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I. INTRODUCTION

Linear response theory [1–3] is a well known framework to describe the approach to thermal equilibrium in response
to an external perturbation acting on a many-body quantum fluid. We discuss two examples of quantum fluids: The
Coulomb Liquid and an Atomic Gas.

II. LINEAR RESPONSE THEORY

Let us introduce the density linear response function K(r− r′, t− t′) for a homogeneous fluid. Let us indicate with
Vb the “bare” potential in vacuum.

The coupling of the fluid to the perturbing potential is described by the Hamiltonian

H ′(t) =

∫
dr ρ(r)Vb(r, t), (2.1)

where ρ(r) is the density operator (here we implicitly assume that the mean value of the density has been subtracted
from ρ(r)). We will just consider the linear effect of this perturbation. The change in density is given by

δn(r, t) = ⟨ρ(r)⟩ − ⟨ρ(r)⟩0 = tr{[w(t)− w0]ρ(r)}, (2.2)

where tr denotes the trace, w(t) =
∫
ψ∗(R, t)ψ(R, t) d3NR is the perturbed density matrix whose unperturbed coun-

terpart is w0 = exp(−βH0)/tr{exp(−βH0)}, and β = 1/kBT with kB the Boltzmann constant and T the absolute
temperature. We are indicating with ψ(R, t) the many-body wave function of the fluid with particles at positions
R = (r1, r2, . . . , rN ) at time t. This satisfies to the Schrödinger equation

ih̄
∂ψ(R, t)

∂t
= [H0 +H ′(t)]ψ(R, t), (2.3)

where H is the Hamiltonian of the unperturbed fluid. Then the perturbed density matrix satisfies to

ih̄
∂w(t)

∂t
= [H0 +H ′(t), w(t)]

≈ [H0, w(t)− w0] + [H ′(t), w0], (2.4)

where [A,B] denotes the commutator AB −BA and in the last step we have linearized the effect of the perturbation
and used [H0, w0] = 0. This equation is subject to the initial condition

lim
t→−∞

w(t) = w0, (2.5)

representing a state of thermal equilibrium.
The linearized equation (2.4) has the following solution

w(t)− w0 = (ih̄)−1

∫ t

−∞
dt′ exp{−iH0(t− t′)/h̄}[H ′(t′), w0] exp{iH0(t− t′)/h̄}. (2.6)

∗ riccardo.fantoni@scuola.istruzione.it

mailto:riccardo.fantoni@scuola.istruzione.it


2

Inserting this result into Eq. (2.2) and using the cyclic invariance of the trace, tr{AB} = tr{BA}, we can write the
desired result as follows

δn(r, t) = (−i/h̄)
∫
dr′

∫ t

−∞
dt′ ⟨[ρ(r, t), ρ(r′, t′)]⟩0Vb(r′, t). (2.7)

Again the angle parenthesis ⟨A⟩0 = tr{w0A} denotes the mean value on the equilibrium state and ρ(r, t) is the
Heisenberg operator

ρ(r, t) = exp(iH0t/h̄)ρ(r) exp(−iH0t/h̄). (2.8)

So

K(r− r′, t− t′) = (−i/h̄)θ(t− t′)⟨[ρ(r, t), ρ(r′, t′)]⟩0. (2.9)

This result clearly embodies the causality property through the Heaviside step function θ.
Introducing the notation

χ′′(k, t− t′) = (1/2h̄)

∫
d(r− r′) exp[−ik · (r− r′)]⟨[ρ(r, t), ρ(r′, t′)]⟩0, (2.10)

we see, from Eq. (2.9) that the Fourier transform of K is the convolution integral of the Fourier transform of χ′′(k, t),
that we will indicate with χ′′(k, ω), and of the Heaviside step function, that is equal to i/(ω + iη) with η a small
positive quantity. We can then write the space-time Fourier transform of K like so

χ(k, ω) = −
∫ ∞

−∞

dω′

π
χ′′(k, ω′)/(ω − ω′ + iη). (2.11)

Using the rule (ω+ iη)−1 = P (1/ω)− iπδ(ω), where P denotes the Cauchy principal part, this can be written like so

