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The linearized Debye–Hückel theory for liquid state is shown to provide thermodynamically
consistent virial and energy routes for any potential and for any dimensionality. The importance of
this result for bounded potentials is discussed. © 2009 American Institute of Physics.
�doi:10.1063/1.3265991�

Integral equations of liquid theory always involve some
approximate closure.1,2 This is an approximate relation be-
tween the pair and the direct correlation functions in addition
to the exact Orstein–Zernike integral equation. Unlike exact
theories, these approximate closures introduce well known
inconsistencies among different routes to the equation of
state. Given the knowledge of the pair correlation function,
there are clearly many possible routes leading to the equation
of state, but the most frequently used are the energy, the
virial �or pressure�, and the compressibility routes.

The degree of inconsistency clearly depends upon the
goodness of the approximate closure, so that some closures
might display weaker differences than others and might
even, under some particular circumstances, give no differ-
ence at all between two particular routes. The most notable
example of this �although rarely mentioned in the literature�
is the virial-energy consistency within the hypernetted-chain
�HNC� approximation.3 Other more recent examples include
the energy and virial routes in the hard-sphere limit of the
square-shoulder potential �for any approximation�,4,5 and
again the energy-virial consistency for soft-potentials within
the mean-spherical approximation �MSA�.6

The aim of this communication is to add one more case
to this relatively short list by showing that energy and virial
routes are completely equivalent within the linearized
Debye–Hückel �LDH� approximation for any potential in
any dimensionality. Our interest in this problem has been
triggered by recent investigations on bounded potentials,7–9

where this consistency is of particular importance, as we
shall discuss.

Consider an arbitrary potential ��r� for a homogeneous
fluid of N particles in d dimensions. Newton’s third law of
motion implies that ��r�=��−r�, but the potential need not
be spherically symmetric. The virial equation is associated
with the compressibility factor Z�� ,�� as1
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where �=1 /kBT is the inverse temperature, � and P are the
density and the pressure, respectively, and f�r ;��=e−���r�

−1 is the Mayer function. In Eq. �1� we have also introduced
the cavity function y�r ;� ,��, which is related to the pair
correlation function g�r ;� ,�� by the relation y�r�
=e���r�g�r�. The energy equation is associated with the en-
ergy U per particle u�� ,��,
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A standard thermodynamic identity10 provides the consis-
tency condition between the pressure and energy routes:
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The explicit notation of the variable being kept fixed and the
parameter dependence will be dropped henceforth for nota-
tional simplicity. It proves convenient to further introduce
the quantity w�r ;� ,��=y�r ;� ,��−1, which is related to the
potential of mean force ��r ;� ,��=−�−1 ln g�r ;� ,�� by
−����r�−��r��=ln�1+w�r��. We anticipate that w�r�, intro-
duced as a definition at this stage, will assume a particular
physical meaning within the LDH approximation later on.
Then, identity �3� translates into the following condition:
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Introducing the Fourier transforms w̃�k ;� ,�� and f̃�k ;�� of
w�r ;� ,�� and f�r ;��, respectively, Eq. �4� becomes, after
standard manipulations,

a�Electronic mail: andres@unex.es. URL: http://www.unex.es/fisteor/andres/.
b�Electronic mail: rfantoni@ts.infn.it.
c�Electronic mail: achille@unive.it.

THE JOURNAL OF CHEMICAL PHYSICS 131, 181105 �2009�

0021-9606/2009/131�18�/181105/3/$25.00 © 2009 American Institute of Physics131, 181105-1

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.3265991
http://dx.doi.org/10.1063/1.3265991
http://dx.doi.org/10.1063/1.3265991
http://www.unex.es/fisteor/andres/


�

��
	�� dk

�2��d w̃�k�
� f̃�k�
��



=

�

��
	1

d
� dk

�2��d w̃�k��k · �k f̃�k��
 . �5�

Here we have used w̃�−k�= w̃�k� from the symmetry relation
��−r�=��r�. Equation �5� can be recast into a more conve-
nient form by taking into account the mathematical identity
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Upon integration over k in Eq. �5� the second surface term of
the right-hand side of Eq. �6� can be dropped and hence we
find
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We remark that no approximations have been carried out so
far, and that Eq. �7� is completely equivalent to the consis-
tency condition �3�. Therefore, any w̃�k� satisfying Eq. �7�
gives thermodynamically consistent results via the energy
and virial routes.

