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Suppose the bare potential in infinite d dimensional space is v(r). Let us define the

Fourier transform by

ṽk =

∫

∞

−∞

ddr e−ik·rv(r) . (1)

Then its inverse is

v(r) =

∫

∞

−∞

ddk

(2π)d
eik·rṽk . (2)

Now let us find the energy of a single particle interacting with an infinite rectangular

lattice of another particle a distance r away. To make it converge we also add a uniform

background of the same density (Ω =volume) of opposite charge. Thus the “image pair-

potential” is equal to

vI(r) =
∑

L

v(r+ L)− ṽ0/Ω . (3)

The L sum is over the Bravais lattice of the simulation cell L = (mxLx, myLy, . . .) where

mx, my, . . . range over all positive and negative integers. Converting this to k−space and

using the Poisson sum formula we get

vI(r) =
1

Ω

′
∑

k

ṽke
ik·r , (4)

where the prime indicates that we omit the k = 0 term; it cancels out with the

background. The k−sum is over reciprocal lattice vectors of the simulation box k =

(2πnx/Lx, 2πny/Ly, . . .).

Because both sums are so poorly convergent, we make the division into k−space and

r−space; taking the long-range part into k−space. We write

v(r) = vs(r) + vl(r) , (5)

and equivalently (since Fourier transform is linear)

ṽk = ṽsk + ṽlk . (6)
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Then the image pair-potential is written as

vI(r) =
∑

L

vs(|r+ L|) + 1

Ω

∑

k

ṽlke
ik·r − 1

Ω
ṽ0 . (7)

Now let us work with N particles of charge qi in a periodic box and let us compute the

total potential energy of the unit cell. Particles i and j are assumed to interact with a

pair-potential qiqjv(rij). The image potential energy for the N−particle system is

VI =
∑

i<j

qiqjvI(rij) +
∑

i

q2i vM , (8)

where vM is the interaction of a particle with its own images; it is a Madelung constant for

particle i interacting with the perfect lattice of the simulation cell. If this term were not

present, particle i would only see N − 1 particles in the surrounding cells instead of N . We

can find its value by considering the limit as two particles get close together with the image

pair-potential. Hence

vM =
1

2
lim
r→0

[vI(r)− v(r)] . (9)

Now we substitute the split up image pair-potential and collect all the terms together

VI =
∑

i<j

∑

L

qiqjvs(|rij + L|) + 1

Ω

′
∑

k

ṽlk
∑

i<j

qiqje
ik·rij − 1

Ω

∑

i<j

ṽs0qiqj +
∑

i

q2i vM ,(10)

vM =
1

2

[

∑

L

vs(|L|) +
1

Ω

′
∑

k

ṽlk −
1

Ω
ṽs0 − v(0)

]

, (11)

or,

VI =
∑

i<j

∑

L

qiqjvs(|rij + L|) + 1

2Ω

′
∑

k

ṽlk|ρk|2 +
1

2

∑

i

q2i vc −
1

2Ω
ṽs0

[

∑

i

qi

]2

, (12)

where

ρk =
∑

i

qie
ik·ri , (13)

|ρk|2 =
∑

i

q2i + 2
∑

i<j

qiqj cos(k · rij) , (14)

vc = lim
r→0

[

∑

L

vs(|r+ L|)− v(r)

]

. (15)

Now we give the standard forms for the breakup which is done with a Gaussian charge

distribution. α is a free parameter related to the width of the distribution. It gives nice
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analytic results but is not necessarily optimal. See the paper by Natoli and Ceperley (J.

Comp. Phys. 1994).

For an interaction that goes as v(r) = r−n the needed functions are

vs(r) =
Γ(ν, (αr)2)

Γ(ν)rn
, (16)

ṽlk =
πd/2(2/k)2µΓ(µ, (k/2α)2)

Γ(ν)
, (17)

ṽs0 =
πd/2

Γ(ν)µα2µ
, (18)

vc = − αn

νΓ(ν)
, (19)

where Γ(a, z) is the incomplete gamma function (see Abramowitz and Stegun) and ν = n/2

and µ = (d− n)/2.

Specializing for the usual case of the Coulomb interaction (n = 1) in three dimensions

d = 3, we get

vs(r) = erfc(αr)/r , (20)

ṽlk =
4πe−(k/2α)2

k2
(21)

ṽs0 =
π

α2
, (22)

vc = − 2α√
π

. (23)

One usually chooses α so that the short-ranged potential is nearly zero at the edge of

the box (±L/2,±L/2,±L/2) and then increases the number of k points until convergence

is achieved.