χ(k, ω) = −P
∫ ∞

−∞

dω′

π
χ′′(k, ω′)/(ω − ω′) + iχ′′(k, ω). (2.12)

Since χ′′(k, t) is written in terms of the commutator of Hermitian operators it can be readily shown that χ′′(k, ω)
must be real. So we can write

Imχ(k, ω) = χ′′(k, ω). (2.13)

III. FLUCTUATION-DISSIPATION THEOREM

We now worry about the relationship between the density response function and the van Hove dynamic response
S(k, ω). Let us define the autocorrelation density function as

G(r− r′, t− t′) =
1

n
⟨ρ(r, t)ρ(r′, t′)⟩0, (3.1)

whose space-time Fourier transform is S(k, ω). The connection between G e K that gush from Eq. (2.9) can be
rewritten in Fourier transform like so

χ(k, ω) = (n/h̄)

∫ ∞

−∞

dω′

2π
[S(k, ω)− S(−k,−ω)]/(ω − ω′ + iη). (3.2)

This has the same form of Eq. (2.11) so that

Imχ(k, ω) = (−n/2h̄)[S(k, ω)− S(−k,−ω)]. (3.3)

For a fluid in thermodynamic equilibrium we must have

S(−k,−ω) = exp(−h̄βω)S(k, ω). (3.4)
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In order to prove this property we observe that its inverse space-time Fourier transform reads

G(−r,−t) = exp

(
−ih̄β ∂

∂t

)
G(r, t), (3.5)

since under time Fourier transform ∂/∂t → −iω. But Eq. (3.5) can readily be proven through the following steps
(where, once again we use the cyclic invariance of the trace and the definition of the Heisenberg operator, Eq. (2.8))

tr{exp(−βH0)ρ(0, 0)ρ(r, t)} = tr{ρ(r, t) exp(−βH0)ρ(0, 0)}
= tr{exp(−βH0)ρ(r, t− ih̄β)ρ(0, 0)}
= exp(−ih̄β∂/∂t)tr{exp(−βH0)ρ(r, t)ρ(0, 0)}. (3.6)

In the classical limit, for β small, Eq. (3.3) becomes

Imχ(k, ω) = (−nβω/2)S(k, ω). (3.7)

IV. KRAMERS-KRONIG RELATIONS

Causality imposes that the response function K(r, t) vanish for t < 0. In other words the fluid is influenced only by
the action of the external perturbation in the past. Introducing the “intermediate” response function χ(k, t) as the
space Fourier transform of K(r, t), we have

χ(k, t) = 0 for t < 0. (4.1)

On the other hand

χ(k, t) =

∫ ∞

−∞

dω

2π
exp(−iωt)χ(k, ω). (4.2)

Extending the definition of χ(k, ω) from real to complex frequencies, we can calculate this integral through contour
methods and for t < 0 we can close the contour with the semicircle at infinity above the real axis. The contribution
from the integration on the semicircle vanishes since χ(k, ω) ∝ ω−2 at high frequency. So the causality property (4.1)
is guaranteed if χ(k, ω) is analytic in the upper part of the complex frequency plane.
Let us now consider the integral ∮

χ(k, ω′)

ω − ω′ dω
′ = 0, (4.3)

on the contour Γ shown in Fig. 1. This contour integral vanishes due to the analiticity of χ(k, ω). The contribution
from the semicircle at infinity is again zero, so that

P

∫ ∞

−∞
dω′ χ(k, ω

′)

ω′ − ω
− iπχ(k, ω) = 0, (4.4)

where again P denotes the Cauchy principal part of the integral on the real frequency axis and the second term
comes from the integration over the small semicircle around the point ω. If we now separate χ(k, ω) into its real and
imaginary parts we find

P

∫ ∞

−∞
dω′ Reχ(k, ω

′)

ω′ − ω
+ πImχ(k, ω) = 0, (4.5)

and

P

∫ ∞

−∞
dω′ Imχ(k, ω

′)

ω′ − ω
− πReχ(k, ω) = 0. (4.6)

These are the Kramers-Kronig relations.
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FIG. 1. Integration contour on the complex ω plane.

