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We discuss some interesting physical features stemming from our previous analytical study of a simple
model of a fluid with dipolarlike interactions of very short range in addition to the usual isotropic Baxter
potential for adhesive spheres. While the isotropic part is found to rule the global structural and thermody-
namical equilibrium properties of the fluid, the weaker anisotropic part gives rise to an interesting short-range
local ordering of nearly spherical condensation clusters, containing short portions of chains having nose-to-tail
parallel alignment, which runs antiparallel to adjacent similar chains.
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Even simple hard sphere fluids display a nontrivial phase
diagram, as a function of the packing fraction, which can be
experimentally probed and theoretically interpreted �1�. Soft-
ening the potential and/or increasing its range, leads to a
remarkably richer phase diagram, which has attracted con-
siderable attention recently �see, e.g., �2� for a recent re-
view�. Yethiraj and van Blaaderen �3� have discussed how it
is experimentally possible to tune the interactions from hard
sphere to soft and dipolar ones. More recently, Lu et al. �4�
showed that, contrary to an intuitive expectation, gelation of
particles with short-range attractions is intimately connected
with its equilibrium phase diagram.

It is widely believed that the addition of a long-range
repulsion to a short-range attraction inhibits phase separa-
tion, by promoting the formation of an equilibrium gel. The
same mechanism can be achieved by reducing the probabil-
ity of forming a bulk liquid using the concept of limited
valency and/or patchy particles �2�. This idea has been re-
cently explored by a number of authors, who have used the
so-called Kern and Frenkel model with circular adhesive
patches �of nonvanishing area�, or that with short-ranged at-
tractive point sites on the surface of hard spheres �5–11�.

In spite of their usefulness, the above models share a
common shortcoming on the discontinuous dependence of
the potential on the particle orientations, which makes them
very difficult to investigate from a theoretical point of view.
This drawback is not present in molecular interactions where
this dependence is continuous, as for instance in dipolar in-
teractions �12�, a case which is particularly interesting for
various reasons. First, because of their widespread appear-
ance in colloidal suspensions, such as ferrofluids, which have
important practical applications. In addition, recent studies
�13–15� have shown the existence of a significant influence,
in the equilibrium properties of the fluid, of chainlike aggre-
gation characteristic of the dipolar interaction, which
strongly competes with a stable fluid-fluid phase separation.

Motivated by this features, in this paper, we then take an
extreme alternative of considering a tail with dipolarlike an-
isotropy combined with a very short-range attraction. The
latter is patterned after the well-known Baxter’s sticky hard
sphere �SHS� potential, where attraction occurs only at con-
tact �16�. Building upon our previous, almost fully analytical,
study on this model within the Percus-Yevick closure with
orientational linearization �PY-OL� �17�, we discuss here
some additional interesting features on the local ordering
properties, which were not accounted for in our previous
work.

In the same spirit of Baxter’s isotropic counterpart �16�,
the model is defined by the following Mayer function �17�:

f�1,2� = fHS�r� + t��1,2����r − �� , �1�

where fHS�r�=��r−��−1 is its hard sphere �HS� contribu-
tion, � is the Heaviside step function ���x�0�=0,
��x�0�=1�, and the Dirac delta function ��r−�� ensures
that the adhesive interaction occurs only at contact �� is the
HS diameter�. The symbol i��ri ,�i� �with i=1,2� denotes
both the position ri of the molecular center and the orienta-
tion �i, which combines the usual polar and azimuthal
angles ��i ,	i�. Thus, we have �1,2�= �r12,�1 ,�2�
= �r , r̂12,�1 ,�2�= �r ,�r ,�1 ,�2�, with r12=r2−r1, r= �r12�,
and �r being the solid angle associated with r̂12=r12 /r.
Moreover, t is the stickiness parameter, equal to �12
�−1 in
Baxter’s original notation �16�, which measures the strength
of surface adhesion and increases with decreasing
temperature.

