
potential) equal to the response of the ideal Fermi gas (Tosi, 1999). With the help of the fluctuation dissipation
theorem, S0(k, ω) = −(2~/n)Θ(ω)Imχ0(k, ω) gives the differential cross-section for inelastic scattering from the ideal
Fermi gas (at energy transfer ω ≥ 0). Scattering is due to the excitation of single particle-hole pairs

S0(k, ω) = 2π
∑

q,σ

n0
q[1− n0

q+k]δ

[

ω − 1

~
(eq+k − eq)

]

, (C2)

where ek = ~
2k2/(2m) and n0

k = Θ(|k| − kF ) is the momentum distribution of the ideal Fermi gas. We thus find

S0(k, ω) =















~πνF
ω

kvF
0 ≤ ω ≤ −ω2(k)

~πνF
kF

2k

[

1−
(

ω
kvF

− k
2kF

)2
]

|ω2(k)| ≤ ω ≤ ω1(k)

0 ω ≥ ω1(k)

(C3)

with νF = mkF /(nπ
2
~
2) the density of states for particles at the Fermi level, vF = ~kF /m the velocity of a free

particle on the Fermi surface, ω1(k) = ~(kkF + k2/2)/m, and ω2(k) = ~(−kkF + k2/2)/m. Naturally we also have
Sx(k) =

∫

S0(k, ω)dω/(2π).
The RPA static structure factor is then recovered through

SRPA(k) = −~

n

∫ ∞

0

dω

π
Imχ(k, ω) . (C4)

where

Imχ =
Imχ0

(1− e2ṽµReχ0)2 + (e2ṽµImχ0)2
, (C5)

and

Imχ0 = − n

2~
S0 , ω > 0 , (C6)

Reχ0 = −nνF
{

1

2
+

1− (x− y)2

8y
ln

∣
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x− 1− y

x+ 1− y
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+
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8y
ln
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∣

∣
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x− 1 + y

∣

∣

∣

∣

}

, (C7)

where x = ω/kvF and y = k/2kF . In deriving Eq. (C7) we used the fact that Imχ0(k, ω) is an odd function of ω and
the Kramers-Kronig relations.

Appendix D: Analytic expressions for the non-interacting fermions ground state

Usually gσ,σ′ is conventionally divided into the (known) exchange and the (unknown) correlation terms

gσ,σ′ = gxσ,σ′ + gcσ,σ′ , (D1)

where the exchange term corresponds to the uniform system of non-interacting fermions.

7 Note that, unlike in the classical case, in quantum statistical physics even the linear response to a static perturbation requires the use
of imaginary time correlation functions (Martin, 1988).
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1. Radial distribution function

We thus have (from the definition of the RDF (2.37) and using Slater determinants for the wave-function)

gx+,−(r) = 1 , (D2)

gxσ,σ(r) = 1−
[

3j1(k
σ
F r)

kσF r

]2

, (D3)

where j1(x) = [sin(x)− x cos(x)]/x2 is the spherical Bessel function of the first kind and (kσF )
3 = 6π2nσ is the Fermi

wave-number for particles of spin σ.

2. Static structure factor

Again we will have the splitting Sσ,σ′ = Sx
σ,σ′ + Sc

σ,σ′ into the exchange and the correlation parts. So that for the
non-interacting fermions we get

Sx
+,−(k) = 0 , (D4)

Sx
σ,σ(k) =

nσ

n
− n2

σ

n
Θ(2kσF − k)

3π2

(kσF )
3

(

1− k

2kσF

)2(

2 +
k

2kσF

)

=
nσ

n

{

1 k > 2kσF
3
4

k
kσ
F
− 1

16

(

k
kσ
F

)3

k < 2kσF
, (D5)

where Θ(x) is the Heaviside step function.

