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We investigate the dependence of the stickiness parameters tij =1/ �12�ij�—where the �ij are the conventional
Baxter parameters—on the solute diameters �i and � j in multicomponent sticky hard sphere �SHS� models for
fluid mixtures of mesoscopic neutral particles. A variety of simple but realistic interaction potentials, utilized in
the literature to model short-ranged attractions present in real solutions of colloids or reverse micelles, is
reviewed. We consider: �i� van der Waals attractions, �ii� hard-sphere-depletion forces, �iii� polymer-coated
colloids, and �iv� solvation effects �in particular hydrophobic bonding and attractions between reverse micelles
of water-in-oil microemulsions�. We map each of these potentials onto an equivalent SHS model by requiring
the equality of the second virial coefficients. The main finding is that, for most of the potentials considered, the
size-dependence of tij�T ,�i ,� j� can be approximated by essentially the same expression, i.e., a simple poly-
nomial in the variable �i� j /�ij

2 , with coefficients depending on the temperature T, or—for depletion
interactions—on the packing fraction �0 of the depletant particles.
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I. INTRODUCTION

Theoretical investigation of solutions of mesoscopic
particles—with sizes within the range 10–104 Å—such as
colloids, micelles, and globular proteins, is more problematic
than the study of fluids with atomic or simple molecular
constituents—with sizes within the range 1–10 Å �1–4�. The
main difficulties are due to the large difference between sol-
ute and solvent molecular sizes, as well to the possible pres-
ence of high electric charges and large charge-asymmetries.
Treating mixtures of macroions and microions, with strong
long-ranged Coulombic forces, represents a challenge for the
most typical methods of the modern statistical-mechanical
theory of fluids, namely Monte Carlo �MC� or molecular
dynamics �MD� computer simulations and integral equations
�IE� based on the Ornstein-Zernike equation coupled with
approximate “closures” �5�. Large size-asymmetries entail
very different time scales in MD simulations and may lead to
ergodicity problems both in MC and MD calculations. More-
over, large size differences imply several difficulties even
when using IE theories.

For simplicity, the present paper will be restricted to fluids
of neutral particles with spherically symmetric interactions,
neglecting all Coulombic forces due to net electric charges.
Starting from a fluid mixture with one or more solute species
�big particles, or macroparticles� and one “solvent” species
�much smaller molecules or microparticles, which might be
either a true solvent or polymer coils, smaller colloidal par-
ticles, etc.�, we will adopt an effective fluid approach, which
eliminates all large size asymmetries by averaging out the
microscopic degrees of freedom corresponding to the solvent
�6,7�. As a consequence, the influence of the solvent is in-
corporated into an effective potential for the interaction be-

tween big particles, and the initial mixture is reduced to a
fluid made up of only solute molecules �one or more com-
ponents�. Usually, at the simplest level of description the
effective potential includes, in addition to a steeply repulsive
part, a very short-ranged attractive one, whose range is a
small fraction of the macroparticle size. Recall that a force is
said to be “short-ranged” if it derives from a potential �ij�r�
which vanishes as r−n with n�4 when r→� �8,9�; the force
−��ij /�r then decays as r−�n+1�. This definition of short-
ranged potentials is clearly related to the second virial coef-
ficient B2,ij, which is a central quantity in our paper: when
the forces are short-ranged in the above-mentioned sense, the
integral which defines B2,ij �see Eq. �1� below� is finite,
whereas it diverges for long-ranged interactions, i.e., when
r�3. Note that the definition of short-ranged forces is not
unique in the literature. For instance, in Hirschfelder’s clas-
sical reference book �10� short-range forces are the “valence
or chemical forces,” arising from overlap of electron clouds
at very short intermolecular separations. The potential of
such repulsive, and often highly directional, forces varies
exponentially with the distance r. On the other hand, all po-
tentials proportional to inverse powers of r are called “long-
ranged” by Hirschfelder �11�.

Once a reasonable approximation to the effective potential
is known, it could be employed in both computer simulations
or IE calculations. Unfortunately, IEs can be solved analyti-
cally only in very specific cases, for some potentials and
within particular “closures” �5�. The simplest model with
both repulsion and attraction which is analytically tractable
refers to a fluid made up of hard spheres �HS� with an infi-
nitely narrow and infinitely deep attractive tail. This highly
idealized model of adhesive or sticky hard spheres �SHS�
was proposed by Baxter �12�, and admits an analytical solu-
tion within the Percus-Yevick �PY� approximation �12–14�.
Notwithstanding its crudeness and known shortcomings �15�,
the SHS model is not a purely academic exercise. In fact, it*Electronic address: gazzillo@unive.it
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has seen continuously growing interest in the last two de-
cades because of its ability to describe semiquantitatively
many properties of real fluids of neutral spherical particles,
such as colloidal suspensions, micelles, protein solutions,
microemulsions, and systems exhibiting phase transitions of
several types �see, for example, Refs. �15–18� and references
therein�. Accurate simulation data for one-component SHS
have recently been reported by Miller and Frenkel �19�.

Because of the simplicity of the SHS model, it has often
been suggested to model potentials comprising a hard core
and short-ranged attractive tail by means of sticky potentials.
To achieve this one needs to define an appropriate equiva-
lence between the actual interaction and its sticky represen-
tation. This mapping of a generic short-ranged potential onto
a SHS interaction is usually accomplished by requiring the
two different models to have equal second virial coefficients
�16,20�. Moreover, when applied to mixtures, this approach
requires a further step, and this is the main point addressed in
the present work.