Finally, the angular dependence of the surface adhesion is
expressed through the angular factor

��1,2� = 1 + �D�1,2� , �2�

including the dipolar function

D�1,2� = D��r,�1,�2� = 3�r̂ · u1��r̂ · u2� − u1 · u2. �3�

Here and in the following, the unit vector ui represents the
orientation �i of molecule i, while r̂ coincides with
r̂12=−r̂21.

The anisotropic function ��1,2�, which has the same sym-
metry as the dipolar interaction, modulates the sticky attrac-
tion. The requirement ��1,2��0 along with −2
D�1,2�

2 enforce the limits 0
�


1
2 on the anisotropy degree.

This range corresponds to the surface interaction always be-
ing attractive. In the isotropic case, one has �=0 and
��1,2�=1.

As convolutions of Mayer functions generate correlation
functions with a more complex angular dependence �12�, it is
necessary to consider also the angular function

��1,2� = u1 · u2, �4�

whose limits of variation are clearly −1
��1,2�
1.
We note the difference between the dipolar anisotropic

adhesion introduced here and the anisotropy belonging to the
class of uniform circular “sticky patches” �5,6,18–22�. In the
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latter case, the strength of adhesion is uniform, independent
of the contact point inside an attractive patch, whereas in our
model the value of the anisotropic correction �t D�1,2�
changes with the position of the contact point. Moreover,
D�1,2� can assume both positive and negative values, de-
pending on the molecular orientations. Consequently, the
strength of adhesion between two particles 1 and 2 at contact
depends—in a continuous way—on the relative orientation
of u1 and u2 as well as on the unit vector r̂12 of the intermo-
lecular distance. The orientations with D�1,2��0, and thus,
with ��1,2�=1+�D�1,2��1, correspond to an attraction
stronger than the isotropic one �given by ��1,2�=1�, whereas
the configurations with D�1,2��0, and thus with ��1,2�
�1, are characterized by a weaker attraction, which can even
reduce to zero �HS limit� in the case of highest anisotropy
admissible in the present model, i.e., �=1 /2.

In particular, we shall focus on a set of parallel and
antiparallel configurations with ��1,2�=u1 ·u2=1, and
��1,2�=−1, respectively. The surface adhesion reaches its
maximum value when u1=u2= r̂12, which yields D�1,2�=2
and ��1,2�=1+2� �head-to-tail parallel configuration�. On
the contrary, the stickiness is minimum, and vanishes for �
=1 /2, when u1=−u2= r̂12, which corresponds to D�1,2�
=−2 and ��1,2�=1−2� �head-to-head or tail-to-tail antipar-
allel configurations�. The intermediate case of orthogonal
configuration �u2 perpendicular to u1� corresponds to
D�1,2�=0, which is equivalent to the isotropic SHS interac-
tion.

Introducing the orientational average � . . . �u
= �4��−1	du. . . we note the following results

���1,2��u1,u2
= 0 �D�1,2��u1,u2

= 0

���1,2�D�1,2��u1,u2
= 0 and �D2�1,2��u1,u2

=
2

3
. �5�

In a previous paper �hereafter referred to as Paper I� �17�,
we have analytically solved for this model the Percus-Yevick
integral equation with an orientational linearization.

We here recall the main results, referring to Paper I for
details. We start with the molecular Ornstein-Zernike �OZ�
integral equation for homogeneous fluids,

h�1,2� = c�1,2� + �
 dr3�c�1,3�h�3,2��u3
, �6�

where h�1,2� and c�1,2� are the total and direct correlation
functions, respectively, and � is the number density.

Any angle-dependent correlation function F�1,2� could
be expanded in a basis of rotational invariants �23�, whose
first few terms are

F�1,2� = F0�r� + F��r���1,2� + FD�r�D�1,2� + ¯ , �7�

We stop at the linear terms, assuming �12,17� that the angular
basis �1,� ,D� is sufficient for our purposes.

