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Suppose the bare potential in infinite d dimensional space is v(r). Let us define the

Fourier transform by

B = / iy =Ty (1) | (1)
Then its inverse is
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Now let us find the energy of a single particle interacting with an infinite rectangular
lattice of another particle a distance r away. To make it converge we also add a uniform
background of the same density (€2 =volume) of opposite charge. Thus the “image pair-
potential” is equal to

vr(r) = Zv(r +L)— 0/ . (3)

L
The L sum is over the Bravais lattice of the simulation cell L = (myL,, m,L,,...) where
My, My, ... range over all positive and negative integers. Converting this to k—space and

using the Poisson sum formula we get
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vr(r) = 5 > e (4)
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where the prime indicates that we omit the k = 0 term; it cancels out with the
background. The k—sum is over reciprocal lattice vectors of the simulation box k =
(27ny /Ly, 270y, /Ly, . . .).

Because both sums are so poorly convergent, we make the division into k—space and

r—space; taking the long-range part into k—space. We write
v(r) = vs(r) + u(r) (5)
and equivalently (since Fourier transform is linear)

@k = ﬁsk + @lk . (6)



Then the image pair-potential is written as
sz (lr+1L|) + Zf}ke : (7)
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Now let us work with N particles of charge ¢; in a periodic box and let us compute the
total potential energy of the unit cell. Particles ¢ and j are assumed to interact with a
pair-potential ¢;q;v(r;;). The image potential energy for the N—particle system is
Z qigqjvr(rij) + Z q; VM (8)
i<j
where v, is the interaction of a particle with its own images; it is a Madelung constant for
particle ¢ interacting with the perfect lattice of the simulation cell. If this term were not
present, particle ¢ would only see N — 1 particles in the surrounding cells instead of N. We
can find its value by considering the limit as two particles get close together with the image
pair-potential. Hence

var = S limlor(r) — v(r)] - ()

2 r—0

Now we substitute the split up image pair-potential and collect all the terms together

Vi = quzqﬂ’s (Jrij +L[) + szsz%q] kT — szoqzq] +Zq2vM ,(10)
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or,
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where

Pk = Zqieik'ri ; (13)

ve = lim sz(|r+L|)—v(r)] . (15)

Now we give the standard forms for the breakup which is done with a Gaussian charge

distribution. « is a free parameter related to the width of the distribution. It gives nice



analytic results but is not necessarily optimal. See the paper by Natoli and Ceperley (J.
Comp. Phys. 1994).

For an interaction that goes as v(r) = r~" the needed functions are

ar) = 1) (16
o = TG /20) .
o=t (18)
e = —,/?@ ’ (19)

where I'(a, z) is the incomplete gamma function (see Abramowitz and Stegun) and v = n/2
and p = (d—n)/2.

Specializing for the usual case of the Coulomb interaction (n = 1) in three dimensions

d = 3, we get
vs(r) = erfe(ar)/r, (20)
Uk = zlyre—k(iz/?a)? (21)
B = = (22)
v = o (23)

N
One usually chooses « so that the short-ranged potential is nearly zero at the edge of
the box (+L/2,£L/2,4+L/2) and then increases the number of k points until convergence

is achieved.