In a series of earlier papers �21–25�, we investigated the
multicomponent SHS model, focusing on its possible appli-
cation to polydisperse colloidal suspensions, namely to mix-
tures where the number p of components is so large that it
can effectively be regarded as stemming from a continuous
distribution. This is, for instance, the case of size polydisper-
sity, where—in the discrete notation—a SHS mixture is fully
characterized by two sets of parameters, i.e., the HS diam-
eters ��i� and the “stickiness” coefficients �tij =1/ �12�ij�� ��ij

are Baxter’s parameters�; the latter depend on temperature T
and the strength of the interparticle adhesion. Intuitively, one
expects tij to depend on the diameters �i and � j of the inter-
acting particles i and j, but it is not easy to specify a priori
the correct functional form, and in our previous papers we
attempted some reasonably motivated choices for such a de-
pendence.

The main purpose of the present paper is to investigate the
relationship between stickiness coefficients and particle
sizes, and thus to get new insights into the possible forms of
the function tij = tij �T ,�i ,� j�, starting from a physically
sound basis. To achieve this, we will present an overview of
the most important short-ranged attractive interactions occur-
ring in real solutions of colloids or micelles. In doing this,
our claim is not to be fully exhaustive, but rather to gather
sufficient physical information about the mechanisms which
cause short-ranged attractive interactions in solutions of me-
soscopic particles, and the corresponding simplest model po-
tentials used for their representation.

By considering several different systems—dispersion
forces, depletion forces, polymer-coated colloids, solvation
forces �in particular, hydrophobic interactions and reverse
micelles in water-in-oil microemulsions�—we have surpris-
ingly found strong similarities among the simplest models
employed to represent this wide variety of physical phenom-
ena. By constructing, for each of the relevant potentials, an
equivalent SHS representation, we will deduce and compare
the corresponding expressions for tij = tij�T ,�i ,� j�.

The paper is organized as follows. In Sec. II we will in-
troduce the basic formalism, concerning the second virial
coefficient, the Baxter SHS model, and the mapping rule for
getting the equivalent SHS potential from a given short-

ranged attraction. Sections III is dedicated to the direct van
der Waals interaction, while Secs. IV–VI survey the most
important short-ranged attractions that are indirect, i.e., me-
diated by the solvent. The hydrophobic effect and interac-
tions between reverse micelles will be considered in Sec. VI,
as particular cases of solvation forces. For each model po-
tential, a reasonable approximation to the corresponding tij
= tij �T ,�i ,� j� will be calculated. Finally, a summary, with a
brief discussion, and our conclusions will be given in Sec.
VII.

II. BASIC FORMALISM

A. Second virial coefficient

For a multicomponent fluid, the second virial coefficient
of the osmotic pressure reads B2=�i,jxixjB2,ij, where xi is the
molar fraction of species i, and the partial second virial co-
efficient for the i-j interaction is given by

B2,ij = −
1

2
� f ij�r�dr = − 2	�

0

+�

f ij�r�r2dr , �1�

with

f ij�r� = exp�− 
�ij�r�� − 1 �2�

being the Mayer function, 
= �kBT�−1, kB the Boltzmann con-
stant, and T the absolute temperature.

When the actual potential consists of a hard core plus a
short-ranged attractive tail, i.e., �ij�r�=�ij

HS�r�+�ij
tail�r�, one

gets

B2,ij = B2,ij
HS + B2,ij

tail , �3�

B2,ij
tail = − 2	�

�ij

+�

f ij
tail�r�r2dr = B2,ij

HS	− 3�
1

+�

f ij
tail��ijx�x2dx
 ,

�4�

where �i is the HS diameter for particles of species i and we
set �ij = ��i+� j� /2 as usual, introducing also the shorthands
B2,ij

HS = �2	 /3��ij
3 and f ij

tail�r�=exp�−
�ij
tail�r��−1.

Often, the required integration cannot be performed ana-
lytically, but if �ij

tail�r� is sufficiently small compared to the
thermal energy kBT, then approximate analytical expressions
may be obtained after expanding the Mayer function f ij

tail�r�
in powers of Y �−
�ij

tail�r�. A numerical estimate of the
range of applicability and the maximum relative error �max
=max�1− fapprox/ f �, for each of the three simplest approxima-
tions, is

f = eY − 1

 �Y , 0 � Y  0.1, �max � 5%

Y + Y2/2, 0 � Y  0.6, �max � 5%

Y + Y2/2 + Y3/6, 0 � Y  1, �max  3 % .
�

�5�
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B. Adhesive hard spheres as a limiting case of square-well
model

Probably, the simplest two-parameter representation of a
spherically symmetric interaction with steeply repulsive core
and short-ranged attractive tail is the square-well �SW� po-
tential

�ij
SW�r� = �+ � , 0 � r � �ij

− �ij , �ij � r � �ij + wij

0, r � �ij + wij ,
� �6�

with �ij �0 and wij being the depth and width of the well,
respectively. The corresponding partial second virial coeffi-
cient reads