The PY-OL closure �17� is a combination of the PY clo-
sure, i.e., cPY= f�1+��, with the linear expansion of ��h
−c given by �OL�1,2�=�0�r�+���r���1,2�+�D�r�D�1,2�,
which also neglects the D� and D2 terms stemming from
the product f�. This leads to

cPY-OL�1,2� = c0�r� + c��r���1,2� + cD�r�D�1,2� , �8�

c0�r� = fHS�r��1 + �0�r�� + �0���r − �� ,

c��r� = fHS�r����r� + �����r − �� ,

cD�r� = fHS�r��D�r� + �D���r − �� , �9�

�0 = t�1 + �0����, �� = t�����, �D = t�D��� + ��0.

�10�

The solution of the OZ equation with the above closure then
yields the approximate pair distribution function

gPY-OL�1,2� = 1 + hPY-OL�1,2�

= g0�r� + h��r���1,2� + hD�r�D�1,2� , �11�

g0�r� = eHS�r��1 + �0�r�� + �0���r − �� ,

h��r� = eHS�r����r� + �����r − �� ,

hD�r� = eHS�r��D�r� + �D���r − �� , �12�

where g0�r�=1+h0�r�, and eHS�r�=1+ fHS�r� is the HS Bolt-
zmann factor.

The first term in Eqs. �9� corresponds to the well known
isotropic Baxter’s sticky hard sphere solution �16� and the
OZ equation and this closure constitute a self-contained sys-
tem. The remaining two have a similar form, but they depend
in a nontrivial way upon the isotropic term �see Paper I for
details�.

It is instructive to consider the behavior of the g�12� as-
suming that r̂12·u1=1. We focus on a generic reference par-
ticle 1, with fixed position r1 and orientation u1, and consider
a particle 2 located along the straight half line, which origi-
nates from r1 and has the same direction as u1 �polar axis�.
Imagine that 2 has fixed distance r from 1, but can assume all
possible orientations u2, which—by axial symmetry—can be
described by the single angle �12=cos−1�u1 ·u2�. Conse-
quently, g�1,2� reduces to: g�r ,�12�=g0�r�+ �h��r�
+2hD�r���u1 ·u2�.

Figure 1�a� depicts the behavior of g0�r�, which coincides
with the reference isotropic part gisoSHS�r� of the pair corre-
lation function, at �= �� /6���3=0.4.

Here, t=0 gives the HS limiting case, gHS�r�, and we
consider increasing values of t, which correspond to increas-
ing adhesion or decreasing temperature, i.e., t=0.1, 0.3, 0.5
and 0.8. The last t-value yields 
=1 / �12t�
0.1, which lies
close to the critical temperature of the isotropic fluid �24�.

Two features are noteworthy. First of all, the short-range
interactions mainly modify the short-range portions of the
pair correlation functions. Very pronounced effects are vis-
ible in the range ��r�2�, but significant changes are also
present all the way out to r=4� and beyond, while the phase
of the oscillations is clearly shifted by the addition of the
short-range attraction.

A second interesting feature concerns the t dependence of
g0�r� in the first shell. As the adhesion strength increases
from t=0 �HS� to t=0.8, the contact value monotonically
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decreases, whereas a discontinuous peak progressively builds
up at r= �2��−. This somewhat counter-intuitive result can be
easily understood in terms of the reduction of the pressure
exerted on particles 1 and 2 by the surrounding ones in the
presence of increasing attraction, thus, providing an average
larger separation among 1 and 2.

Suppose now that we modulate this attraction with the
anisotropic dipolarlike dependence described above. When
�=1 /2 the effect on g is shown in Fig. 1�b� for three repre-
sentative values of �12: �12=0 �parallel orientation�, �12
=� /2 �orthogonal orientation�, and �12=� �antiparallel ori-
entation�. Note that in the orthogonal case, the dipolar de-
pendence vanishes and one recovers the isotropic behavior.
The main differences occur in the first shell, where the or-
thogonal curve �12=� /2 is bracketed between the antiparal-
lel ��12=�� and the parallel ��12=0� results. Similar qualita-
tive results �with different separations among parallel and
antiparallel curves� are found when the angle between r̂12
and u1 is varied.