V. THE DIELECTRIC FUNCTION

In a Coulomb liquid, the connection with the longitudinal dielectric function ϵ(k, ω), becomes apparent from the
Poisson equations

∇ ·D(r, t) = −4πene(r, t), (5.1)

∇ ·E(r, t) = −4πe[ne(r, t) + δn(r, t)], (5.2)

which yield

1

ϵ(k, ω)
=

k ·E(k, ω)

k ·D(k, ω)
= 1 +

δn(k, ω)

ne(k, ω)
= 1 +

4πe2

k2
χ(k, ω), (5.3)

since from Eqs. (2.7) and (2.9) follows δn(k, ω) = χ(k, ω)Vb(k, ω) where χ(k, ω) is the Fourier transform of K(|r −
r′|, t− t′) and

Vb(k, ω) =
4πe2

k2
ne(k, ω). (5.4)

Of course the field E and the associated screened or “Hartree” potential VH(k, ω) = Vb(k, ω)/ϵ(k, ω) would be
experienced by a second test charge introduced into the plasma, rather than by the particles of the plasma. The latter
also experience effects which involve the precise “hole” a particle of the plasma digs around itself. This latter effect
brings about the so called local field corrections.

In addition to χ(k, ω) which relates the displaced charge density to the potential in vacuo, it is useful to introduce yet
another longitudinal response function, χ̃(k, ω) say, by exploiting further the analogy with elementary electrostatics.
This relates n(k, ω) directly to the Hartree potential through

n(k, ω) = χ̃(k, ω)VH(k, ω). (5.5)

We then have

ϵ(k, ω) = 1− 4πe2

k2
χ̃(k, ω). (5.6)

The expression χ(k, ω) = χ̃(k, ω)/ϵ(k, ω) accounts at one stroke for the long range effects of the Coulomb interactions
(the resonance at the plasma frequency, determined by ϵ(k, ω) = 0, is brought about explicitly in the denominator.

The simplest useful approximation to the dielectric function of the plasma is obtained by approximating χ̃ by the
density response function of an ideal gas. This corresponds to the Vlasov theory for the classical plasma and to the
Lindhard theory for the degenerate electron fluid. Refinements of these theories aims at incorporating the effects
of “exchange and correlation” in χ̃. This expression being an abbreviation for the short range effects arising from
the statistics (“exchange”) and long range effect arising from the Coulomb interaction (“correlation”). Of course the
exchange effects are absent in the classical limit.
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VI. VERY DEGENERATE ATOMIC GASES

Consider a dilute (Bose) gas with interaction energy per unit area equal to U0, confined to a 2D isotropic harmonic
well with harmonic frequency ω0. We will show that the kinetic and potential energy separately can be written in
the general form (T, V ) = h̄ω0f(T,V )(α) where α = NU0m/h̄

2 is independent of ω0. We will also show that the mean

square radius of the cloud can be written in the form d2Ng(α).

In the Hartree approximation, the ground state energy of the system is given by a Ginzburg-Pitaevskii-Gross energy
functional

E0[ψ(r)] =

∫
d2r

[
h̄2

2m
|∇ψ|2 + mω2

0

2
r2|ψ|2 + U0

2
|ψ|4

]
, (6.1)

where r = (x, y) and ψ(r) is the order parameter.
The total ground state energy E0 and wavefunction are determined minimizing E0[ψ] with the constraint∫

|ψ(r)| d2r = N, (6.2)

where N is the number of particles in the gas.
Let’s introduce the root mean square zero point displacement d

d =

√
h̄

mω0
, (6.3)

and let’s make the following rescaling

r1 = r/d, (6.4)

ψ = f

√
N

d
. (6.5)

The energy functional becomes

E0 = d2
∫
d2r1

 h̄2

2m

∣∣∣∣∣∇1f

d

√
N

d

∣∣∣∣∣
2

+
mω2

0d
2

2
r21

∣∣∣∣∣
√
N

d
f

∣∣∣∣∣
2

+
U0

2

∣∣∣∣∣
√
N

d
f

∣∣∣∣∣
4
 (6.6)

= N
h̄ω0

2

∫
d2r1[|∇1f |2 + r21|f |2 + α|f |4], (6.7)

where α = NU0m/h̄
2.

