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We propose a new Quantum Simulation Method for a many Fermions liquid at finite (non-zero)
temperature. The new scheme expands the high temperature density matrix on the overcomplete
set of single particles coherent states of John Rider Klauder instead of plane waves as is usually done
in conventional path integral methods. One is free to tune the elastic constant or the mass of the
fiducial Harmonic Oscillator subtending the coherent states so as to maximize the computational
efficiency of the numerical algorithm. We suggest that by choosing the oscillator extremely stiff
could realize this maximization and thereby alleviate the Fermi sign problem of Feynman.

I. INTRODUCTION

We describe a new algorithm able to simulate a quantum liquid at finite temperature through the cooperation of
Coherent States (CS) [1–6] and the Path Integral Monte Carlo (PIMC) method [7]. The algorithm, that we will call
Coherent States Path Integral Monte Carlo (CSPIMC), reconstructs the equilibrium hot thermal density matrix of
a many body system of particles at each small imaginary time step thanks to the properties of the single particle
coherent states that form an overcomplete set [1–6]. The coherent state is a state of minimal uncertainty which
is defined to be the (unique) eigenstate of the annihilation operator of a fiducial Harmonic Oscillator and as such
it is described by a wave function whose probability distribution is a Gaussian. The information on the thermal
density matrix after a sufficiently big number of sufficiently small imaginary time steps τ , so to reach the desired
finite inverse temperature β, is then reconstructed into a path integral through the PIMC calculation. As usual we
take β = 1/kBT =Mτ with kB Boltzmann’s constant, T the absolute temperature, and M the number of time steps
discretizations between 0 and β.

We suggest that this way of simulating a Quantum Many Body (QMB) system of Fermions may diminish the
infamous sign problem of Feynman [8, 9] which is still an open problem in statistical physics. In particular we see
that choosing the product of the HO mass and its angular frequency big enough we will increase the importance of
correlation effects over the exchange effects in the numerical experiment.

Our novel Quantum Monte Carlo (QMC) algorithm adds to the rich variety of similar methods for a finite tem-
perature numerical experiment starting from the conventional simulations of D. M. Ceperley [7], passing to the
worm-algorithm of M. Boninsegni [10], to end to the pair-product approximation used by E. W. Brown [11]. All these
Monte Carlo methods hinge on the Metropolis algorithm [12, 13].

If, from one side, we do not need to specify further the primitive approximation [7] for the potential energy action,
on the other side, we will make a rather brute force approximation for the kinetic action that hinges on the peculiar
properties of coherent states. We will worry about the mathematical rigor of the primitive approximation proposed
here or about its refinements [7] in future works. This could be important also to reduce the computational efficiency
of the simulation.

As is clearly shown in Appendix C it is convenient to work with a stiff HO, i.e. one for which the product of its
mass and its angular frequency is big. In this limit in fact the kinetic hot density matrix tends to become small. So
that the effect of the correlation will dominate over the effect due to the exchange.

II. THE ALGORITHM

Let us consider a many body system of N Fermions with positions Q = (q1, q2, . . . , qN ) and momenta P =
(p1,p2, . . . ,pN ) at thermal equilibrium at a finite temperature T .

The equilibrium statistical mechanics description of the many body Fermions requires the knowledge of the thermal
density matrix operator ρ̂ = exp(−βĤ) where Ĥ is the Fermions Hamiltonian operator, β = 1/kBT is the “inverse
temperature”, and kB is the Boltzmann’s constant.

