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I propose a possible way to render numerically accessible the path integral Monte Carlo computa-
tions required in the Statistical Gravity theory described in a recent publication [Riccardo Fantoni,
Quantum Reports, 6, 706 (2024)]. This requires the use of the Arnowitt, Deser, and Misner (ADM)
splitting and of the Affine Quantization (AQ) method.
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I. INTRODUCTION

The idea to realize a quantum theory of gravity has a long history [1, 2]. Recently we proposed a theory for
Statistical Gravity [3], the FEBB. Leaving aside the feasible experimental confirmations for it, it is yet important
to prove that it gives rise to quantities (observables thermal averages) that are mathematically well defined and can
therefore be computed (at least numerically). We are thinking, for example, at the problems that one may encounter
in computing a constrained quantum field theory [4–16], even the simplest one as the scalar (relativistic euclidean).
In these cases we could experience how important it was to use the method of Affine Quantization (AQ) (as opposed
to the canonical quantization) in order to render the particular theory non trivial. But even before worrying about
the renormalizability of the particular quantum field theory it makes sense to worry about the soundness of the place
it occupies in the underlying Hilbert space.

With this in mind, in this short paper, following the idea already put forward in Ref. [12] for a construction of
a well defined Quantum Gravity, we propose to use the method of AQ also to construct a well defined Statistical
Gravity.

In these complex tensorial quantum field theories, even the determination of the relevant semiclassical action can
become a formidable task due to the intertwining of the tensorial calculus and the commutation calculus. Here we
will not carry out any of this necessary complex calculus explicitly but will just lay down the problem showing that
it is a well defined one.

II. EINSTEIN’S FIELD EQUATIONS FROM A VARIATIONAL PRINCIPLE

Sempre caro mi fu quest’ermo colle,
e questa siepe, che da tanta parte
dell’ultimo orizzonte il guardo esclude.

Giacomo Leopardi
L’ Infinito

The Einstein-Hilbert action in general relativity is the action that yields the Einstein field equations through the
stationary-action principle. With the (− + ++) metric signature, the gravitational part of the action is given as
[17, 18]

S =
1

2κ

∫
R
√
−g d4x, (2.1)

where g ≡ det(gµν) is the determinant of the metric tensor matrix,
√
−g is the scalar density, x ≡ (ct,x) is an event

with t ≡ x0/c time and x ≡ (x1, x2, x3) a point in space,
√
−g d4x is the invariant “volume” element, R is the Ricci

scalar, and κ = 8πGc−4 is the Einstein gravitational constant (G is the gravitational constant and c is the speed of
light in vacuum). If it converges, the integral is taken over the whole spacetime. If it does not converge, S is no longer
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well-defined, but a modified definition where one integrates over arbitrarily large, relatively compact domains, still
yields the Einstein equation as the Euler-Lagrange equation of the Einstein-Hilbert action. The action was proposed
[17] by David Hilbert in 1915 as part of his application of the variational principle to a combination of gravity and
electromagnetism.

The stationary-action principle then tells us that to recover a physical law, we must demand that the variation of
this action with respect to the inverse metric be zero, yielding

0 = δS =

∫ [
1

2κ

δ (
√
−gR)

δgµν

]
δgµν d4x (2.2)

=

∫ [
1

2κ

(
δR

δgµν
+

R√
−g

δ
√
−g

δgµν

)]
δgµν

√
−g d4x. (2.3)

Since this equation should hold for any variation δgµν , it implies that

δR

δgµν
+

R√
−g

δ
√
−g

δgµν
= 0 (2.4)

is the equation of motion for the metric field.
The variation of the Ricci scalar in Eq. (2.4) follows from varying the Riemann curvature tensor, and then the

Ricci curvature tensor. The first step is captured by the Palatini identity

δRσν ≡ δRρ
σρν = (δΓρ

νσ);ρ −
(
δΓρ

ρσ

)
;ν
. (2.5)

Using the product rule, the variation of the Ricci scalar R = gσνRσν then becomes,