The order parameter normalization becomes,

N =

∫
d2r|ψ|2 = d2

∫
d2r1

∣∣∣∣∣f
√
N

d

∣∣∣∣∣
2

= N

∫
d2r1|f |2, (6.8)

or
∫
d2r1|f |2 = 1.

Now to find the total ground state energy we need to minimize

δ

{∫
d2r1[|∇1f |2 + r21|f |2 + α|f |4]

}
= 0, (6.9)

with the constraint
∫
d2r1|f |2 = 1.

The function f0 that solves the problem can only be a function of r1 and α, i.e. f0 = f0(r1, α).
So we can say

E0

N
= h̄ω0

1

2

∫
d2r1[|∇1f0|2 + r21|f0|2 + α|f0|4] = h̄ω0fE(α), (6.10)

V

N
= h̄ω0

1

2

∫
d2r1r

2
1|f0|2 = h̄ω0fV (α), (6.11)

U

N
= h̄ω0

1

2

∫
d2r1α|f0|4 = h̄ω0fU (α), (6.12)

T

N
= h̄ω0

1

2

∫
d2r1|∇1f0|2 = h̄ω0fT (α). (6.13)
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The mean square radius of the cloud is

⟨r2⟩ =
∫
d2r r2|ψ0|2 = d2N

∫
d2r1 r

2
1|f0|2 = d2Ng(α). (6.14)

We consider a “relaxing” simple harmonic oscillator, i.e. one in which the restoring force F (t) is related to the
displacement x(t′) for t′ < t by the formula

F (t) =

∫
K(t− t′)x(t′) dt′, (6.15)

with K(t− t′) given by

K(t− t′) =

{
ksδ(t− t′)− (ks − kt)τ

−1 exp[−(t− t′)/τ ] t > t′

0 t < t′
. (6.16)

We find next the linear response function of the oscillator as a function of ω2
t = kt/m, ω2

s = ks/m, and τ , and find
the damping of the oscillations in the limit ωs

>∼ ωt ≫ τ−1 and ωs
>∼ ωt ≪ τ−1.

Imagine to perturb the system with a force G(t), the equation of motion of the harmonic oscillator will look like

mẍ(t) + F (t) = G(t). (6.17)

The linear response function χ(ω) is defined as

χ(ω) =
x̃(ω)

G̃(ω)
, (6.18)

where we indicate with a tilde the time Fourier transform of the corresponding function. Taking the time Fourier
transform of the equation of motion we get

G̃ = −ω2x̃+ ω2
s x̃− ω2

s − ω2
t

τ
x̃

∫ ∞

−∞
θ(t)e−t/τeiωt dt, (6.19)

where ω2
s = ks/m, ω2

t = kt/m, and we used the property of the Fourier transform to transform a convolution into a
product.

Now we have ∫ ∞

−∞
θ(t)e−t/τeiωt dt =

∫ ∞

0

e−t( 1
τ −iω) dt =

1
1
τ − iω

, (6.20)

since τ > 0.
So our equation of motion becomes

G̃ = −ω2x̃+ ω2
s x̃− ω2

s − ω2
t

1− iωτ
x̃, (6.21)

and the linear response function looks like

χ(ω) =
x̃(ω)

G̃(ω)
=

1

−ω2 + ω2
s −

ω2
s−ω2

t

1−iωτ

(6.22)

Introducing adimensional frequencies ω̄ = ωτ , ω̄s,t = ωs,tτ we get

χ(ω̄) = −τ2
(

ω̄ + i

ω̄3 + iω̄2 − ω̄ω̄2
s − iω̄2

t

)
. (6.23)

To find the damping of the oscillations we need to find the poles of χ(ω̄).
Note that

x(t) =

∫ ∞

−∞
χ(t− t′)G(t′) dt′ (6.24)

this gives us two informations about the poles of χ(ω) extended from real to complex frequencies:
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i. Causality implies that χ(t) = 0 for t < 0, i.e.∫ ∞

−∞

dω

2π
e−iωtχ(ω) = 0 for t < 0, (6.25)

which means that χ(ω) cannot have poles in the upper half of the complex frequency plane (has to be analytic
there).

ii. Since χ(t) and G(t) are physical quantities, hence real, χ(−ω∗) = χ∗(ω).