From Fig. 1�b� we note that at contact �r=�+� the antipar-

allel configuration is more probable that the nose-to-tail par-
allel one; conversely, at separations close to r=2�− the par-
allel alignment is predominant. This can also be confirmed
by plotting the projections h��r� and hD�r� of the molecular
correlation function hPY-OL�1,2� on the angular basis ��12�
and D�12�, respectively. This is depicted in Fig. 2 where the
isotropic corresponding contribution h0�r� is also reported by
contrast. One observes a weak negative correlation for both
quantities in the region r��+ and, conversely, a positive
correlation close to 2�−. A crossing occurs approximately
around the same value r�1.7� where the parallel compo-
nent in Fig. 1�b� overtakes the antiparallel one, as expected.
As we shall see, however, this is a local ordering which does
not affect the condensation process.

In order to get more insight into such an orientational
ordering, we compute the number of particles with orienta-
tion u2 that a generic reference particle 1 with orientation u1
“sees” in an appropriate surrounding volume VAB. Assuming
u1 as polar axis and taking into account the sphere S with
center u1 and radius R, VAB is defined as the portion of S
corresponding to the solid angle �AB= ��� ,	� ��A
�
�B ,0

	
2�� �see Fig. 3�. Taking for instance �A=0 and �B
=� /3, we can analyze the “forward ordering” as seen by the
reference particle, while choice �A=� /3 and �B=� /2 allows
to discuss the “lateral ordering.”
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FIG. 1. �Color online� �a� Isotropic part of the pair correlation
function, g0�r�=gisoSHS�r�, at �=0.4, for t=0, 0.1, 0.3, 0.5, and 0.8
corresponding to increasing adhesion strength or decreasing tem-
perature. t=0 yields the HS limit. �b� Behavior of g�r ,�12�, when
�=1 /2, at �=0.4 and t=0.8, for three representative orientations
�12=0,� /2,� �parallel, orthogonal, and antiparallel
configurations�.
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FIG. 2. �Color online� The three components h0�r�, h��r�, and
hD�r� of the molecular total correlation function for �=1 /2, �
=0.4, and t=0.8. At r�� one has h0�r�=−1 and h��r�=hD�r�=0.
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FIG. 3. �Color online� Schematic representation of the volume
VAB �included in the shading area� in two different situations: �top
panel� �A=0 giving the contribution from the forward region, and
�bottom panel� �A��B�0 giving information on the lateral adja-
cent region.
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The number of particles in an infinitesimal spherical cone
of height R=�� and infinitesimal solid angle d�r in a given
direction r̂ is dN�u1 ,u2 , r̂�=d�r	0

Rdrr2�g�1,2�, where d�r
=dr̂. In a finite solid angle �AB,

N�u1,u2� = 

�AB

dr̂

0

R

drr2�g�1,2� . �13�

Using the first line of Eqs. �5� and �11� we see that, within
the PY-OL closure, �g�12��u1,u2

=g0�r� so that the average
number is

N = �N�u1,u2��u1,u2
= ��AB


0

R

drr2g0�r� = ��AB�3I0,

�14�

with �AB=	0
2�d		�A

�Bd� sin �=2��cos �A−cos �B� and

I0 = ��3 − 1�/3 + 

1

�

dxx2h0,reg�x� + �0. �15�

Here, we have used the results of Paper I �see especially
Sec. IIID and IIIE�, where h0�r� is decomposed into a “regu-
lar” term h0,reg�r� and a “singular” term proportional to the
delta function. A similar decomposition is carried out �see
again in Paper I� for the h��r� and hD�r� parts. Using

��AB�−1

�AB

dr̂D�1,2� = MAB�u1 · u2� , �16�

MAB = cos2 �A + cos �A cos �B + cos2 �B − 1, �17�

we find that the fraction X of particles with orientation u2 in
the volume VAB around a reference particle having orienta-
tion u1, only depends upon the angle �12=cos−1�u1 ·u2� and
is given by

