Thermodynamic limit of the free 1DEG on a circle

Riccardo Fanton*
Università di Trieste,
Dipartimento di Fisica,
strada Costiera 11,
34151 Grignano (Trieste),
Italy
(Dated: February 6, 2023)
We derive the density matrix for a one dimensional free electron gas on a circle.

CONTENTS

I. A simple derivation

I. A SIMPLE DERIVATION

Consider $N=2 p+1$ (with $p=0,1,2,3, \ldots$ free polarized fermions on a circle of circumference L. At an inverse temperature β the density matrix for one of those fermions is,

$$
\begin{align*}
\rho_{1}(x, y ; \beta) & =\frac{1}{L} \theta_{3}\left(\frac{\pi}{L}(x-y), \exp \left(-\beta \lambda\left(\frac{2 \pi}{L}\right)^{2}\right)\right) \\
& =\lim _{q \rightarrow \infty} \frac{1}{L} \sum_{n=-q}^{q} \exp \left(-\beta \lambda\left(\frac{2 \pi}{L}\right)^{2} n^{2}\right) \exp \left(-i \frac{2 \pi}{L} n(x-y)\right) \\
& =\lim _{q \rightarrow \infty} k_{q}(x, y ; \beta), \tag{1.1}
\end{align*}
$$

where $\lambda=\hbar^{2} /(2 m)$ and m is the fermions mass.
The density matrix of the N fermions is,

$$
\begin{align*}
\rho(\mathbf{x}, \mathbf{y} ; \beta) & =\frac{1}{N!} \operatorname{det}\left\{\rho_{1}\left(x_{i}, y_{j} ; \beta\right)\right\}_{i, j=1}^{N} \\
& =\lim _{q \rightarrow \infty} \frac{1}{N!} \operatorname{det}\left\{k_{q}\left(x_{i}, y_{j} ; \beta\right)\right\}_{i, j=1}^{N} \\
& =\lim _{q \rightarrow \infty} K_{q}(\mathbf{x}, \mathbf{y} ; \beta), \tag{1.2}
\end{align*}
$$

where $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{N}\right), \mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{N}\right)$, and y_{i}, x_{j} are the initial and final positions of the fermions.
Notice that because of Pauli's principle (see appendix),

$$
\begin{equation*}
K_{q}=0 \quad \text { when } \quad q<p . \tag{1.3}
\end{equation*}
$$

For the particular case $q=p$ there is a simple expression for K_{q}, namely,

$$
\begin{array}{r}
K_{p}(\mathbf{x}, \mathbf{y} ; \beta)=\frac{1}{N!} \frac{2^{N(N-1)}}{L^{N}} \exp \left(-2 \beta \lambda\left(\frac{2 \pi}{L}\right)^{2} \sum_{n=1}^{p} n^{2}\right) \\
\prod_{1 \leq i<j \leq N} \sin \left(\frac{\pi}{L}\left(x_{i}-x_{j}\right)\right) \sin \left(\frac{\pi}{L}\left(y_{i}-y_{j}\right)\right) . \tag{1.4}
\end{array}
$$

[^0]This expression is the exact density matrix of the ground state (when $\beta \rightarrow \infty$) of the N fermions.
For example let's find the partition function $Z(\beta)$ of the fermion system in the thermodynamic limit. We need to calculate the trace $Z_{p}(\beta)$ of $K_{p}(\mathbf{x}, \mathbf{y} ; \beta)$ and then take p to infinity.

$$
\begin{align*}
Z_{p}(\beta) & =\int_{-L / 2}^{L / 2} d x_{1} \cdots \int_{-L / 2}^{L / 2} d x_{N} K_{p}(\mathbf{x}, \mathbf{x} ; \beta) \\
& =\exp \left(-2 \beta \lambda\left(\frac{2 \pi}{L}\right)^{2} \sum_{n=1}^{p} n^{2}\right) \frac{1}{N!} \frac{2^{N(N-1)}}{(2 \pi)^{N}} I_{N} \tag{1.5}
\end{align*}
$$

where,

$$
\begin{align*}
I_{N} & =\int_{-\pi}^{\pi} d \theta_{1} \cdots \int_{-\pi}^{\pi} d \theta_{N} \prod_{1 \leq i<j \leq N} \sin ^{2}\left(\left(\theta_{i}-\theta_{j}\right) / 2\right) \\
& =N!\frac{(2 \pi)^{N}}{2^{N(N-1)}} \tag{1.6}
\end{align*}
$$

So we get,

$$
\begin{equation*}
Z_{p}(\beta)=\exp \left(-2 \beta \lambda\left(\frac{2 \pi}{L}\right)^{2} \sum_{n=1}^{p} n^{2}\right) \tag{1.7}
\end{equation*}
$$

Or for the free energy,

$$
\begin{align*}
F_{p}(\beta) & =2 \lambda\left(\frac{2 \pi}{L}\right)^{2} \sum_{n=1}^{p} n^{2} \\
& =\frac{\pi^{2}}{3} \rho^{2} \lambda \frac{N^{2}-1}{N} . \tag{1.8}
\end{align*}
$$

And in the thermodynamic limit,

$$
\begin{equation*}
f(\beta)=\lim _{p \rightarrow \infty} F_{p}(\beta) / N=\frac{\pi^{2}}{3} \rho^{2} \lambda . \tag{1.9}
\end{equation*}
$$

As expected the free energy is independent of temperature in the thermodynamic limit. Moreover we found the expected results for the ground state energy

$$
\begin{equation*}
E_{0}=\lambda L \int_{-k_{F}}^{k_{F}} k^{2} \frac{d k}{2 \pi}=\left(\frac{L}{2 \pi}\right) \frac{2}{3} \lambda k_{F}^{3}=N\left(\frac{\lambda \rho^{2} \pi^{2}}{3}\right) \tag{1.10}
\end{equation*}
$$

where the Fermi wave vector is $k_{F}=\pi \rho$.
But we see from equation (1.2) that in the thermodynamic limit (i.e. $p \rightarrow \infty$ and $\rho=N / L$ constant) it fails to give the exact density matrix of the fermions at finite inverse temperature β for which it is necessary to relax the constraint $q=p$ and respect the order of the two limits, first the one over q and only later the one over p.