3. Internal energy

The Hartree-Fock approximation (Fock, 1930; Hartree, 1928; Slater, 1930) for the ground state of a system of
interacting fermions assumes that the many-body wave function is a Slater determinant built from single-particle
states, which are to be determined self-consistently by minimization of the expectation value of the Hamiltonian.
Whereas for an inhomogeneous many-electron system (e.g. an atom or a molecule) the solution of the Hartree-Fock
self-consistent problem can usually be obtained only in a numerical form involving further approximations, the exact
Hartree-Fock solution is immediate in the case of a homogeneous fluid: in this case the self-consistent single-particle
states are necessarily plane waves, from translational invariance. Hence, the Hartree-Fock wave function for the
ground-state of a homogeneous fluid is the same as the ground-state wave function of the ideal Fermi gas.
Including explicitly the spin indices we get

EHF
g =

∑

k,σ

n0
k,σ

[

ǫk +
1

2
ΣHF (k)

]

, (D6)

where n0
k,σ is the ideal Fermi distribution, ǫk = ~

2k2/2m and for an unpolarized system

ΣHF(k) = v0 +
1

N

∑

q

vqn
0
k+q,σ (D7)

= −e
2kF
π
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∣

∣

]

, (D8)

here v0 = vq=0 and vq = 4πe2/q2. So that

eHF
g = EHF

g /N =

(

3

5α2r2s
− 3

2παrs

)

Ry =

(

2.21

r2s
− 0.916

rs

)

Ry, (D9)

with α = (9π/4)−1/3. As already remarked, the gain in potential energy found in Hartree-Fock derives from the
fact that the exclusion principle is built into the many-body wave function and keeps apart pairs of electrons with
parallel spins, thus lowering their Coulomb repulsive interaction energy on average. Notice that the ratio between
potential and kinetic energy is proportional to rs: this dimensionless length gives a measure of the coupling strength,
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which increases with decreasing density. The main problem with the Hartee-Fock approximation is that, by including
exchange between electrons with parallel spins but neglecting correlations due to the Coulomb repulsions (which are
most effective for electrons with antiparallel spins), it includes neither dielectric screening nor the collective plasma
excitation. As shown in section II.D.2 the Hartree-Fock ground-state can be determined from the exchange part of
the radial distribution function (see Eqs. (D2)-(D3)).
When one proceeds to evaluate the ground-state energy of Jellium by perturbation theory beyond first order (i.e.

beyond Hartree-Fock), one meets divergences arising from the long-range character of the Coulomb interactions.
On summing to infinite order the most strongly divergent terms of the perturbative expansion (corresponding to
the RPA theory), screening introduces a cut-off as the lower end of integrals over wave vector space and cures the
divergences (Gell-Mann and Bruckner, 1957). Such a calculation, supplemented by the inclusion of a contribution
from second-order exchange processes, yields the low rs expansion

eg(rs) =

[

2.21

r2s
− 0.916

rs
+ 0.0622 lnrs − 0.096 + . . .

]

Ry, (D10)

plus terms going like rs, rs ln rs, etc. The results of such a truncated expansion is reasonably accurate only up to
rs = 1, whereas the values of rs that are relevant in the physics of normal metals extend up to rs = 6.
In the thirties Wigner (Wigner, 1938a,b) had already noticed that an optimal value epot = −(1.8/rs)Ry is obtained

for the potential energy if the electrons are placed on the sites of a crystalline lattice having body-centered-cubic (bcc)
structure. The gain by a factor ≈ 2 over the potential energy in Hartree-Fock is clearly related to the fact that in
the crystal all pairs of electrons keep apart irrispectively of their relative spin orientation. Using the crystalline result
at large rs in combination with an estimate of the correlation energy at low rs, Wigner proposed the interpolation
formula

eWg =

[

2.21

r2s
− 0.916

rs
− 0.88

7.8 + rs

]

Ry, (D11)

as approximately valid at metallic densities.

Appendix E: Radial distribution functions sum rules in the ground state

Both the behavior of the RDF at small r and at large r has to satisfy to general exact relations or sum rules.

1. Cusp conditions

When two electrons (µ = ∞) get closer and closer together, the behavior of gσ,σ′(r) is governed by the exact cusp
conditions (Hoffmann-Ostenhof et al., 1992; Kimball, 1973; Rajagopal et al., 1978)

d

dr
gσ,σ(r)

∣

∣

∣

∣

r→0

= 0 , (E1)
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dr3
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∣

∣

∣

∣

r→0

=
3

2a0

d2

dr2
gσ,σ(r)

∣

∣

∣

∣
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, (E2)

d

dr
g+,−(r)

∣

∣

∣

∣

r→0

=
1

a0
g+,−(0) , (E3)

where in the adimensional units a0 → 1/rs. For finite µ we only have the condition gσ,σ(0) = 0 due to Pauli exclusion
principle.