X��12� =
N�u1,u2�

N
= 1 +

I� + MABID

I0
�u1 · u2� , �18�

I� = 

1

�

dxx2h�,reg�x� + ��,

ID = 

1

�

dxx2hD,reg�x� + �D. �19�

Figure 4�a� depicts X as a function of �12 in the case �
=2 �first shell�. In the forward region, represented by the
solid angle �AB�0,� /3�, we find X�0��X��� so there are
more particles with parallel orientation, with respect to par-
ticle 1. On the contrary, X�0��X��� in the surrounding lat-
eral region, characterized by �AB�� /3,� /2�, means that
here the molecules with antiparallel orientations prevail. Al-
though these effects are rather small, it is reasonable to ex-
pect that such differences should grow significantly if the
anisotropy parameter �t could become much larger than the
strength t of isotropic adhesion. Note that, while Xforward is
larger than Xlateral in the interval 0
�12
� /2, an inversion
occurs in the region � /2��12
� in agreement with the

results of g�r ,�12� reported above �Fig. 1�b��.
The above results are suggestive of the following physical

picture. Because of the limits imposed on the anisotropy pa-
rameter �0
�
1 /2� by the choice of the potential, the con-
tribution of the dipolarlike interaction is significantly weaker
compared to the isotropic part, and does not affect the main
condensation process with the formation of globule clusters
of nearly isotropic shape. This is in sharp contrast with the
purely long-range dipolar models which are mainly charac-
terized by chainlike aggregation �13–15�. However a local
ordering occurs within these globular agglomerates of con-
densation, that are mainly formed by short portions of anti-
parallel chains running next each other and held together
essentially by the isotropic attraction. This is schematically
depicted in Fig. 4�b�.

We note that only particles belonging to different, antipar-
allel, chains have direct contact. Consecutive molecules with
parallel noise-to-tail orientation—i.e., belonging to the same
chain—are not in contact, but lie with average separations
slightly smaller than 2� as suggested by the behavior of g in
Fig. 1�b�. Thus antiparallel molecules of adjacent chains
“mediate” an indirect contact between consecutive particles
of a given chain.
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FIG. 4. �Color online� �a� Plot of the fraction X of molecules
with orientation �12 contained in the volume VAB defined by �

r
2� and by the solid angle �AB, with �A=0 and �B=� /3 for
the forward direction and �A=� /3, �B=� /2 for the lateral direc-
tion. Parameters are �=1 /2, �=0.4, and t=0.8 in all cases. �b�
Schematic representation of a globular cluster, with internal chain-
like orientational ordering.
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Once again, we stress that this phenomena should be con-
sidered a local fluctuation with very short range �of the order
of one shell, as remarked� and does not extend to the entire
fluid. This can be readily checked by considering the limit
�→�, in which case one finds ID=0, so that the dependence
from u1 ·u2=cos �12 is averaged to zero. As we shall see
below, a direct consequence of this is that the coexistence
line of the isotropic model is not significantly affected by the
anisotropic part, within the PY-OL approximation.

In view of the last remark, one might rightfully wonder
whether the anisotropic part plays any role in the thermody-
namics of our model. We can convince ourselves that the
answer is positive, by considering the exact third virial coef-
ficient as defined by

B3 = −
1

3V

 dr1dr2dr3�f�1,2�f�1,3�f�2,3��u1,u2,u3

. �20�

Note that, in view of Eq. �5�, the exact second virial co-
efficient B2=− 1

2	dr�f�1,2��u1,u2
coincides with its isotropic

counterpart. However, this is not the case for B3, that can be
computed following the method outlined in �6� for patchy
sticky hard spheres, a close relative to the present model.
One finds

b3 = B3/v0
2 = 10 − 60t�1 + 144t2�2 − 96t3�3, �21�

where v0= �� /6��3 and

�1 = ���1,2��u1,u2
�2 = ���1,2���1,3��u1,u2,u3

,

�3 = ���1,2���1,3���2,3��u1,u2,u3
. �22�

Again using Eq. �5�, we find �1=1=�2. The exact value of
�3 turns out to be

�3 = 1 −
11

72
�3. �23�

The anisotropic contribution is represented by the term
−�11 /72��3�0.02, which is very weak with respect to the
isotropic one.