The thermal density matrix satisfies to the Bloch equation

∂ρ̂

∂β
= −Ĥρ̂. (1)
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If we know the eigenstates and eigenvalues of the Hamiltonian, |Ψi⟩ and Ei, we can use the completeness of this
system of orthonormal states to write the position representation of the density matrix as follows

ρ(Q,Q′;β) = ⟨Q|ρ̂|Q′⟩ =
∑
i

⟨Q|Ψi⟩e−βEi⟨Ψi|Q′⟩. (2)

Otherwise, in the high temperature limit we can neglect terms of orders higher than one in the small τ in the
Baker–Campbell–Hausdorff formula to find [7]

ρ(Q,Q′; τ) = ⟨Q|e−τĤ |Q′⟩ ≈ ⟨Q|e−τT̂ e−τV̂ |Q′⟩, (3)

where Ĥ = T̂ + V̂ = P̂ 2/2m + V (Q), m is the particles mass, and P̂ = −i(∇q1
,∇q2

, . . . ,∇qN
); here and in the

following we choose h̄ = 1.
Taking τ = β/M withM a large integer we can then reconstruct the finite temperature density matrix using Trotter

formula in the following successive ‘convolutions’ [7, 14] as usual

ρ(Q,Q′;β) =

∫
ρ(Q,Q1; τ) · · · ρ(QM−1, Q

′; τ) dQ1 · · · dQM−1. (4)

Since ρ̂ ≈ e−τT̂ e−τV̂ =
∏

α e
−τT̂αe−τV , where T̂α is the kinetic energy of particle α and the exponential containing

the potential is diagonal in position space and just a multiplicative factor, then the many body state |Υa⟩ factorizes
into a product of single particle states

∏
α |ψa

α⟩

|Υa⟩ =
N∏

α=1

|ψa
α⟩, (5)

where a labels the set of many body states which inherit the overcompleteness of the single particles states.
Antisymmetrizing so to satisfy Fermi statistics, we find

|Υa⟩⟨Υa| =
∑
P

(−)P
N∏

α,β=1

|ψa
α⟩⟨ψa

Pβ | = det|| |ψa
α⟩⟨ψa

β | ||, (6)

where P is any of the N ! permutations of the N particles.
Now we can take as the single particle states |ψa

α⟩ the coherent states [1–6]

|ψa
α⟩ ≡ |qa,pa⟩ = e−iqa·p̂αeipa·q̂α |0⟩, (7)

where |0⟩ is the ground state of the fiducial three dimensional Harmonic Oscillator of elastic constant k along all three
dimensions. The coordinate representation of this state is

ψa(qα) ≡ ⟨Q|qa,pa⟩ =
(mh.o.ω

π

)3/4

e
−mh.o.ω

2

[
qα−

√
2

mh.o.ω
Re(a)

]2
+iqα·

√
2mh.o.ωIm(a)−iRe(a)·Im(a)

, (8)

a =
1√

2mh.o.ω
(mh.o.ωqa + ipa), (9)

where ω =
√
k/mh.o. is the angular frequency of the Harmonic Oscillator of elastic constant k and mass mh.o..

This way we obtain the thermal density matrix at a finite inverse temperature β through the multiple-‘convolution’
integral (4), but with

ρ(Q,Q′; τ) ≈ e−K(Q,Q′;τ,m,k,mh.o.)e−τV (Q′) (10)

= e−τV (Q′)
∑
P

(−)P
∏
α

ζα

[
qPα|q′

α; τ,m, k,mh.o.

]
, (11)

where K is the kinetic part of the semiclassical action depending on the expansion of |Υa⟩ on the single particle
coherent states of Eq. (6), ζ is defined in Eq. (A8) in Appendix A and its primitive approximation is determined in
Eq. (C3) of Appendix C, k is the elastic constant of the Harmonic Oscillator, and mh.o. is its mass.

So that in the M → ∞ limit the Trotter formula (4) becomes a path integral made of the M high temperature
density matrices at each time step [14].
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Note that if we choose an extremely stiff Harmonic Oscillator, i.e. one such that mh.o.ω → ∞, then the Gaussian
|ψa

α(q)|2 of Eq. (8) reduces to a Dirac δ centered on the position q only. We suggest that this may alleviate the Fermi
sign problem [8, 9] of Feynman. In fact in that case Eq. (4) reduces to a path integral with a small kinetic entanglement
between the single electrons subject to Pauli exclusion principle. And correlation dominates over exchange.

