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We discuss the foundations of the statistical gravity theory we proposed in a recent publication
[Riccardo Fantoni, Quantum Reports, 6, 706 (2024)].
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I. INTRODUCTION

Volano gli uccelli volano
Nello spazio tra le nuvole
Con le regole assegnate
A questa parte di universo
Al nostro sistema solare

Franco Battiato “Gli uccelli” da “La Voce del
Padrone”

We reread the Landau introduction to statistical physics [1] in order to determine the consistency of our FEBB
theory presented in Ref. [2] for a statistical gravity description.

The key logical point is the connection between thermodynamics and statistical physics made possible by the
statistical concept of entropy and its derivative with respect to energy. This defines the temperature. In our statistical
gravity theory the energy content is due to matter and electromagnetic fields and the entropy is a count of the quantum
states of a quasi closed subregion of spacetime which can be considered closed for a period of time that is long relative
to its relaxation time, with energy in a certain interval. Feynman will describe this in chapter 1 of his set of lectures
[3] saying “If a system is very weakly coupled to a heat bath at a given ‘temperature,’ if the coupling is indefinite or
not known precisely, if the coupling has been on for a long time, and if all the ‘fast’ things have happened and all the
‘slow’ things not, the system is said to be in thermal equilibrium”.

Our Eq. (2.2) has long been studied by John Klauder and the form chosen here is just reppresentative and in
substitution of the much more rigorous one offered by that author.

II. GENTROPY

Aprono le ali
Scendono in picchiata atterrano
Meglio di aeroplani
Cambiano le prospettive al mondo
Voli imprevedibili ed ascese velocissime
Traiettorie impercettibili
Codici di geometria esistenziale

Franco Battiato “Gli uccelli” da “La Voce del
Padrone”

Let us define a subregion of a macroscopic spacetime region as a part of spacetime that is very small respect to the
whole Universe yet macroscopic.

The subregion is not closed. It interacts with the other parts of the Universe. Due to the large number of degrees
of freedom of the other parts, the state of the subregion varies in a complex and intricate way.
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In order to formulate a statistical theory of gravity we need to determine the statistical distribution of a subregion
of a macroscopic spacetime region.

Since different subregions “interact” weekly among themselves then:

1. It is possible to consider them as statistically independent, i.e. the state of a subregion does not affect the
probability of the states of another subregion. If ρ̂12 is the density matrix of the subregion composed by the
subregion 1 and by the subregion 2 then

ρ̂12 = ρ̂1ρ̂2, (2.1)

where ρ̂i is the density matrix of the subregion i.

2. It is possible to consider a subregion as closed for a sufficiently small time interval. The time evolution of the
density matrix of the subregion in such an interval of time is

∂

∂t
ρ̂i =

i

h̄
[ρ̂i, Ĥi], (2.2)

where Ĥi is the Hamiltonian of the quasi closed subregion i.

3. After a sufficiently long period of time the spacetime reaches the state of statistical equilibrium in which the
density matrices of the subregions must be stationary. We must then have

[
∏
i

ρ̂i, Ĥ] = 0, (2.3)

where Ĥ is the Hamiltonian of the closed macroscopic spacetime. This condition is certainly satisfied if

[ρ̂i, Ĥ] = 0, (2.4)

for all i.

We then find that the logarithm of the density matrix of a subregion is an additive integral of motion of the
spacetime.

This is certainly satisfied if

ln ρ̂i = αi + βiĤi. (2.5)

In the time interval in which the subregion can be considered closed it is possible to diagonalize simultaneously ρ̂i
and Ĥi. We then find

ln ρ(i)n = αi + βiE
(i)
n , (2.6)

where the probabilities ρ
(i)
n = w(E

(i)
n ) represent the distribution function in statistical gravity.

If we consider the closed spacetime as composed of many subregions and we neglect the “interactions” among them,
each state of the entire spacetime can be described specifying the state of the various subregions. Then the number
dΓ of quantum states of the closed spacetime corresponding to an infinitesimal interval of his energy must be the
product

dΓ =
∏
i

dΓi, (2.7)

of the numbers dΓi of the quantum states of the various subregions.
We can then formulate the expression for the microcanonical distribution function writing

dw ∝ δ(E − E0)
∏
i

dΓi (2.8)

for the probability to find the closed spacetime in any of the states dΓ.
Let us consider a spacetime that is closed for a period of time that is long relative to its relaxation time. This

implies that the spacetime is in complete statistical equilibrium.
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Let us divide the spacetime region in a large number of macroscopic parts and consider one of these. Let ρn = w(En)
be the distribution function for such part. In order to obtain the probability W (E)dE that the subregion has an
energy between E and E+dE we must multiply w(E) by the number of quantum states with energies in this interval.
Let us call Γ(E) the number of quantum states with energies less or equal to E. Then the required number of quantum
states with energy between E and E + dE is

dΓ(E)

dE
dE, (2.9)

and the energy probability distribution is

W (E) =
dΓ(E)

dE
w(E), (2.10)

with the normalization condition ∫
W (E)dE = 1. (2.11)

The function W (E) has a well defined maximum in E = Ē. We can define the “width” ∆E of the curve W = W (E)
through the relation

W (Ē)∆E = 1. (2.12)

or

w(Ē)∆Γ = 1, (2.13)

where

∆Γ =
dΓ(Ē)

dE
∆E, (2.14)

is the number of quantum states corresponding to the energy interval ∆E at Ē. This is also called the statistical
weight of the macroscopic state of the subregion, and its logarithm