Now, since the denominator of χ(ω) is a cubic, it has to have 3 roots. Because of i. and ii. these 3 roots have to be
of the following kind

ω̄1 = −ia,
ω̄2 = −ω̄∗

3 = −ic+ b,

with a, b, c three real positive numbers. We want to find the damping of the oscillations produced by the term b in
χ(t). That is, we want to find c (the ω = ω̄1/τ pole will give rise to a dumped non oscillating factor instead).
So we want

ω̄3 + iω̄2 − ω̄ω̄2
s − iω̄2

t

= (ω̄ + ia)(ω̄ + ic+ b)(ω̄ + ic− b)

= (ω̄ + ia)(ω̄2 − c2 + 2icω̄ − b2)

= ω̄3 + iω̄2(2c+ a)− ω̄(b2 + c2 + 2ca)− i(b2 + c2)a,

which gives  2c+ a = 1
(b2 + c2) + 2ca = ω̄2

s

(b2 + c2)a = ω̄2
t

(6.26)

This linear system reduces to

c3 − c2 + c

(
1 + ω̄2

s

4

)
−
(
ω̄2
s − ω̄2

t

8

)
= 0 (6.27)

Now for small τ Eq. (6.27) reduces to

c3 − c2 + c/4 ≈ 0, (6.28)

which has solutions c = 0, a = 1, b = ω̄t and c = 1/2, a = 0, b =
√
ω̄2
s − 1/4. Both these solutions are uninteresting

since the first one gives

χ(ω̄) ≈ −τ2 1

(ω̄ + ω̄t)(ω̄ − ω̄t)
, (6.29)

which corresponds to an undamped

χ(t) ≈ (τ/2ωt) sin(ωtt). (6.30)

While the second one gives a complex b, since ω̄2
s ≪ 1/4, which cannot be.

We then learn that for the case ω̄2
s
>∼ ω̄2

t ≪ 1 we need to expand around c = 0 to obtain

c

(
1

4

)
−
(
ω̄2
s − ω̄2

t

8

)
≈ 0, (6.31)

with solution

c ≈ ω̄2
s − ω̄2

t

2
, (6.32)



8

and a ≈ 1 and b ≈ ω̄s. So we have

χ(ω̄) ≈ −τ2 1[
ω̄ + i

(
ω̄2

s−ω̄2
t

2

)
+ ω̄s

] [
ω̄ + i

(
ω̄2

s−ω̄2
t

2

)
− ω̄s

] , (6.33)

which corresponds to

χ(t) ≈ τe
−
(

ω2
s−ω2

t
2

)
τt sin(ωst)

ωs
. (6.34)

For large τ Eq. (6.27) reduces to

c

(
ω̄2
s

4

)
−

(
ω̄2
s − ω̄2

t

8

)
≈ 0, (6.35)

which gives

c ≈ 1

2

(
ω̄2
s − ω̄2

t

ω̄2
s

)
. (6.36)

Now for ω̄2
s
>∼ ω̄2

t ≫ 1 c is small and from Eq. (6.26) we find a ≈ 1 and b ≈ ω̄s. So we have

χ(ω̄) ≈ −τ2 1[
ω̄ + i

(
ω̄2

s−ω̄2
t

2ω̄2
s

)
+ ω̄s

] [
ω̄ + i

(
ω̄2

s−ω̄2
t

2ω̄2
s

)
− ω̄s

] , (6.37)

which corresponds to

χ(t) ≈ τe
−
(

ω2
s−ω2

t
2ω2

s

)
t/τ sin(ωst)

ωs
. (6.38)

Consider a (boson) system living in a plane with Hamiltonian

Ĥ0 =

N∑
i=1

[
p̂2
i

2m
+ V̂ext(r̂i)

]
+
U0

2

N∑
i,j=1

δ2(r̂i − r̂j), (6.39)

V̂ext =
1

2
mω2

0

N∑
i=1

r̂2i . (6.40)

We can show that for this system the frequency of the monopole mode is exactly 2ω0 irrespective of the value of
α = NU0m/h̄

2.