Having assessed the limits of the model, we now turn to
discuss the limits of the approximation involved in the
PY-OL closure. A simple and direct way to quantify its de-
viation from the exact results is to consider the first-order
density expansion of the exact direct correlation function
c�1,2�= f�1,2�+c�1��1,2��+¯. We find

c�1��1,2� = cPY-OL
�1� �1,2� + cex

�1��1,2� , �24�

with cPY-OL
�1� �1,2�=c0

�1��r�+c�
�1��r���1,2�+cD

�1��r�D�1,2�, and

cex
�1��1,2� = ��t����

�1������1,2�D�1,2�

+ �D
�1����D2�1,2�����r − �� , �25�

whereas the PY closure includes both cPY-OL
�1� �1,2� and

cex
�1��1,2�, thus, reproducing the exact third virial coefficient

through B3=− 1
3	dr�c�1��1,2��u1,u2

, the PY-OL approximation
omits the contributions included in cex

�1��1,2�. Consequently,
b3

PY-OL reduces to the purely isotropic contribution: b3
iso=10

−60t+144t2−96t3. The anisotropic contribution b3
aniso

= 44
3 ��t�3, stemming from cex

�1��12�, can be easily computed
again with the help of Eqs. �5�, in agreement with the exact
result �Eq. �23��. Next, we consider the thermodynamics. As
in all approximate closures, even within the PY one there
exist three standard routes to the equation of state: compress-
ibility, energy, and virial routes.

In the first two cases, it is easy to convince oneself that
the result is the same as for the isotropic SHS system calcu-
lated in �16�. This is again due to Eq. �5� and is a conse-
quence of the linearity of the expansion in the angular part
involved in the PY-OL approximation, Eq. �7�, and of the
minor role played by the anisotropic part, as testified by the
weak �-dependence of the third virial coefficient �Eqs. �22�
and �23��. This is also in agreement with the stability analy-
sis of Paper I, which can also be extended to finite values of
the wave vector k.

As often the case, the virial route is more delicate. Here,
standard steps lead to

�p

�
= 1 + 4�y0��� − 4�t

��2y0��� + Y0���� +
2�

3
�2yD��� + YD� ����� ,

�26�

where �=�v0 is the packing fraction, and Y0�r�=ry0�r�,
YD�r�=ryD�r�, with yPY�1,2�=1+��1,2� being the PY cavity
function.

For given t, �, one can calculate y0���, yD���, Y0����, and
YD� ��� analytically using expressions from Paper I. However,
Y0���� and YD� ��� require some care, since space derivative
and sticky limit do not commute �16�. So from Eq. �26� one
finds the virial pressure. The corresponding results are col-
lected in Fig. 5 for different values of t, at both �=0 �isotro-
pic case� and �=1 /2 �with the anisotropic contribution in-
cluded�. A comparison with the virial expansion up to the
third virial coefficient is also added in the case t=0.9 and
�=1 /2.

In agreement with the previous structural findings, we
find a dependence on the anisotropy. This is very small for
t
0.5 but increasingly appreciable for larger values of the
adhesion strength t. In Fig. 5 one clearly sees that the pres-
sion increases by roughly 10% on going from �=0 �no an-
isotropy� to �=0.5 �maximum anisotropy� for t=0.9 and �
�0.2.

Despite the strong differences with the pure dipolar case,
it proves instructive to get some insight into the competition
between the tendency to condensation on the one hand and to
chaining on the other hand, by applying to the present model
the arguments put forward by Tlusty and Safran �13� in the
dipolar case. These authors devised a phenomenological
theory, where the two above-mentioned tendencies are rep-
resented by the concentrations of “junctions” and “ends,”
respectively �see �13��. We have closely followed their argu-
ments to derive the critical parameters 
c and �c of the
present model in terms of the energies �1, �3 of ends and
junctions respectively. One finds �13�
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c =
�1 − 3�3