B2,ij
SW = B2,ij

HS �1 − �e
�ij − 1���1 + �ij�3 − 1��

= B2,ij
HS	1 − 3�e
�ij − 1���ij + �ij

2 +
1

3
�ij

3�
 �7�

with �ij =wij /�ij �0. Equation �7� shows that, if the well is
narrow ��ij �1�, B2,ij

SW can be significantly different from B2,ij
HS

only when the attraction is strong enough �e
�ij �1�.
Unfortunately, despite the simplicity of the SW model, no

satisfactory analytical solution of the resulting IEs has been
found so far. However, such a solution can be found within
the Percus-Yevick �PY� approximation for a special limiting
case, when the well width �ij goes to zero but the depth �ij
goes to infinity in such a way that the contribution of the
attraction to the second virial coefficient remains finite and
different from zero �Baxter’s sticky limit� �12�. The short-
ranged attraction becomes a surface adhesion, and the par-
ticles of the resulting model are thus named adhesive or
sticky hard spheres. From Eq. �7� one sees that Baxter’s con-
dition on B2,ij

SW requires the product �e
�ij −1��ij � tij to be
independent of �ij for small �ij, and this leads to the follow-
ing condition for the SW depth:

�ij
Baxter SW = kBT ln�1 +

tij

�ij
� . �8�

As previously mentioned, our tij is simply related to Baxter’s
original parameter �ij by

tij =
1

12�ij
� 0. �9�

Here, tij measures the strength of surface adhesiveness or
“stickiness” between particles of species i and j, and must be
an unspecified decreasing function of T. In fact, as T→�
one must also have �ij→�, in order to recover the correct
HS limit. The SHS models must therefore satisfy the high-
temperature condition

lim
T→�

tij = 0. �10�

A consequence of Eq. �8� is a very simple expression for
the SW Mayer function

f ij
Baxter SW�r� = �− 1, 0 � r � �ij

tij�ij/wij , �ij � r � �ij + wij

0, r � �ij + wij .
� �11�

Baxter focused on f ij, since this quantity directly determines
B2,ij and, furthermore, the coefficients in the cluster expan-
sion of thermodynamic properties and correlation functions
can be expressed in terms of multidimensional integrals of
products of Mayer functions �5�. The simple functional form
of f ij

Baxter SW�r� then allows one to calculate analytically
many quantities of interest. In the “sticky limit” �wij�→ �0�,
the Mayer function becomes

f ij
SHS�r� = ���r − �ij� − 1� + tij�ij�+�r − �ij� �12�

with ��x� being the Heaviside function �=0 when x�0, and
=1 when x�0� and �+�x� an asymmetric Dirac distribution
�26�, while the SHS second virial coefficient is simply

B2,ij
SHS = B2,ij

HS �1 − 3tij� . �13�

C. Mapping onto equivalent SHS model

On comparing Eqs. �13� and �4�, one has

tij
eq�tail� = −

B2,ij
tail

3B2,ij
HS , �14�

and hence the following mapping rule: the parameters tij of
the equivalent SHS model must be given by

tij
eq�tail� =

1

�ij
3 �

�ij

+�

f ij
tail�r�r2dr = �

1

+�

f ij
tail��ijx�x2dx . �15�

This is the main relation used in the remaining part of the
paper. The superscript in tij

eq�tail� means: this tij yields the SHS
potential equivalent to �ij

tail.

III. VAN DER WAALS ATTRACTION

The main direct attraction between two neutral molecules
i and j is the van der Waals �vdW� interaction, represented
by the potential �ij

vdW�r�=−Cij
vdWr−6, which is, in general, the

sum of three different contributions. For most simple
molecules—except the small highly polar ones—the vdW
attraction is almost exclusively determined by the dispersion
forces; the latter are in fact the only contribution to the vdW
forces if both molecules are nonpolar.

A. Dispersion forces

The dispersion or London forces are induced-dipole/
induced-dipole interactions, whose potential is given by the
London formula �10�

�ij
disp�r� = −

Cij

r6 , Cij =
3

2

IiIj

Ii + Ij
�i�� j� for large r ,

�16�

where Ii and �i� are, respectively, the ionization energy and
polarizability volume for molecules of species i. As the name
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suggests, �i� has the dimensions of volume. It can also be
written as �i / �4	�0�, where �0 is the permittivity of the
vacuum and �i is the polarizability of species i, which in-
creases with increasing molecular size and number of elec-
trons. Hence the polarizability volume is proportional to the
molecular volume, i.e., �i���i

3.
This polarizability effect alone can produce considerable

molecular attraction, and is responsible for the formation of
liquid phases from gases of nonpolar substances �argon, hy-
drogen, nitrogen, etc.�. The name “dispersion forces” stems
from the fact that the electronic oscillations producing the
London attraction are also responsible for the dispersion of
light.