Since we are in a plane r̂i = (r̂i1 , r̂i2) and p̂i = (p̂i1 , p̂i2). It is useful to introduce the following two operators

Q̂α =

N∑
i=1

r̂2iα , (6.41)

Λ̂α =
1

2m

N∑
i=1

[p̂iα r̂iα + r̂iα p̂iα ], (6.42)

for each dimension α = 1, 2 and the usual density and current operators

ρ̂(r) =

N∑
i=1

δ(r− r̂i), (6.43)

Ĵ(r) =
1

2m

N∑
i=1

[p̂iδ(r− r̂i) + δ(r− r̂i)p̂i], (6.44)
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So that for example

V̂ext =
1

2
mω2

0

2∑
α=1

Q̂α. (6.45)

This harmonic trap may be perturbed by a harmonic perturbation Ĥ ′ = λ
∑2

α=1 Q̂α. This we will do next.

A. Moments Sum Rules

Imagine we apply to the system Ĥ0 a perturbation

Ĥ ′(t) =

2∑
α=1

∫
d2r Âα(r)λα(r, t), (6.46)

where λα(r, t) are external fields and Âα(r) are observables of the system coupled to the fields. Our system now is

Ĥ = Ĥ0 + Ĥ ′. We can then apply the formalism developed in Sec. II for the linear response theory.
Let us consider the moments of the dissipation spectrum, defined as

Mn
αβ(k) = −

∫ ∞

−∞

dω

2π
ωn Imχαβ(k, ω). (6.47)

Since Imχαβ(k, ω) is an odd function of ω due to Eq. (3.3), the even moments vanish. We will just be interested in

the first two non-zero moments n = 1, 3. The moments are related to the fluctuations of the observables Âα(r) by the
fluctuation-dissipation theorem in the following way

Mn
αβ(k) = − 2

(−i)n
∂nχ′′

αβ(k, t)

∂tn

∣∣∣∣
t=0

, (6.48)

χ′′
αβ(k, t) = − 1

2h̄
⟨
[
Âα(k, t), Âβ(−k, 0)

]
⟩0, (6.49)

where we used Eq. (2.13), ⟨. . .⟩0 denotes the expectation value over the ground state of the unperturbed system Ĥ0,

[. . .] is the commutator, Âα(k, t) is the Heisenberg representation of the spatial Fourier transform of Âα(r) such that

∂Â(t)

∂t
= [Â(t), Ĥ0]/ih̄. (6.50)

Let us write down the first two non-zero ones

M1
αβ(k) =

1

h̄2
⟨
[[
Âα, Ĥ0

]
, Âβ

]
⟩0, (6.51)

M3
αβ(k) =

1

h̄4
⟨
[[[[

Âα, Ĥ0

]
, Ĥ0

]
, Ĥ0

]
, Âβ

]
⟩0, (6.52)

where all the Â observables are taken at (k, 0).
Let us now choose, in Eq. (6.46),the external field independent of time, space, and index α, and

λα(r, t) = λ = constant, (6.53)

Âα(r) = r2αρ̂(r), (6.54)

with ρ̂ defined in Eq. (6.43). We can then evaluate the first and third moments at k = 0. Let us start withM1
αβ(k = 0).