S = log∆Γ, (2.15)

is the entropy of the subregion. The entropy cannot be negative.
We can also write the definition of entropy in another form, expressing it directly in terms of the distribution

function. In fact we can rewrite Eq. (2.6) as

logw(Ē) = α+ βĒ, (2.16)

so that

S = log∆Γ = − logw(Ē) = −⟨logw(En)⟩ = −
∑
n

ρn log ρn = −tr(ρ̂ log ρ̂), (2.17)

where ‘tr’ denotes the trace.
Let us now consider again the closed region and let us suppose that ∆Γ1,∆Γ2, . . . are the statistical weights of the

various subregions, then the statistical weight of the entire region can be written as

∆Γ =
∏
i

∆Γi, (2.18)

and

S =
∑
i

Si, (2.19)

the entropy is additive.
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Let us consider again the microcanonical distribution function for a closed region,

dw ∝ δ(E − E0)
∏
i

dΓi

dEi
dEi

∝ δ(E − E0)e
S
∏
i

dEi

∆Ei

∝ δ(E − E0)e
S
∏
i

dEi, (2.20)

where S =
∑

i Si(Ei) and E =
∑

i Ei. Now we know that the most probable values of the energies Ei are the mean
values Ēi. This means that the function S(E1, E2, . . .) must have its maximum when Ei = Ēi for all i. But the Ēi are
the values of the energies of the subregions that correpond to the complete statistical equilibrium of the region. We
then reach the important conclusion that the entropy of a closed region in a state of complete statistical equilibrium
has its maximum value (for a given energy of the region E0).
Let us now consider again the problem to find the distribution function of the subregion, i.e. of any macroscopic

region being a small part of a large closed region. We then apply the microcanonical distribution function to the
entire region. We will call the “medium” what remains of the spacetime region once the small macroscopic part has
been removed. The microcanonical distribution can be written as

dw ∝ δ(E + E′ − E0)dΓdΓ
′, (2.21)

where E, dΓ and E′, dΓ′ refer to the subregion and to the “medium” respectively, and E0 is the energy of the closed
region that must equal the sum E + E′ of the energies of the subregion and of the medium.
We are looking for the probability wn of one state of the region so that the subregion is in some well defined

quantum state (with energy En), i.e. a well defined microscopic state. Let us then take dΓ = 1, set E = En and
integrate respect to Γ′

ρn ∝
∫

δ(En + E′ − E0)dΓ
′

∝
∫

eS
′

∆E′ δ(En + E′ − E0)dE
′

∝

(
eS

′

∆E′

)
E′=E0−En

. (2.22)

We use now the fact that, since the subregion is small, its energy En will be small respect to E0

S′(E0 − En) ≈ S′(E0)− En
dS′(E0)

dE0
. (2.23)

But we know that the derivative of the entropy with respect to the energy is β = 1/kBT where kB is Boltzmann
constant and T is the temperature of the closed spacetime region (that coincides with that of the subregion with
which it is in equilibrium). So we finally reach the following result

ρn ∝ e−βEn . (2.24)

which is the canonical distribution function.

III. METRIC REPRESENTATION OF THE DENSITY MATRIX AND PATH INTEGRAL

Migrano gli uccelli emigrano
Con il cambio di stagione
Giochi di aperture alari
Che nascondono segreti
Di questo sistema solare

Franco Battiato “Gli uccelli” da “La Voce del
Padrone”

We then reach to the following expression for the density matrix of spacetime

ρ̂ ∝ e−βĤ , (3.1)
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where Ĥ is the spacetime Hamiltonian. In the non-quantum high temperature regime we can let β → β/M with M
a large integer. Then we can use for the high temperature density matrix the usual classical limit [2, 4–6]

ρ(gµν , g
′
µν ; τ) ∝ exp

[
−τ

∫
Ω

(
1

2κ
R+ LF

) √
3g d3x

]
δ[gµν(x)− g′µν(x)], (3.2)

where gµν(x) is the spacetime metric tensor, x ≡ (ct,x) is an event in space (x)time(t), τ = β/M is a small complex
time step, R is the Ricci scalar of the spacetime subregion, κ = 8πGc−4 is Einstein’s gravitational constant (G is
the gravitational constant and c is the speed of light in vacuum), Ω is the volume of space of the subregion whose
spacetime is curved by the matter and electromagnetic fields due to the term LF , and

3g is the determinant of the
spatial block of the metric tensor. In Eq. (3.2) the δ is a functional delta [7].

Using then Trotter formula [8] we reach to the path integral expression described in Ref. [2] for the finite temperature
case, where the metric tensor path wanders in the spacetime subregion made of the complex time interval [0, β/c[ with
periodic boundary conditions and the spatial region Ω. The spatial region can be compact in the absence of black holes
or not if any are present. In any case it can either include its outermost frontier or not but from a numerical point of
view it is convenient to use periodic boundary conditions there in order to simulate a thermodynamic limit so that
only the frontiers around eventual black holes matter. The metric tensor 10-dimensional space is an hypertorus with
gµν(ct+β(x),x) = gµν(ct,x) and gµν(ct,x+ξ) = gµν(ct,x+ξ). If the periodicities along the imaginary time dimension
are incommensurable, i.e. β(x)/β(x′) cannot be written as rational numbers then the Einstein field equations will
let the metric tensor explore its phase space in a quasi-periodic fashion, then one can use either a “molecular-”
(or “hydro-”) dynamic numerical simulation strategy since the imaginary time averages equal the ensemble averages
thanks to ergodicity or a Monte Carlo numerical simulation strategy. Of course from a purely economic numerical
point of view the strategy of choice in this case is the Path Integral Monte Carlo one which is born to deal with
multidimensional systems.

IV. CONCLUSIONS
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We tried to give some logical foundation to the statistical gravity horizontal theory we recently proposed [2, 4].
Our weakness in discussing Eq. (2.2) does not reflect a weakness in the current knowledge and studies around that
equation but is just our lack of deep vertical awareness.
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