δR = Rσνδg
σν + gσνδRσν

= Rσνδg
σν +

(
gσνδΓρ

νσ − gσρδΓµ
µσ

)
;ρ
,

(2.6)

where we also used the metric compatibility gµν;σ = 0, and renamed the summation indices (ρ, ν) → (µ, ρ) in the last

term. When multiplied by
√
−g, the term

(
gσνδΓρ

νσ − gσρδΓµ
µσ

)
;ρ

becomes a total derivative, since for any vector Aλ

and any tensor density
√
−g Aλ, we have

√
−g Aλ

;λ =
(√

−g Aλ
)
;λ

=
(√

−g Aλ
)
,λ
. (2.7)

By Stokes’ theorem, this only yields a boundary term when integrated. The boundary term is in general non-zero,
because the integrand depends not only on δgµν , but also on its partial derivatives ∂λ δg

µν ≡ δ ∂λg
µν . However, when

the variation of the metric δgµν vanishes in a neighbourhood of the boundary or when there is no boundary, this term
does not contribute to the variation of the action. Thus, we can forget about this term and simply obtain

δR

δgµν
= Rµν . (2.8)

at events not in the closure of the boundary.
The variation of the determinant in Eq. (2.4) requires Jacobi’s formula, the rule for differentiating a determinant:

δg = ggµνδgµν . (2.9)

Using this we get

δ
√
−g = − 1

2
√
−g

δg =
1

2

√
−g (gµνδgµν) = −1

2

√
−g (gµνδg

µν) (2.10)

In the last equality we used the fact that from the symmetry of the metric tensor and gµνg
νµ = δµµ = 4 follows

gµνδg
µν = −gµνδgµν (2.11)

Thus we conclude that

1√
−g

δ
√
−g

δgµν
= −1

2
gµν . (2.12)
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Now that we have all the necessary variations at our disposal, we can insert Eq. (2.12) and Eq. (2.8) into the
equation of motion (2.4) for the metric field to obtain

Gµν ≡ Rµν − 1

2
gµνR = 0, (2.13)

which is the Einstein field equations in vacuum.
Moreover, since Einstein’s tensor Gµν appears from a variational principle:

δS

δgµν
=

1

2κ

√
−g

(
Rµν − 1

2
gµνR

)
=

1

2κ
Gµν , (2.14)

its covariant divergence is necessarily zero [18].
Matter or electromagnetic fields will produce a curvature of spacetime. In order to take this into account it is

necessary to add a term LF as follows,

S =

∫ (
1

2κ
R+ LF

)√
−g d4x. (2.15)

The equations of motion coming from the stationary-action principle now become

Gµν ≡ Rµν − 1

2
gµνR = κTµν , (2.16)

where

Tµν =
−2√
−g

δ(
√
−gLF)

δgµν
= −2

δLF

δgµν
+ gµνLF, (2.17)

is the stress-energy tensor and κ = 8πG/c4 has been chosen such that the non-relativistic limit yields the usual form
of Newton’s gravity law.

III. ADM 3+1 FOLIATION OF SPACETIME

Ma sedendo e mirando, interminati
spazi di là da quella, e sovrumani
silenzi, e profondissima quiete
io nel pensier mi fingo, ove per poco
il cor non si spaura.

Giacomo Leopardi
L’ Infinito

Arnowitt, Deser and Misner (ADM) proposed in 1962 the following 3+1 foliation of spacetime [19]

ds2 = −N2dt2 + gij(dx
i +N idt)(dxj +N jdt), (3.1)

where now Latin indexes run over the three spatial components 1, 2, 3. They called N the lapse and Ni the shift. To
split the time component from the 3 spatial components they chose the following

||gµν || =
(

−(N2 −N iNi) Ni

Ni gij

)
, (3.2)

||gµν || =
(

−1/N2 N i/N2

N i/N2 gij −N iN j/N2

)
, (3.3)

which are inverse by sight. Note also that
√

−4g = N
√

3g where 3g = det{gij} and 4g = det{gµν} and we indicate
with a presuperscript 4 the full four dimensional tensor and with a presuperscript 3 the spatial 3 × 3 tensor, when
strictly necessary to avoid confusion. Therefore we will raise (or lower) Greek indexes with the full metric tensor gµν

and Latin indexes with the spatial metric tensor gij which also satisfies gikg
kj = δji .
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ADM showed that if one chooses as generalized coordinate gij and conjugated momentum