2. The Random Phase Approximation (RPA) and the long range behavior of the RDF

The small k behavior of the RPA, summarized in Appendix C, is exact (Pines and Nozières, 1966). One finds

SRPA(k) =
~k2

2mωp
, k ≪ kF , (E4)

where ωp =
√

4πne2/m is the plasmon frequency (Giuliani and Vignale, 2005). This is also known as the second-
moment sum rule for the exact RDF and can be rewritten as n

∫

dr r2[g(r) − 1] = −6(~/2mωp). We can then say
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that g(r) − 1 has to decay faster than r−5 at large r. The fourth-moment (or compressibility) sum rule links the
thermodynamic compressibility, χ = [nd(n2de0/dn)/dn]

−1, (Tosi, 1999) to the fourth-moment of the RDF. For the
equivalent classical system it is well known that the correlation functions have to decay faster than any inverse power
of the distance (Alastuey and Martin, 1985; Lighthill, 1959; Martin, 1988) (in accord with the Debye-Hükel theory).
To the best of our knowledge we do not know, yet, the exact decay for the zero temperature quantum case.

Appendix F: The primitive action

Suppose the Hamiltonian is split into two piecesH = T +V , where calt and V are the kinetic and potential operators.
Recall the exact Baker-Campbell-Hausdorff formula to expand exp(−τH) into the product exp(−τT ) exp(−τV). As
τ → 0 the commutator terms which are of order higher than τ2 become smaller than the other terms and thus can
be neglected. This is known as the primitive approximation

e−τ(T+V) ≈ e−τT e−τV . (F1)

hence we can approximate the exact density matrix by product of the density matrices for T and V alone. One might
worry that this would lead to an error as M → ∞, with small errors building up to a finite error. According to the
Trotter (Trotter, 1959) formula, one does not have to worry

e−β(T+V) = lim
M→∞

[

e−τT e−τV]M . (F2)

The Trotter formula holds if the three operators T , V , and T + V are self-adjoint and make sense separately, for
example, if their spectrum is bounded below (Simon, 1979). This is the case for the Hamiltonian describing Jellium.
Let us now write the primitive approximation in position space

ρ(R0, R2; τ) ≈
∫

dR1〈R0|e−τT |R1〉〈R1|e−τV |R2〉, (F3)

and evaluate the kinetic and potential density matrices. Since the potential operator is diagonal in the position
representation, its matrix elements are trivial

〈R1|e−τV |R2〉 = e−τV (R1)δ(R2 −R1). (F4)

The kinetic matrix can be evaluated using the eigenfunction expansion of T . Consider, for example, the case of
distinguishable particles in a cube of side L with periodic boundary conditions. Then the exact eigenfunctions and
eigenvalues of T are L−3N/2eiKnR and λK2

n, with Kn = 2πn/L and n a 3N -dimensional integer vector. We are using
here dimensional units. Then

〈R0|e−τT |R1〉 =
∑

n

L−3Ne−τλK2
ne−iKn(R0−R1) (F5)

= (4πλτ)−3N/2 exp

[

− (R0 −R1)
2

4λτ

]

, (F6)

where λ = ~
2/2m. Eq. (F6) is obtained by approximating the sum by an integral. This is appropriate only if the

thermal wavelength of one step is much less than the size of the box, λτ ≪ L2. In some special situations this condition
could be violated, in which case one should use Eq. (F5) or add periodic “images” to Eq. (F6). The exact kinetic

density matrix in periodic boundary conditions is a theta function,
∏3N

i=1 θ3(zi, q), where z = π(Ri
0 −Ri

1)/L, R
i is the

ith component of the 3N dimensional vector R, and q = e−λτ(2π/L)2 (see chapter 16 of Ref. (Abramowitz and Stegun,
1970)). Errors from ignoring the boundary conditions are O(q), exponentially small at large M .
A link m is a pair of time slices (Rm−1, Rm) separated by a time step τ = β/M . The action Sm of a link is defined

as minus the logarithm of the exact density matrix. Then the exact path-integral expression becomes

ρ(R0, RM ;β) =

∫

dR1 . . . dRM−1 exp

[

−
M
∑

m=1

Sm

]

, (F7)

It is convenient to separate out the kinetic action from the rest of the action. The exact kinetic action for link m will
be denoted Km

Km =
3N

2
ln(4πλτ) +

(Rm−1 −Rm)2

4λτ
, (F8)
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The inter-action is then defined as what is left

Um = U(Rm−1, Rm; τ) = Sm −Km. (F9)

In the primitive approximation the inter-action is

Um
1 =

τ

2
[V (Rm−1) + V (Rm)], (F10)

where we have symmetrized Um
1 with respect to Rm−1 and Rm, since one knows that the exact density matrix is

symmetric and thus the symmetrized form is more accurate.