B. Hamaker’s macroscopic approximation

Colloids, micelles, and globular proteins are mesoscopic
particles formed by a very large number of polarizable mol-
ecules �typically 1010 in micrometer-sized particles� �1�. As a
consequence, the total attraction energy between such mac-
roparticles can be obtained by pairwise summation of Lon-
don energies between all molecules of the two interacting
bodies. Hamaker �27� performed an approximate calculation
�2� for the energy of interaction of two fully macroscopic
bodies i and j in a vacuum, with densities �i and � j and
occupying volumes Vi and Vj. Replacing the discrete distri-
bution of molecules inside each body with a continuous one,
Hamaker obtained for two spheres of arbitrary size �2�

�ij
H�r� = −

Aij
H

12
	 �i� j

r2 − �ij
2 +

�i� j

r2 − Lij
2 + 2 ln� r2 − �ij

2

r2 − Lij
2 �


= −
Aij

H

12
	�i� j

r2 � 1

1 − �ij
2 /r2 +

1

1 − Lij
2 /r2�

+ 2 ln�1 − �ij
2 /r2

1 − Lij
2 /r2�
 , �17�

where Lij = ��i−� j� /2, and �ij �r� +�. Here, Aij
H

=	2�i� jCij �4� is referred to as Hamaker’s constant, and has
dimensions of energy. As Cij ��i�� j���i

3� j
3, and �i� j

��i
−3� j

−3, Aij
H is nearly independent of i and j. In the case

where all mesoscopic particles are made up of the same ma-
terial but have different diameters �discrete size polydisper-
sity� Aij

H reduces to AH=	2�2C, which is a property of the
material itself.

Hamaker’s macroscopic result has also been applied to
mesoscopic particles, with the justification that the potential
�17� has a scaling property: if r ,�i ,� j are all multiplied by a
factor �, the attraction energy remains unaltered, i.e.,
�ij

H��r ,��i ,�� j�=�ij
H�r ,�i ,� j�. Note, however, that Hamak-

er’s formula refers to two spheres in free space, i.e., it ne-
glects the screening of London forces due to the suspending
medium.

In the limit r→ +�, a series expansion of Eq. �17� yields

�ij
H�r�  −

Aij
H

36

�i
3� j

3

r6 for r � �ij � Lij , �18�

which means that at large distances the two spheres behave,
to leading order, like point-particles even though the factors
�i

3 and � j
3 stem from HS volumes.

On the other hand, the Hamaker potential is singular at
contact, i.e., when r→�ij. This is due to the approximation
of regarding the two spheres as continuous distributions of
point-particles, neglecting all intermolecular repulsions. The
leading divergence is

�ij
H�r�  −

Aij
H

12

�i� j

r2 − �ij
2

 −
Aij

H

24

�i� j

�ij

1

r − �ij
for 0 � r − �ij � min��i,� j� .

�19�

This divergence simply means that the continuum picture
must break down and molecular granularity, with excluded-
volume effects, cannot be neglected once the closest distance
r−�ij between the two spherical surfaces becomes very
small.

Such a deep attractive potential would lead to irreversible
association or “flocculation” of the suspended particles. This
effect can be avoided in one of two different ways, namely
by charge stabilization or steric stabilization. In the first
case, some surface chemical groups of the particles become
partially ionized in water, and the resulting electrostatic re-
pulsion makes close contact impossible. In the second case,
stabilization is achieved by grafting polymer chains �“hair”�
to the particle surfaces. Both stabilization mechanisms—
extensively used for colloidal suspensions—imply that the
closest approach distance between i and j becomes larger
than �ij, i.e., �ij

eff=�ij +�, with ��0 being an additional
characteristic length. The Hamaker singularity at contact is
thus avoided, and the vdW attraction may then be treated as
a small perturbation, if the effective HS diameter is suffi-
ciently large compared to the bare one �in sterically stabi-
lized colloidal suspensions, �eff exceeds � typically by 10%�.
Moreover, it is possible to strongly reduce the value of the
Hamaker constant by “refractive index matching” �2�.

A numerical estimate of the strength of the Hamaker at-
traction is given, in the one-component case, for simplicity,
by the quantity

Ymax � − 
�H�� + �� = 3H�1 + ��
TH

T
, �20�

where ��� /�,

H�u� =
1

u2 − 1
+

1

u2 + 2 ln�1 −
1

u2� , �21�

and, from Eq. �18�, we have defined a Hamaker temperature
as

TH =
AH

36kB
, �22�

which depends on the material which constitutes the par-
ticles. In most cases, AH lies between 10−20 and 10−19 J, i.e.,
2kBTAH20kBT, where T=298.15 K. A typical value AH
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=0.5�10−20 J �=10kBT� yields TH=100 K, and thus, at room
temperature,

�H�� + ��  �− 2kBT if � = 0.1

− 0.6kBT if � = 0.2

− 0.2kBT if � = 0.3.
�

Using Eq. �20� for Ymax together with the criteria in Eq.
�5�, one finds the approximate lower bound Tmin/K for the
applicability, respectively, of the linear, quadratic, and cubic
approximations to the Mayer function, as reported in Table I.

Thus, whereas the linear approximation works only at
high temperatures, the quadratic one is already sufficient
even at room temperature if ��0.2.