Proceeding step by step, we find [
Q̂α, Ĥ0

]
= 2ih̄Λ̂α, (6.55)[

Q̂β ,
[
Q̂α, Ĥ0

]]
=

[
Q̂β , 2ih̄Λ̂α

]
= −4h̄2

m
δαβQ̂α, (6.56)
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where Q̂α and Λ̂α are defined in Eqs. (6.41) and (6.42) and we used the usual commutation relations [r̂iα , r̂jβ ] =

[p̂iα , p̂jβ ] = 0, [r̂iα , p̂jβ ] = ih̄δijδαβ , so that only the kinetic energy term in Ĥ0 contributes to the first moment.
So using Eq. (6.56) into Eq. (6.51) we find at k = 0

M1
αβ(0) =

4

m
δαβ⟨Q̂α⟩0. (6.57)

In order to find the third moment is convenient to rearrange the commutators in Eq. (6.52) as follows

M3
αβ(k) =

1

h̄4
⟨
[[
Âβ , Ĥ0

]
,
[[
Âα, Ĥ0

]
, Ĥ0

]]
⟩0, (6.58)

so that at k = 0 one finds from Eq. (6.55)

M3
αβ(0) = − 4

h̄2
⟨
[
Λ̂β ,

[
Λ̂α, Ĥ0

]]
⟩0. (6.59)

Let us start by calculating the commutator
[
Λ̂α, Û

]
where

Û =
U0

2

∫
d2r ρ̂2(r) =

U0

2

N∑
i,j=1

δ2(r̂i − r̂j), (6.60)

Λ̂α =

∫
d2r rαĴα(r). (6.61)

From Eq. (A1) in Appendix we get [
Λ̂α, Û

]
=
ih̄

m
U0

∫
d2r ρ̂(r)∇α [rαρ̂(r)] . (6.62)

Then, from the identity

ρ̂(r)∇α [rαρ̂(r)] =
1

2
{ρ̂2(r) +∇α

[
rαρ̂

2(r)
]
}, (6.63)

and from the boundedness of the system follows[
Λ̂α, Û

]
=
ih̄

m

U0

2

∫
d2r ρ̂2(r) =

ih̄

m
Û, (6.64)

where in the last equality we used Eq. (6.60).
We have already calculated the commutator with the external potential[

Λ̂α, V̂ext

]
=

[
Λ̂α,

1
2mω

2
0

∑
β Q̂β

]
= −2ih̄

m

(
1
2mω

2
0

∑
β Q̂βδαβ

)
= −2ih̄

m
V̂α (6.65)

where in the second equality we used Eq. (6.56) and the last equality defines V̂α = 1
2mω

2
0

∑
i r̂

2
iα
.

All that is left is to calculate the commutator
[
Λ̂α, K̂

]
where K̂ =

∑
i p̂

2
i /2m is the kinetic energy operator. So

now we get [
Λ̂α, K̂

]
=

ih̄

m2

∑
i

p̂2iα =
2ih̄

m

∑
i

K̂α, (6.66)

where in the last equality we have defined K̂α =
∑

i p̂
2
iα
/2m.

So, collecting all the pieces [
Λ̂α, Ĥ0

]
=
ih̄

m

{
2K̂α − 2V̂α + Û

}
. (6.67)
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Now taking the ground state expectation value of this commutator one gets the virial theorem since ⟨
[
Λ̂α, Ĥ0

]
⟩0 =

⟨Λ̂α⟩0E − E⟨Λ̂α⟩0 = 0, namely

2⟨K̂α⟩0 − 2⟨V̂α⟩0 + ⟨Û⟩0 = 0. (6.68)

We can now determine the last necessary commutator (using Eq. (6.67))[
Λ̂β ,

[
Λ̂α, Ĥ0

]]
=

ih̄

m

[
Λ̂β , 2K̂α − 2V̂α + Û

]
(6.69)

=

(
ih̄

m

)2 {
4K̂αδαβ + 4V̂αδαβ + Û

}
. (6.70)

So that in the end, using this result into Eq. (6.59), we find for the third moment

M3
αβ(0) =

8

m

〈
δαβ

[
2K̂α + 2V̂α

]
+

1

2
Û

〉
0

. (6.71)

Now, a collective excitation at frequency ωα manifests itself with the appearance of a δ(ω − ωα) in the dissipation
spectrum, i.e. Imχαβ(0, ω) ∝ δ(ω − ωα)δαβ .
From the definition of the moments, Eq. (6.47) follows

M1
αβ ∝ ωαδαβ , (6.72)