Appendix A: A determinantal identity

Given three functions of two variables, $\mathrm{K}(\mathrm{x}, \mathrm{y}), \mathrm{L}(\mathrm{x}, \mathrm{y})$ and $\mathrm{M}(\mathrm{x}, \mathrm{y})$ such that,

$$
\begin{equation*}
K(x, y)=\sum_{n=-\infty}^{\infty} L(x, n) M(n, y) \tag{A1}
\end{equation*}
$$

Take the following product,

$$
\begin{align*}
& K\left(x_{1}, y_{\pi 1}\right) K\left(x_{2}, y_{\pi 2}\right) \cdots K\left(x_{n}, y_{\pi n}\right)= \\
& \quad \sum_{k_{1}, k_{2}, \ldots, k_{n}}\left[L\left(x_{1}, k_{1}\right) L\left(x_{2}, k_{2}\right) \cdots L\left(x_{n}, k_{n}\right)\right] \\
& \quad\left[M\left(k_{1}, y_{\pi 1}\right) M\left(k_{2}, y_{\pi 2}\right) \cdots M\left(k_{n}, y_{\pi n}\right)\right] . \tag{A2}
\end{align*}
$$

Summing appropriately with respect to all permutations we obtain,

$$
\begin{align*}
& \operatorname{det}\left\{K\left(x_{i}, y_{j}\right)\right\}_{i, j=1}^{n}= \\
& \quad \sum_{k_{1}, k_{2}, \ldots, k_{n}} L\left(x_{1}, k_{1}\right) L\left(x_{2}, k_{2}\right) \cdots L\left(x_{n}, k_{n}\right) \operatorname{det}\left\{M\left(k_{i}, y_{j}\right)\right\}_{i, j=1}^{n} . \tag{A3}
\end{align*}
$$

The region of summation can be decomposed in nonoverlapping regions Δ_{ν} characterized by the inequalities $k_{\nu 1}<$ $k_{\nu 2}<\cdots<k_{\nu n}$, where ν is an arbitrary permutation of the set $(1,2, \ldots, n)$ into itself.

Transforming the region Δ_{ν} by the change of variable $k_{\nu i} \rightarrow k_{i}(i=1,2, \ldots, n)$ and collecting the resulting sums, we obtain, for the righthand side of (A3),

$$
\begin{array}{r}
\sum_{k_{1}<k_{2}<\ldots<k_{n}} \sum_{\nu}(-)^{|\nu|} L\left(x_{1}, k_{\nu^{-1} 1}\right) L\left(x_{2}, k_{\nu^{-1} 2}\right) \cdots L\left(x_{n}, k_{\nu^{-1} n}\right) \\
\operatorname{det}\left\{M\left(k_{i}, y_{j}\right)\right\}_{i, j=1}^{n} \tag{A4}
\end{array}
$$

where the signature $(-)^{|\nu|}$ in each term appears as a consequence of rearranging the rows of det M.
So we derived the following composition formula ${ }^{1}$,

$$
\begin{equation*}
\operatorname{det}\left\{K\left(x_{i}, y_{j}\right)\right\}_{i, j=1}^{n}=\sum_{k_{1}<k_{2}<\ldots<k_{n}} \operatorname{det}\left\{L\left(x_{i}, k_{j}\right)\right\}_{i, j=1}^{n} \operatorname{det}\left\{M\left(k_{i}, y_{j}\right)\right\}_{i, j=1}^{n} \tag{A5}
\end{equation*}
$$

Applied to the function k_{q} defined in (1.1) as,

$$
\begin{equation*}
k_{q}(\theta, \phi)=\sum_{n=-q}^{q} \mu_{n} e^{i n \theta} e^{-i n \phi} \tag{A6}
\end{equation*}
$$

we see that for $q \geq(N-1) / 2$,

$$
\begin{align*}
& \operatorname{det}\left\{k_{q}\left(\theta_{i}, \phi_{j}\right)\right\}_{i, j=1}^{N}= \\
& \quad \mu_{0} \prod_{n=1}^{q}\left|\mu_{n}\right|^{2} \sum_{-q \leq k_{1}<k_{2}<\ldots<k_{n} \leq q} \operatorname{det}\left\{e^{i k_{j} \theta_{i}}\right\}_{i, j=1}^{N} \operatorname{det}\left\{e^{-i k_{i} \phi_{j}}\right\}_{i, j=1}^{N} . \tag{A7}
\end{align*}
$$

So when $q=(N-1) / 2$ the sum has only one term which is given by equation 1.4 . And for $q<(N-1) / 2$, $\operatorname{det}\left\{k_{q}\right\}=0$.

[^1]
[^0]: * rfantoni@ts.infn.it

[^1]: ${ }^{1}$ Which holds also after replacing the sums with integrals.

