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We derive the density matrix for a one dimensional free electron gas on a circle.
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I. A SIMPLE DERIVATION

Consider N =2p+ 1 (with p =0,1,2,3,... free polarized fermions on a circle of circumference L.
At an inverse temperature 5 the density matrix for one of those fermions is,

P15 B) = TOs(Fw = ), exp(—BACE)?)
~ i 7 n_zqexp<m<2§>2n2> exp(—imn(z — )
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where A\ = #%/(2m) and m is the fermions mass.
The density matrix of the N fermions is,

p(x,y;B) = % det{pr (i, y5; 8) 151

N
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= Jim Ky(xy:) | (12)
where x = (x1,22,...,2n), Yy = (V1,Y2, .- .,yn), and y;, x; are the initial and final positions of the fermions.
Notice that because of Pauli’ s principle (see appendix),
K,=0 when ¢<p . (1.3)
For the particular case ¢ = p there is a simple expression for K, namely,
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1<i<j<N
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This expression is the exact density matrix of the ground state (when 3 — 00) of the N fermions.
For example let’ s find the partition function Z(8) of the fermion system in the thermodynamic limit. We need to
calculate the trace Z,(8) of K,(x,y; ) and then take p to infinity.
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So we get,
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Or for the free energy,
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And in the thermodynamic limit,
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As expected the free energy is independent of temperature in the thermodynamic limit. Moreover we found the
expected results for the ground state energy
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where the Fermi wave vector is kp = mp.

But we see from equation that in the thermodynamic limit (i.e. p — oo and p = N/L constant) it fails to
give the exact density matrix of the fermions at finite inverse temperature S for which it is necessary to relax the
constraint ¢ = p and respect the order of the two limits, first the one over ¢ and only later the one over p.

Appendix A: A determinantal identity

Given three functions of two variables, K(x,y), L(x,y) and M(x,y) such that,

o0

K(z,y)= Y L(@n)M(n,y) . (A1)

n=—oo

Take the following product,

K(x1,yr1) K (22, Yra) -+ - K (20, Yrn) =
Z [L(x1, k1) L(x2,ka) - - - L@y, k)]

[M(k17y7r1)M(k27y7r2) M(knuy'n'n)] . (A2)



Summing appropriately with respect to all permutations we obtain,

det{ K (z;, yj)}?,j:l =

Y Llwy ki) L(wa, ka) -~ Liwn, k) det{M (ki, y;)} =1 - (A3)
ki,k2,....kn

The region of summation can be decomposed in nonoverlapping regions A, characterized by the inequalities k.1 <
kyo < -++ < kyn, where v is an arbitrary permutation of the set (1,2,...,n) into itself.

Transforming the region A, by the change of variable k,; — k; (i = 1,2,...,n) and collecting the resulting sums,
we obtain, for the righthand side of ,

S D (ML, ky-r1) L, ky-1a) - L, k1)

k1<ko<..<k, vV

det{M (ki,y;) }i'j=1 > (A4)
where the signature (—)'”‘ in each term appears as a consequence of rearranging the rows of det M.

So we derived the following composition formula E|,
det{K (zi,y)}ijm =, det{L(xs ky)} 1 det{M (ki y;)}7 o1 - (A5)

k1<ko<...<kn

Applied to the function k, defined in (I.1)) as,
q . .

=3 e (0)

n=-—q

we see that for ¢ > (N —1)/2,
det{k ( 17¢J)} i,j=1—
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—q<k1<kz<...<kn<q

So when ¢ = (IV — 1)/2 the sum has only one term which is given by equation (1.4). And for ¢ < (N — 1)/2,
det{k,} =0.

1 Which holds also after replacing the sums with integrals.
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