Unfortunately, analytical integration of the expression
�17� is not possible, and consequently no result for tij

eq�H� can
be obtained directly from �ij

H�r�. Nevertheless, in order to get
a rough approximation to tij

eq�H�, we propose an analytically
integrable interpolation of the correct behavior of �ij

H�r� at
short and large distances, i.e.,

�ij
H-interp�r� = −

Aij
H

36
�3

2

�i� j

�ij

1

r − �ij
exp�−

r − �ij

L
�

+
�i

3� j
3

r6 	1 − exp�−
r − �ij

L
�
� , �23�

where �ij +��r� +�, and L acts as a screening length.
When ��0.1�, L=0.108�� yields a satisfactory contact
value, i.e., �ij

H−interp��ij +���ij
H��ij +��. Using the linear ap-

proximation, valid at high temperatures, one gets

tij
eq�H-interp� 

1

kBT

Aij
H

24

�i� j

�ij
2 	E1� �

L
� + 2e−�/L L

�ij

+ �1 +
�

L
�e−�/L� L

�ij
�2
 ,

where E1�z�=�z
+� e−u

u du is the exponential integral. However,
since the factors L /�ij

n � /�ij
n refer to big particles, the lead-

ing term, at least within the linear approximation, is

tij
eq�H-interp� 

3

2
E1� �

L
��TH

T

�i� j

�ij
2 � . �24�

C. Polarizable hard spheres: Sutherland model

Focusing only on the r−6 part of the Hamaker potential,
which represents the long-distance polarizability, one could

define a simpler model, corresponding to a mixture of meso-
scopic HS with dispersion attractions, called polarizable
hard spheres �PHS�, i.e.,

�ij
PHS�r� = �+ � , 0 � r � �ij

− Aij�i
3� j

3/r6, r � �ij ,
� �25�

where the choice

Aij =
Aij

H

36
�26�

ensures the mesoscopic size of the particles. If all particles
are made up of the same material substance, then �ij

PHS�r�
=−A�i

3� j
3 /r6 for r��ij.

The potential �25� may be regarded as a special case of
the Sutherland model, which represents rigid spheres which
attract one another according to an inverse-power law,
i.e., �Sutherland�r�=−��� /r�b for r�� ���0� �10�. Indeed,
one could rewrite it as �ij

PHS�r�=−�ij
PHS��ij /r�6, with �ij

PHS

=A��i� j /�ij
2 �3 for particles with the same material composi-

tion.
The strength of this interaction, in the one-component

case, is then given by

Ymax � − 
�PHS��� =
TH

T


100 K

T
,

after taking TH100 K. From the results outlined in
Eq. �5�, a linearization of the Mayer function makes sense
for T�1000 K. A quadratic approximation is feasible
when T�167 K. Finally, the cubic approximation holds
for T�100 K.

Therefore, in the multicomponent case, one can safely
adopt the cubic approximation to f ij

PHS�r� and perform the
integration in Eq. �15�, obtaining

tij
eq�PHS� = 12

TH

T
��i� j

�ij
2 �3

+ 15	TH

T
��i� j

�ij
2 �3
2

+ 8	TH

T
��i� j

�ij
2 �3
3

. �27�

In the one-component case this expression reduces to

teq�PHS� = 12
TH

T
+ 15�TH

T
�2

+ 8�TH

T
�3

.

For TH100 K, this results, at T300 K, in a value
teq�PHS��5.96, which corresponds in Baxter’s parametriza-
tion to

� =
1

12t
� 0.014,

and lies well below the critical temperature of the SHS fluid,
�c=0.1133±0.0005 �19�.

IV. EXCLUDED VOLUME DEPLETION FORCES

In general, the indirect, solvent-mediated, solute-solute in-
teractions depend on both the solute-solvent and solvent-

TABLE I. Approximate lower bound Tmin/K for the applicabil-
ity of the linear, quadratic, cubic approximation to the Mayer func-
tion f ij, as a function of the parameter �=�0 /� �see text�.

Approximation �=0.1 �=0.2 �=0.3

Linear 6300 1800 700

Quadratic 1050 300 117

Cubic 630 180 70
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solvent ones, and thus may be very difficult to evaluate
�6,7,20,28,29�. We will now report several very simplified
cases.

Asakura and Oosawa �AO� �30�, and independently Vrij
�31�, first showed that two big �colloidal, or solute� particles,
immersed in a sea of small particles, feel a mutual attraction
when their surfaces get closer than the size of the smaller
particles �depletion attraction�. This effect is an indirect at-
traction originating from the interactions of the two big par-
ticles with the small ones of the environment, even if these
latter consist of, say, hard spheres. In mixtures with neutral
components, the small particles—hereafter referred to also as
depletant particles—may correspond, for example, to solvent
molecules, nonadsorbing polymer coils, or smaller colloidal
particles.

Upon adding, for instance, polymers to a stable colloidal
suspension, the colloidal particles tend to aggregate. The
polymer-induced depletion forces between the colloidal par-
ticles can cause formation of colloidal crystals or floccula-
tion.

In the AO model, originally designed to describe colloid-
polymer mixtures, the big-big �colloid-colloid� interactions
as well as the big-small ones are modeled as excluded-
volume HS interactions, while the small-small interactions
are assumed to be zero �ideal gas approximation, correspond-
ing to mutually interpenetrable, noninteracting depletant
molecules�. In particular, polymer coils are assumed to have
an effective HS diameter equal to twice their radius of gyra-
tion.