As usual in order to measure an observable Ô we need to calculate ⟨Ô⟩ = tr(ρ̂Ô)/tr(ρ̂). This requires to impose
periodic boundary conditions on the imaginary time so that ρ(Q,Q′; t) = ρ(Q,Q′; t+ β).

Moreover in a simulation we want to mimic the thermodynamic limit as close as possible and this is usually obtained
enforcing spatial periodic boundary conditions juxtaposing an infinite number of identical copies of the simulation
box of volume Ω = L1L2L3 along the three dimensions. This can be easily obtained by taking for each particle
qα + L = qα, i.e a periodic box. Of course as Ω increases we will mimic the thermodynamic limit closer and closer.
One usually refers to this feature of a computer experiment as the finite size error. This can be obtained with the
expansion in coherent states by taking the following infinite sum [15] at the end

ζα → ζLα =

∞∑
i,j=−∞

ζα

[
q + iL|q′ + jL; τ,m, k,mh.o.

]
, (12)

where we assumed L1 = L2 = L3 = L for simplicity.

III. CONCLUSIONS

We propose a new Quantum Simulation Method for a many Fermions liquid. The method creates a bridge between
Coherent States (CS) [1–6] and conventional Path Integral Monte Carlo (PIMC) [7] merged together into a Coherent
State Path Integral Monte Carlo (CSPIMC) method. The idea hinges upon expanding the high temperature density
matrix on the overcomplete set of single particles coherent states of John Rider Klauder [1–6]. As the stiffness of
the subtending Harmonic Oscillator (HO) varies from low values to very high values the coherent states probability
distribution changes from Gaussian to Dirac delta like. We believe that going towards a more and more stiff fiducial
HO the resulting extremely spiked coherent states could render the Quantum Monte Carlo (QMC) simulation less
and less subject to the yet unsolved Fermi sign problem of Feynman.

We are often interested in the ensemble thermal average ⟨Ô⟩ = tr(ρ̂Ô)/tr(ρ̂) of an observable O at a given finite
inverse temperature β. Using the coordinate representation for the density matrix ρ̂, as in Eq. (4), we find the sought
for path integral expression. A key ingredient is the high temperature density matrix at a small inverse temperature
τ . This is made up of two pieces: a kinetic energy operator and a potential energy factor. We find the explicit analytic
form of the kinetic operator. Being this a product of single particles kinetic energy operators it is possible to expand
it in the overcomplete set of single particles Klauder coherent states. The result is summarized into the ζ function of
Eq. (C3).

Our calculation shows that for a very stiff HO the high temperature kinetic energy density matrix tend to become
exponentially small. We suggest that this could reduce the sign problem for Fermions since the kinetic coupling due
to two exchanging Fermions is dumped and therefore each term in the alternating series in the path integral mainly
feels the potential energy coupling. This means that correlation dominates over exchange. The loss in efficiency
due to the Fermi-Dirac statistics could be reduced by tuning the fiducial HO so as to have a stiff one during the
simulation, i.e. one for which mh.o.ω =

√
kmh.o. is big.

I would like to thank prof. John Rider Klauder for transmitting me the passion for coherent states and all the
‘family’ of the Physics Department in Gainesville at the University of Florida which invited me to participate at the
Memorial Conference held on 15 February 2025 in honor of the professor path in life and science. The professor passed
away on 24 October 2024 at 92 years of age.
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Appendix A: Determination of K in Eq. (10)

From Eq. (3) and inserting the resolution of the identity from Eq. (6) in terms of the complete set of coherent
states two times we find [16]

ρ(Q,Q′; τ) ≈
∑
a,b

⟨Q|det|| |ψa
α⟩⟨ψa

β | ||e−τT̂det|| |ψb
α⟩⟨ψb

β | || |Q′⟩e−τV (Q′). (A1)

Now the two antisymmetrizations are redundant and one can safely keep just one of the two. Moreover the only left
antisymmetrization can be transferred from the quantum numbers labeling the coherent single particle states to their
positions. We then find