M3
αβ ∝ ω3

αδαβ , (6.73)

from which follows (
‘M3/M1’

)
αβ

= ω2
αδαβ . (6.74)

So we need to take the “ratio” ‘M3/M1’ and eventually diagonalize the matrix. From Eqs. (6.10)-(6.13) and using
Feynman theorem we find

∂⟨Ĥ0⟩0
∂ω2

0

∣∣∣∣∣
m

=

〈
∂Ĥ0

∂ω2
0

∣∣∣∣∣
m

〉
0

=
⟨V̂ext⟩0
ω2
0

, (6.75)

from which follows fE = 2fV . This is nothing else than the virial theorem again 2fV = fK+fV +fU or fK−fV +fU = 0
(which should be compared with Eq. (6.68) which holds for α = 1, 2). Here we use the same notation used in Eqs.

(6.10)-(6.13) with the new interpretation that fE = ⟨Ĥ0⟩0, fK = ⟨K̂⟩0, fV = ⟨V̂ext⟩0, fU = ⟨Û⟩0. Using Feynman
theorem again, we also find

∂⟨Ĥ0⟩0
∂m

∣∣∣∣∣
ω0

=

〈
∂Ĥ0

∂m

∣∣∣∣∣
ω0

〉
0

=
⟨V̂ext⟩0 − ⟨K̂⟩0

m
, (6.76)

from which follows ∂fE/∂m = (fV − fK)/m.
Using Eqs. (6.75) and (6.76) together

1− fK
fV

= 2

(
m
∂fE
∂m

1

fE

)
= 2δ, (6.77)

which defines δ.
Let us now write M3/M1 using fK/fV . from Eqs. (6.57) and (6.71) follows

M1
αβ(0) = δαβ

4

mω2
0

⟨V̂ext⟩0, (6.78)

M3
αβ(0) =

8

m

{
δαβ

(
2⟨K̂α⟩0 + 2⟨V̂α⟩0

)
+

1

2
⟨Û⟩0

}
=

8

m

{
δαβ

(
⟨K̂⟩0 + ⟨V̂ext⟩0

)
+

1

2
⟨Û⟩0

}
=

4

m

{
δαβ2(⟨K̂⟩0 + ⟨V̂ext⟩0) + (⟨V̂ext⟩0 − ⟨K̂⟩0)

}
, (6.79)
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where for the third moment we used isotropy in the first equality and the virial theorem in the second. Upon rescaling
M3 (

‘M3/M1’
)
αβ

= ω2
0

{
δαβ2

(
fK
fV

+ 1

)
+

(
1− fK

fV

)}
= ω2

0 {δαβ2(2− 2δ) + 2δ}

= ω2
0

(
4− 2δ 2δ
2δ 4− 2δ

)
. (6.80)

We can now diagonalize this matrix. The eigenvalues are

4− 2δ − λ± = ±2δ,

λ± = 4− 2δ ∓ 2δ, (6.81)

and the eigenvectors v± = (1,±1). So that the monopole mode collective excitation has exactly a frequency

ω+ =
√
λ+ω2

0 = 2ω0 . (6.82)

VII. CONCLUSIONS

In conclusion we reviewed the linear response theory for quantum liquids with the associated Kramers-Kronig
relations due to causality, we defined the longitudinal dielectric function for Coulomb liquids, and we determined the
monopole frequency for an atomic gas in a plane in a harmonic trap. The result we obtained through linear response
theory is exact because we let the perturbation vanish in the end.

Appendix A: A particular commutator

Given any two functions f(r) and g(r), we have

[

∫
d2r Ĵα(r)g(r),

∫
d2r′ ρ̂(r′)f(r′)] =

− ih̄
m

∫
d2r g(r)ρ̂(r)∇f(r) =

ih̄

m

∫
d2r f(r)∇ [g(r)ρ̂(r)] , (A1)

where the operators ρ̂ and Ĵα are defined in Eqs. (6.43) and (6.44) of the main text and in the last equality we have
used the fact that our fluid is bounded (i.e. the density operator decays to zero at r → ∞) so that in the integration
by parts we can neglect the surface term.
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