Consider two big HS of species i and j at distance r, with
radii Ri and Rj, in a dilute suspension of depletant spheres of
species 0, with radius R0. The solute molecule i produces a
spherical excluded-volume region of radius �i0=Ri+R0

around itself where the centers of the depletant particles can-
not penetrate; this is also called the depletion zone. When the
shortest distance r− �Ri+Rj�=r−�ij between the surfaces of i
and j becomes less than the diameter �0=2R0, the two deple-
tion spheres surrounding i and j overlap and the small par-
ticles are expelled from the region between the big mol-
ecules. This implies that the thermal impact forces on the
pair i and j from the “outside” are only partially compen-
sated by those from the “inside” �see Fig. 8 of Ref. �31��.
The depletion effect is due to this unbalanced pressure dif-
ference, which pushes the big particles together, resulting in
a net attraction. From another point of view, the overlapping
of excluded volumes implies that the total free volume acces-
sible to small particles increases, leading to a gain in the

system entropy with a consequent decrease of the Gibbs free
energy. This trend to decrease free energy produces an effec-
tive indirect attraction between the big spheres. AO and Vrij
�30,31� evaluated the HS-depletion �HS-depl� potential as

�ij
HS-depl�r� = �+ � , 0 � r � �ij

− �0kBTVij
overlap�r� , �ij � r � Dij

0, r � Dij ,
� �28�

Vij
overlap�r� =

	

12

1

r
�Dij − r�2

��3DiiDjj − 4Dij�Dij − r� + �Dij − r�2� ,

�29�

where �0 is the number density of the depletant molecules,
Dij ��ij +�0, and Vij

overlap�r� denotes the lens-shaped overlap
volume of two spheres with radii �i0= ��i+�0� /2 and �0j

= �� j +�0� /2, at distance r �see Appendix�. The attraction in-
creases linearly with temperature and with the concentration
of depletant particles. Since the AO model includes only HS
interactions, the corresponding depletion forces have a
purely entropic origin. Finally, it should be emphasized that
the AO approximation is valid only for dilute suspensions of
depletant molecules, i.e., at low �0 values; formally, this last
restriction can be removed by replacing �0 by the density of
polymer in a large reservoir connected to the system.

The tail of �ij
HS-depl�r� has a finite range, equal to the di-

ameter �0 of the depletant molecules. The attraction strength
can be estimated from

Yij,max � − 
�ij
HS-depl��ij� = �0�1 +

3

2

�i� j

�ij

1

�0
� , �30�

where �0= �	 /6��0�0
3 is the packing fraction of the depletant

particles. Note that Yij,max does not depend on temperature,
but the attraction strength may be tuned by varying �0.

For one-component solutes, Yij,max reduces to Ymax
=�0�1+1.5/�� with ���0 /�. In this case—following again
the criteria given in Eq. �5�—the upper boundary �0

max for the
applicability of the linear, quadratic, and cubic approxima-
tions to the Mayer function given as a function of �, respec-
tively, is reported in Table II.

The quadratic approximation result for the equivalent
SHS model is

TABLE II. Approximate upper bound �0
max for the applicability of the linear, quadratic, cubic approxi-

mation to the Mayer function f ij, as a function of � defined above.

Approximation �=0.1 �=0.3 �=0.5 �=0.7 �=0.9 �=1.0

Linear 0.006 0.017 0.025 0.03 0.0375 0.04

Quadratic 0.04 0.10 0.15 0.19 0.23 0.24

Cubic 0.06 0.17 0.25 0.32 0.38 0.4
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tij
eq�HS-depl� 

�0

2 	�i� j

�ij
2 + �1 +

1

4

�i� j

�ij
2 ��ij +

1

2
�ij

2 +
1

12
�ij

3

+

1

10
��0

2
�2	9��i� j

�ij
2 �2 1

�ij
+ 16

�i� j

�ij
2

+
4

7
�13

7
+ 4

�i� j

�ij
2 ��ij +

17

7
�ij

2 +
17

63
�ij

3
 ,

where �ij ��0 /�ij. As remarked, this expression does not
depend on T, since the solute-solvent interactions are of
purely HS character. If �ij �1, then the leading terms are

tij
eq�HS-depl�  	�0

2
+

8

5
��0

2
�2
��i� j

�ij
2 � +

9

10
��0

2
�2 1

�ij
��i� j

�ij
2 �2

.

Generalizing from the form of the quadratic approxima-
tion for general �ij, one expects the cubic approximation to
yield a result of the form

tij
eq�HS-depl�  C1��0

�i� j

�ij
2 � + C2��0

�i� j

�ij
2 �2

+ C3��0
�i� j

�ij
2 �3

.

�31�

Several other studies of depletion forces, which go be-
yond the entropic HS approach by taking into account more
refined representions of the solute-solvent and solvent-
solvent interactions, are also available in the recent literature
�6,7,20,28,29�.

V. POLYMER-COATED COLLOIDS OR HAIRY SPHERES

If the intermolecular attractive forces are strong enough, a
colloidal suspension phase-separates, or even flocculates or
gels. As explained above, stability against flocculation may
be ensured by steric or charge stabilization. In steric stabili-
zation, the colloidal molecules are coated with grafted
polymers—the “hair”—which can prevent particles from
coming sufficiently close to experience a strong vdW-
attraction.

However, changing the solvent or the temperature may
turn the effective interaction from repulsion �HS-behavior� to
attraction �32–34�. When sterically stabilized colloidal par-
ticles are immersed in a good solvent for the polymer
brushes, the solutes behave like HS, independently of tem-
perature; this is the case, for example, of silica particles cov-
ered with a layer of octadecyl chains, when immersed in
cycloexane. On the other hand, for each poor solvent there
exists a Flory’s theta-temperature T� �35�, which is charac-
teristic of the given solvent-polymer pair and has the follow-
ing property: the solute particles behave like HS at T�T�,
whereas an attraction occurs at T�T�. This occurs with, e.g.,

silica particles with octadecyl chains, when dispersed in ben-
zene. The term “�-solvent” indicates a poor solvent at T
=T�.