ρ(Q,Q′; τ) ≈
∑
P

(−)P
∑
a,b

∏
α,β

⟨qP1, . . . , qPN |ψa
α⟩⟨ψa

β |e−τT̂α |ψb
α⟩⟨ψb

β |Q′⟩e−τV (Q′)

=
∑
P

(−)P
∑
a,b

∏
α

⟨qP1, . . . , qPN |ψa
α⟩⟨ψa

α|e−τT̂α |ψb
α⟩⟨ψb

α|Q′⟩e−τV (Q′), (A2)

where we decided to keep the antisymmetrization only on the left positions and in the last equality we used the
following orthogonality condition among single particle coherent states

⟨ψa
β |ψb

α⟩ = Ga,bδα,β , (A3)

where δ is a Kronecker delta symbols and

Ga,b = e−
1
2 (|a|

2+|b|2)+a∗
α·b+ i

2 (qa·pa−qb·pb), (A4)

a =
1√

2mh.o.ω
(mh.o.ωqa + ipa), (A5)

b =
1√

2mh.o.ω
(mh.o.ωqb + ipb), (A6)

here ω =
√
k/mh.o. is the angular frequency of the Harmonic Oscillator of elastic constant k and mass mh.o..

We then find from Eq. (10)

e−K(Q,Q′;τ,m,k) =
∑
P

(−)P
∏
α

∑
a,b

⟨qP1, . . . , qPN |ψa
α⟩⟨ψa

α|e−τ p̂2
α/2m|ψb

α⟩⟨ψb
α|q′

1, . . . , q
′
N ⟩ (A7)

≡
∑
P

(−)P
∏
α

ζα

[
qPα|q′

α; τ,m, k,mh.o.

]
, (A8)

where ⟨Q|ψa⟩ = ⟨Q|qa,pa⟩ is the position representation of the single particle coherent state. The element

⟨ψa
α|e−τT̂α |ψb

α⟩ is founs in Appendix B. The function ζ is defined in Eq. (A8) and determined in Appendix C.

Appendix B: Calculation of the element of Eq. (A7)

We want here calculate explicitly the matrix element of Eq. (A7). We can then think that we find

⟨ψa
α|e−τT̂α |ψb

α⟩ ≈ ⟨ψa
α|ψb

α⟩e−τp2
b/2m (B1)

= Ga,be
−τp2

b/2m, (B2)

where in the second equality we used the exact normalization factor of Eq. (A4). The approximation in Eq. (B1)
is rather suggestive and extremely handy. We can think that it may be ‘washed away’ for small τ . In any case this
is a rather subtle issue that still asks for mathematical rigor. We need to think that this high temperature matrix
element should be able to reconstruct the finite temperature density matrix as an exact path integral [17].
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Appendix C: Determination of ζ

We have from the definition in Eq. (A8)

ζα

[
q|q′; τ,m, k,mh.o.

]
≡

∑
a,b

⟨q|ψa
α⟩⟨ψa

α|e−τT̂α |ψb
α⟩⟨ψb

α|q′⟩

=

∫
dqa dpa

(2π)3
dqb dpb

(2π)3
ψa
α(q)ψ

b
α

∗
(q′)⟨ψa

α|e−τT̂α |ψb
α⟩ (C1)

≈
(
4

√
mh.o.ω

5π

)3

e−
mh.o.ω

10 (33q2−64q·q′+33q′2)e−τp′2/2m (C2)

≈
(
4

√
mh.o.ω

5π

)3

e−
mh.o.ω

10 (33q2−64q·q′+33q′2)e−m(q′−q)2/2τ , (C3)

where ψa
α(q) is the coordinate representation of the single α particle coherent state of Eq. (8) and the propagator

⟨ψa
α|e−τT̂α |ψb

α⟩ has been determined in Eq. (B2) of Appendix B. In Eq. (C2) we simply carried out the phase space
integrations. In the last approximation of Eq. (C3) we just rewrite the discretized version of the kinetic energy in the
last exponential factor.
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