A capital letter U refers to the total link inter-action. One should not think of the exact U as being strictly the
potential action. That is true for the primitive action but, in general, is only correct in the small-τ limit. The exact
U also contains kinetic contributions of higher order in τ . If a subscript is present on the inter-action, it indicates
the order of approximation; the primitive approximation is only correct to order τ . No subscript implies the exact
inter-action.

The residual energy of an approximate density matrix is defined as

EA(R,R
′; t) =

1

ρA(R,R′; t)

[

H+
∂

∂t

]

ρA(R,R
′; t). (F11)

The residual energy for an exact density matrix vanishes; it is a local measure of the error of an approximate density
matrix. The Hamiltonian H is a function of R; thus the residual energy is not symmetric in R and R′.

It is useful to write the residual energy as a function of the inter-action. We find

EA(R,R
′; t) = V (R)− ∂UA

∂t
− (R −R′) · ∇UA

t
+ λ∇2UA − λ (∇UA)

2
. (F12)

The terms on the right hand side are ordered in powers of τ , keeping in mind that U(R) is of order τ , and |R − R′|
is of order τ1/2. One obtains the primitive action by setting the residual energy to zero and dropping the last three
terms on the right hand side.

The residual energy of the primitive approximation is

E1(R,R
′; t) =

1

2
[V (R)− V (R′)]− 1

2
(R −R′) · ∇V +

λt

2
∇2V − λt2

4
(∇V )

2
. (F13)

With a leading error of ∼ λτ2.

Appendix G: The pair-product action

An often useful method to determine the many-body action is to use the exact action for two electrons (Barker,
1979). To justify this approach, first assume that the potential energy can be broken into a pairwise sum of terms

V (R) =
∑

i<j

v(|ri − rj |), (G1)

with |ri − rj | = rij . Next, apply the Feynman-Kac formula for the inter-action

e−U(R0,RF ;τ) =

〈

exp

[

−
∫ τ

0

dt V (R(t))

]〉

RW

, (G2)
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where the notation 〈. . .〉RW means the average over all Gaussian random walks from R0 to RF in a “time” τ . So that

e−U(R0,RF ;τ) =

〈

exp



−
∫ τ

0

dt
∑

i<j

v(rij(t))





〉

RW

(G3)

=

〈

∏

i<j

exp

[

−
∫ τ

0

dt v(rij(t))

]

〉

RW

(G4)

≈
∏

i<j

〈

exp

[

−
∫ τ

0

dt v(rij(t))

]〉

RW

(G5)

=
∏

i<j

exp
[

−u2(rij , r′ij ; τ)
]

(G6)

= exp



−
∑

i<j

u2(rij , r
′
ij ; τ)



 = e−U2(R0,RF ;τ), (G7)

where U2 is the pair-product action and u2 is the exact action for a pair of electrons. At low temperatures the pair
action approaches the solution of the two particle wave equation. The result is the pair-product or Jastrow ground-
state wave function, which is the ubiquitous choice for a correlated wave function because it does such a good job of
describing most ground-state correlations.
The residual energy (see Eq. (F11)) for the pair-product action is less singular than for other forms. We have that

u2(rij , r
′
ij ; τ) = − ln

〈

exp

(

−
∫ τ

0

dt v(rij(t))

)〉

RW

, (G8)

is of order τ2 since the two body problem can be factorized into a center-of-mass term and a term that is a function
of the relative coordinates. Moreover we must have

∂u2
∂τ

= v(rij(τ)), (G9)

so that

∂U2

∂τ
= V (R(τ)), (G10)

which tells that only the last three terms on the right hand side of Eq. (F12) contribute to the residual energy. We
also have

∇U2 =
∑

i

∑

i6=j

∇iu2(rij , r
′
ij ; τ), (G11)

where the indices run over the particles. So the leading error of the pair-product action is ∼ λτ3.
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