These effects originate from a competition between
polymer-solvent and polymer-polymer interactions. First, the
nature of the solvent influences the polymer conformation. In
fact, in a good solvent the interactions between polymer
elements—monomer units—and adjacent solvent molecules
are strongly attractive and thus predominate over possible
intrachain polymer attractions. Consequently, the polymer
will assume an “extended-chain” configuration, so as to re-
duce the number of intrachain contacts between monomer
units. Polymer-coated colloidal particles will have fully ex-
tended hair and thus the largest HS diameter possible, corre-
sponding to the strongest solute-solute repulsion.

In a poor solvent, on the other hand, the polymer-solvent
attractions are weak. Now it is the temperature that deter-
mines the solute-solute interaction. At T�T� the hair will be
fully extended, as in good solvents �HS behavior�. At low
temperatures T�T� the polymer segments find their own en-
vironment more satisfying than that provided by the solvent.
This preference may produce more compact “globular” con-
figurations, in which intrachain polymer-polymer contacts
occur more frequently �“curly hair”�. In an alternative view,
when two solute particles are in close contact, a high number
of polymer-polymer attractions is favored by the interpen-
etration of the two polymeric layers.

In the literature on sterically stabilized colloids �32–34�,
the attractive part of the potential for one-component hairy
hard spheres �HHS�—due to the polymer-polymer interac-
tions between surface layers of different particles—was de-
scribed by a SW, with a depth proportional to the �maximum�
overlap volume of the layers and temperature-dependent in
analogy with the Flory-Krigbaum model for polymer seg-
ments �36�. The SW width equals the length of interpenetra-
tion of the stabilizing chains, whose maximum value coin-
cides with the thickness � of the polymeric layer.

For mixtures, we could consider the most direct extension
of the one-component SW model. In such a case, using Eq.
�15�, a SW potential could immediately be mapped onto a
SHS one:

tij
eq�SW� = �exp�
�ij

SW� − 1�
1

3
��1 + �ij

SW�3 − 1� . �32�

When the SW is very narrow ��ij
SW�1�, one can approxi-

mate

tij
eq�SW�  �exp�
�ij

SW� − 1��ij
SW. �33�

However, instead of a discontinuous SW model, we prefer
to propose a potential with a similar but continuous attractive
tail of finite range, i.e.,

�ij
HHS�r� = �+ � , r � �ij

− kBTF�T���Voverlap�Ri + �,Rj + �,r� , �ij � r � �ij + 2�

0, r � �ij + 2� ,
� �34�
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where

F�T� = �0, T � T�

T�/T − 1, T � T�.
� �35�

Here, we call F�T� Flory’s temperature-function, and
�ij

HHS�r� is assumed to be proportional to the overlap volume
between polymeric layers of the two HHS at separation r,
with �� being a number density proportional to the polymer
density in the stabilizing layer.

Within the linear approximation, one finds for the equiva-
lent SHS model

tij
eq�HHS�  F�T�

��

2
	�i� j

�ij
2 + �1 +

1

4

�i� j

�ij
2 � 2�

�ij

+
1

2
� 2�

�ij
�2

+
1

12
� 2�

�ij
�3
 ,

where ��� 	
6 ���2��3. Since the thickness � is much smaller

than the particle sizes, one may expect—by analogy with the
HS-depletion model—that the cubic approximation reads

tij
eq�HHS�  C1	F�T���

�i� j

�ij
2 
 + C2	F�T���

�i� j

�ij
2 
2

+ C3	F�T���

�i� j

�ij
2 
3

. �36�

Note that, since F�T�=0 when T�T�, then limT→+� F�T�
=0. Thus the form of F�T� ensures that the high-temperature
condition �10� is satisfied.

VI. SOLVATION FORCES: GURNEY-FRIEDMAN MODEL

An indirect interaction between solute particles may also
arise from solvation. To picture solvation effects, Gurney
�37� and Frank and Evans �38� introduced the physically
intuitive concept of cosphere or solvation layer. One sup-
poses that any isolated solute particle is surrounded by some
region in which the solvent has different properties than the
bulk solvent, since its structure is markedly affected by the
presence of the solute: some of the solvent-solvent bonds
have been broken by the introduction of the “foreign” par-
ticle. Clearly, such a region has no well-defined boundary,
but Gurney’s model assumes that significant effects come
from only the few solvent molecules that are directly next to
the solute particles, i.e., in a spherical shell whose thickness
� is taken to be a few solvent diameters or even the size of
only one solvent molecule �for water, a molecular diameter
of 2.76 Å is acceptable�. This picture was first applied to
electrolyte solutions by Friedman and co-workers �39�. In the
ionic case, however, the previous definition of cosphere, with
the same thickness for every ionic species, may be too re-
strictive, since the solvation region may extend even outside
the cosphere, as occurs for very small ions �Li+, and polyva-
lent ions such as Mg2+, Ca2+, etc.�.