We now show that this is in fact the case for the LDH
theory which is defined by w�r�=y�r�−1 where w̃�k� satis-
fies the scaling relation11

�w̃�k� = F�� f̃�k�� , �8�

with F�z�=z2 / �1−z�. This immediately provides the follow-
ing expressions

�
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Equations �10� and �11� readily yield
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so that the second integral on the right-hand side of �7� van-
ishes identically. In addition, Eqs. �9� and �10� show that the

remaining terms in Eq. �7� are identical. This closes the
proof.

It is useful to put the present result into some perspec-
tives. The LDH theory can be derived from diagrammatic
methods1 by summing all simple chain diagrams to all orders
in density �. A mathematical device to do this is to formally
multiply the Mayer function f�r� by a bookkeeping param-
eter �, and then let �→0, so that the leading diagrams to be
retained at each order are the simple chain diagrams, which
then give the dominant contribution to the pair correlation
function within this approximation. This procedure is physi-
cally justified only for bounded potentials where �f�r�� can be
made arbitrarily small by increasing the temperature, and
hence the virial-energy consistency is also representative of
the exact behavior of the equation of state, unlike the case of
unbounded potentials where this is not the case and consis-
tency does not automatically ensure exact results.12

Representative examples of bounded potentials, recently
discussed in the literature, include Gaussian potentials,13

penetrable spheres,7 and penetrable square-well �PSW�.8,9

These potentials are currently of the greatest interest both
from a practical point of view, as they mimic ultrasoft sys-
tems such as suitable mixtures of colloids and polymers,14

and theoretically, as they are compatible with a phase transi-
tion even in one-dimensional systems �see for instance dis-
cussion in Ref. 9�.

We have explicitly numerically checked the virial-energy
equation within the PSW model defined by the potential8,9

��r� = ��r, r � 	

− �a, 	 � r � 	 + 


0, r � 	 + 
 ,
 �13�

where 	 is the particle diameter, 
 is the width of the well,
and �r and �a are two positive constants accounting for the
repulsive and attractive parts of the potential, respectively.
Two particles then attract each other through a square-well
potential of depth −�a�0 and width 
, but can also inter-
penetrate each other with an energy cost �r�0. Figure 1
depicts both the virial and the energy equation of state for the
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FIG. 1. Equation of state of the three-dimensional PSW model, Eq. �13�, as
obtained from the virial route, Eq. �1� �solid line� and from the energy route,
Eq. �2� �solid circles� for reduced temperature kBT /�a=8, well width 
 /	
=0.5, and energy ratio �r /�a=2. Also shown are the results obtained from
MC simulations �triangles�.
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PSW model at a representative state point, as obtained from
a numerical solution within the LDH approximation. As ex-
pected, we find complete numerical consistency, in agree-
ment with the analytical proof. The compressibility equation
of state �not shown� lies slightly below the energy-virial
curve. Figure 1 also includes Monte Carlo �MC� data ob-
tained for the same system and state.15 We observe that at
this relatively high temperature the LDH solution provides
an accurate equation of state, in agreement with the previous
discussion on bounded potentials.

We close this communication with a few remarks. The
analytical proof presented here is patterned after a similar
proof on the virial-energy consistency within the MSA for a
general class of soft potentials which include bounded inter-
actions treated here.6 Given the close relationship between
MSA and LDH for soft potentials,1 the result presented here
and in Ref. 6 retrospectively can be cast within a unified
framework associated with the existence of a scaling form in
Fourier space akin to Eq. �8�.

Of different nature appears to be the virial-energy con-
sistency within the HNC closure. This is a direct conse-
quence of the existence of an explicit expression for the free
energy, pressure, and chemical potential as a result of a
single approximation, thus increasing internal
consistency.3,16,17

On the other hand, the HNC theory can be alternatively
viewed as an approximation to the exact diagrammatic ex-
pansion of the pair correlation function which retains the
complete class of particular diagrams �chains, both simple
and netted, and bundles� and the virial-energy consistency
can be also regarded as a direct consequence of this.2,18 As
the full expansion including all diagrams is of course consis-
tent, an additional further consequence is that the class of
diagrams not included within the HNC approximation �the
so-called elementary diagrams related to the bridge function�
must also be consistent from the virial-energy point of view.
Our result builds upon this argument by adding the addi-
tional piece of information that the full inclusion of simple
chain diagrams only also leads to virial-energy consistency.
A profound consequence of our result is therefore that the
virial-energy consistency is deeply tied to the retention of all
diagrams within a given class.19
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