πij ≡
√

−4g(Γp
0
q − gpqΓr

0
sg

rs)gipgjq, (3.4)

then the spacetime metric Lagrangian

L ≡
√
−4g4R = −gijπ

ij
,0 −NR0 −NiR

i − 2

(
πijNj −

1

2
πN i +N |j

√
3g

)
,i

, (3.5)

where we denote with a semicolon (; ) the usual covariant derivative in the full spacetime and with a bar (|) a spatial
covariant derivative, and

R0 ≡ −
√

3g

[
3R+

1
3g

(
1

2
π2 − πijπij

)]
, (3.6)

Ri ≡ −2πij
|j , (3.7)

π ≡ πi
i . (3.8)

Eq. (3.6) is the Hamiltonian constraint whereas Eq. (3.7) the momentum constraint. In fact, since the last term in
Eq. (3.5) only contributes a “surface” term to the metric action S ∝

∫
L d4x, if spacetime extends to infinity it can

be taken as giving a negligible contribution.
Upon taking variations with respect to the lapse and shift provides the constraint equation R0 = 0 and Ri = 0 and

then the lapse and shift themselves can be freely specified, reflecting the fact that coordinates systems can be freely
specified in both space and time.

Since gij is a strictly positive definite tensor, in our recent paper [12] we proposed to use affine variables in place
of the canonical variables gij and πij in order to cure such unholonomous constraint. We then introduce a “dilation”
conjugate variable πi

j = gkjπ
ik. This classical momentric (a name that is the combination of momentum and metric

and was invented by John Klauder) tensor and the spatial metric tensor become the new basic canonical affine
variables. By doing so and recalling that gij |k = 0 we reach to the following classical Lagrangian

L = −gijπ
ij

,0 −NR0 −NiR
i, (3.9)

Ri = −2gikπk
j
|j , (3.10)

R0 =
1√
3g

[
πi
jπ

j
i −

1

2
π2

]
−
√

3g 3R. (3.11)

where we dropped the gradient term in the Lagrangian since it gives no contribution to the classical action

S =

∫
0

∫
Ω

{−gijπ
ij

,0 −NR0 −NiR
i} d(ct) d3x. (3.12)

where Ω is the region of space and time starts from the beginning at t = 0.
In Affine Quantization (AQ) we promote the two canonical affine variables gij and πi

j to operators ĝij and π̂i
j and

write the corresponding affine semiclassical (including just the terms up to order h̄ in the h̄ → 0 limit) Lagrangian L′

using the commutation relations between the spatial metric operator and the momentric operator (these are given,
for example, in Ref. [12] and derived again in the Appendix A).

IV. PATH INTEGRAL FORMULATION OF STATISTICAL GRAVITY

[. . .] e il suon di lei. Cos̀ı tra questa
immensità s’annega il pensier mio:
e il naufragar m’è dolce in questo mare.

Giacomo Leopardi
L’ Infinito

Then the action for Einstein’s theory of general relativity is one for a particular field theory where the field is the
metric tensor gµν(x) a symmetric tensor with 10 independent components, each of which is a smooth function of
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4 variables. We will indicate all these components with the notation {g}(x). We will also work in euclidean time
x0 ≡ ct → ict so that the metric signature becomes (+ + ++).