3 ln 3 − 2 ln 2
, ln �c = −

�1�2 ln 3 − ln 2� − �3 ln 2

�1 − 3�3
,

�27�

which coincides with the results of �13�. Matching this criti-
cal values with the one of the isotropic adhesive spheres of
Miller and Frenkel �24�, 
c=0.1133 and �c=0.266, we find
�1=0.186 and �3=−0.0102 �the value �3�0 means that junc-
tions are enhanced with respect to ends, once more favoring
condensation�. In our results the number of ends �1 and junc-
tions �3 turn out to be equal ��1=�3� at the critical point,
which is thus a point of connectivity transition in the system.
Figure 6 depicts the coexistence line, which does not display
the re-entrance characteristic of the pure dipolar case �com-

pare with Fig. 2 of �13��. This is in complete agreement with
the remark by Tlusty and Safran that the addition of an iso-
tropic short-range attraction—such as the case of the present
model—reports the curve to its characteristic parabolic shape
�see also Fig. 3 of �13��. This is also consistent with very
recent numerical simulation results �25,26� showing that the
addition of a very weak isotropic attraction to the dipolar HS
potential makes the condensation transition easily observ-
able. In summary, we have studied structural and thermo-
physical properties of a particular hard-core fluid where the
attractive part of the potential includes an anisotropy of di-
polar form infinitesimally short and infinitely strong.

Any two molecules of the fluid interact only at contact
with a potential having, in addition to an adhesive isotropic
part of the Baxter type, an additional adhesive term, whose
intensity depends upon the mutual orientation of the two
particles in a dipolar fashion. Our potential belongs to a class
of simple anisotropic models that have recently attracted
considerable interest in connection with aggregation phe-
nomena in colloidal fluids, polymers and globular proteins,
because of their possible experimental relevance for self-
assembling materials and biological viruses.

The extremely short-range nature of this peculiar dipolar
interaction strongly contrasts with the long-range nature of
the dipolar hard sphere model. In the latter case, the forma-
tion of chains and long anisotropic agglomerates signifi-
cantly affects the possibility of a gas-liquid transition. Using
a simplified treatment of the angular part, based upon a first-
order expansion in angular invariants so to allow an almost
fully analytical solution, we have shown that only the local
�first few� coordination shells are affected by the anisotropy.
This is due to the fact that the orientationally dependent part
of the potential has a relatively weak strength with respect to
the isotropic attractive term, as forced by the particular
choice of the potential associated with the 0
�
1 /2 limits.
As a result, all structural and thermodynamical properties are
only mildly affected by the anisotropic adhesion.

Nonetheless, the competition of the two adhesive terms
�the isotropic and the anisotropic ones� gives rise to an an-
isotropic local ordering within each �almost isotropic� mo-
lecular agglomerate consisting of short chains of molecules
with parallel head-to-tail orientation, “glued” to similar
chains globally oriented in the opposite direction, thus giving
an antiparallel alignment for particles belonging to two adja-
cent chains. It would be interesting to contrast the present
results with more realistic models incorporating a competi-
tion between an isotropic and anisotropic short range inter-
actions, such as for instance Stockmayer fluids �27�, dipolar
Yukawa HS fluids �28� or combination of dipolar and square-
well potentials �26�. In spite of its simplicity, the results of
the present work suggest that, in the presence of dipolarlike
anisotropy, one can continuously tune from situations only
affecting the local ordering �such as in the case presented
here� to situations where this effect is much more global
�such as the real dipolar case�, by simply adjusting the range
of interaction.
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FIG. 5. �Color online� A plot of �pv0 versus the packing frac-
tion � for four different values of t=1 / �12
�, with ��=1 /2� and
without ��=0� the anisotropic contribution using the virial route to
the pressure. The third order virial expansion is also added �v.e.� in
the most relevant case t=0.9 and �=0.5 for comparison. The part of
the lines, which are not shown, correspond to a loss of solutions.
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FIG. 6. �Color online� Phase diagram of our dipolarlike sticky
hard spheres, calculated for defect energies �1=0.186 and �3

=−0.0102. At the critical point the binodal curve �continuous line�
and the connectivity transition �dashed curve� meet. The line denote
the end-rich “gas” with the junction-rich “liquid.”
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