The thermal average of an observable O[{g}(x)] will then be given by the following expression [3]

⟨O⟩ =
∫
O[{g}(x)] exp(−υS′) D10{g}(x)∫

exp(−υS) D10{g}(x)
, (4.1)

so that ⟨1⟩ = 1. Here S′ is the affine action

S′ =

∫ β

0

∫
Ω

{
1

2κ
L′ + LFN

√
3g

}
d(ct) d3x, (4.2)

1/υ is a positive constant of dimension of energy times length, ct ∈ [0, β[ where β = 1/k̃BT̃ , k̃B is a Boltzmann

constant of dimensions of one divided by length and by degree Kelvin, and T̃ an effective temperature in degree
Kelvin (which can be made a field [3], T̃ (x)). Since the thermal average involves taking a trace we must have
gµν(ct + β,x) = gµν(ct,x). We will also require periodic spatial boundary conditions on the finite volume Ω ⊂ IR3

which is the closest thing to a formal thermodynamic limit. As usual we will use D10{g}(x) ≡
∏

x d
10{g}(x) and the

functional integrals will be calculated on a lattice using the path integral Monte Carlo (PIMC) method [20]. Moreover
we will choose d10{g}(x) ≡

∏
µ≤ν dg

µν(x) where the 10-dimensional space of the 10 independent components of the
symmetric metric tensor is assumed to be flat.

The determination of L′ looks like a formidable task that needs to take care of the commutation relations among
the spatial metric and the momentric operators but it seems to be necessary to overcome the numerical singularities
that may arise from the geometrical unholonomous constraint of having a strictly positive definite spatial metric. Here
we are thinking of the possible loss of ergodicity in the PIMC as its paths wander through and explore the accessible
region delimited by the sharp constraints which can be variously intricate. We see AQ as a way to smooth out the
geometrical constraints so to recover ergodicity and be able to sample the whole relevant region efficiently.

V. CONCLUSIONS

In this short paper we present a plausible representation (realization) of the FEBB defined in Ref. [3]. This requires
the use of the ADM 3+1 splitting and the AQ procedure. We just lay down the representation but without finding its
explicit form which would require a rather formidable calculus where one needs to deal with commutation relations
among tensorial objects. We believe that a Monte Carlo algorithm may lose ergodicity in the presence of sharp
constraints which AQ can otherwise smooth out.
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Appendix A: Commutators between the spatial metric and the momentric

We start from the Poisson brackets (at fixed time) between the two canonical variables gij and πij :

{gij(x), gkl(x′)} = 0, (A1)

{gij(x), πkl(x′)} =
δgij(x)

δgmn(x′′)

δπkl(x′)

δπmn(x′′)

=
1

2
δ3(x− x′′)δ3(x′ − x′′)δkmδln[δ

m
i δnj + δmj δni ]

=
1

2
δ3(x− x′)[δki δ

l
j + δliδ

k
j ], (A2)

{πij(x), πkl(x′)} = 0, (A3)

where in the second equation we used the symmetry of the metric tensor to write gij = [gij + gji]/2 and δ3 is a three
dimensional Dirac delta function.
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We then find the Poisson brackets between the two canonical affine variables gij and πj
i = gikπ

kj :

{gij(x), πl
k(x

′)} = {gij(x), gkn(x′)πnl(x′)}
= gkn(x

′){gij(x), πnl(x′)}

=
1

2
δ3(x− x′)[δljgki(x) + δligkj(x)], (A4)

{πj
i (x), π

l
k(x

′)} = {gin(x)πnj(x), gkm(x′)πml(x′)}
= gkmπnj{gin(x), πml(x′)} − ginπ

ml{gkm(x′), πnj(x)}

=
1

2
δ3(x− x′)[δliπ

j
k(x)− δjkπ

l
i(x)]. (A5)

And in the end we pass to operator commutators, promoted from the Poisson brackets {. . . , . . .} → [. . . , . . .]/(ih̄).
After being smeared with suitable test functions, the result is that both the metric and the momentric tensors can be
made self-adjoint operators (for example choosing for the momentric (ĝikπ̂

jk + π̂jkĝik)/2), and the metric operators
will satisfy the required positivity requirements.
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