When two solute particles i and j approach sufficiently
closely for their solvation layers to overlap, some of the co-
sphere solvent is displaced. Furthermore, the overlapping re-

gion contains solvent molecules which are now affected by
the combined force field of two solutes, so that its structure
might even differ from that of each isolated cosphere. The
whole process, in which the sum of the cosphere volumes is
reduced by overlap and the solvent relaxes to its normal bulk
state, will be accompanied by a Gibbs free energy change. If
the solvent molecules in the isolated solvation layers are in a
state of lower free energy than those in the bulk, the overlap
of two cospheres with the consequent expulsion of solvent
gives rise to a free energy increase, and the resulting contri-
bution to the interaction between two solutes is repulsive.
When the solvent molecules in the solvation layers are in a
state of higher free energy than those in the bulk, the expul-
sion of solvent from the overlapping region leads to a free
energy decrease. In this case, both the free energy and the
disruption of solvent structure are minimized when two sol-
ute particles i and j are brought close together, causing a net
i− j attraction.

Because of the lack of knowledge about the properties of
the solvent in the solvation region, it is difficult to construct
a detailed and physically sound microscopic model of the
effects described above. Adopting a heuristic approach,
Friedman and co-workers �39� proposed that the free energy
change accompanying the cosphere overlapping of two HS
solute particles i and j gives rise to the Gurney potential,
defined by

�ij
Gurney�r� = Aij�T,p�

Voverlap�Ri + �,Rj + �,r�
v0

. �37�

Here the Gurney parameter Aij is in general a function of
temperature T and pressure p and represents the molar free
energy of transfer of solvent from the overlapping region of
the i− j cospheres to the bulk. As previously discussed, Aij
�0 corresponds to attraction. Furthermore, v0 is the mean
volume of a solvent molecule, while the volume of solvent
returning to the bulk is given by the intersection volume of
the cospheres surrounding the two solute HS at distance r,
namely Voverlap �Ri+� ,Rj +� ,r�. The free-energy parameters
Aij were determined numerically by fitting the model to ex-
perimental data.

The close resemblance of �ij
Gurney�r� to both �ij

HHS�r� and
�ij

HS-depl�r� is apparent. By analogy one obtains immediately

tij
eq�Gurney-solvation�  C1	Eij�T,p�

�i� j

�ij
2 
 + C2	Eij�T,p�

�i� j

�ij
2 
2

+ C3	Eij�T,p�
�i� j

�ij
2 
3

, �38�

where

Eij�T,p� =
1

2

�Aij�T,p��
kBT

� 	

6
�2��3

v0
� . �39�

This expression may be applied, in particular, to both cases
of solvation interactions—hydrophobic bonding and interac-
tions between reverse micelles—whose physical origin will
be illustrated in the following.
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A. Hydrophobic interaction

The hydrophobic interaction �or hydrophobic bonding�
consists in the tendency shown by nonpolar portions of mol-
ecules or ions with long nonpolar chains or aromatic groups,
for example, surfactants, phospholipids, glycerides, and dye-
stuffs, to aggregate in aqueous solutions, partially or com-
pletely removing such parts from contact with the solvent
�2,40,41�. This hydrophobic attraction between nonpolar en-
tities, which occurs exclusively in water, has, to a large ex-
tent, an entropic origin, related to the strong tendency of
water molecules to form hydrogen bonds and associate �4�.

The physical mechanisms underlying the solvation forces
are rather well-understood when the solvent is water. Polar
molecules or polar groups of a solute feel strong attraction
towards water molecules, and thus are said to be hydrophilic
�“water-loving”�. On the other hand, nonpolar molecules or
nonpolar groups “dislike” water, and are called hydrophobic
�“water-hating,” or “water-avoiding”�.

The hydrophobic effect means that nonpolar particles have
an extremely weak solubility in water, since inserting one of
them—a noble gas atom, a chlorine or oxygen molecule, a
hydrocarbon molecule, etc.—into water may actually lead to
an increase of Gibbs free energy, i.e., �Gsolution�0. Indeed,
the formation of a new cavity requires the breaking of many
water-water hydrogen bonds with a considerable �G�0,
which cannot be compensated by the small �G�0 provided
by the new solute-water vdW interactions �the nonpolar sol-
ute cannot participate in the formation of hydrogen bonds�.
Then, in order to get a further decrease of G, the water mol-
ecules close to the solute reorient themselves, so as to create
as many hydrogen bonds with adjacent water molecules as
possible. The result is the formation of a “cage”—or hydra-
tion layer—around the solute, with more rigid water-water
bonds than in the bulk. Such an additional ordering in the
solvent, brought about by the introduction of a solute mol-
ecule, implies a significant entropy decrease, �S�0, and
thus a strong positive contribution −T�S to the total �G
=�H−T�S of solution at constant T and p. This explains
why nonpolar particles are hydrophobic: one gets �Gsolution
�0, when the entropic contribution dominates over the en-
talpic one �H, which is usually small and may be positive or
negative. On the other hand, at higher temperatures the solu-
bility increases, and one may find �Gsolution�0. In fact, �S
becomes much smaller because the molecular thermal mo-
tion struggles more efficiently against the structure formation
around a nonpolar solute.

The same hydrophobic effect is responsible for the above-
mentioned hydrophobic bonding, where nonpolar parts of
molecules or ions tend to aggregate. In fact, the solvent mol-
ecules prefer mutual contacts over those with the “foreign”
substance �solute�, while the aggregation of solutes reduces
the total volume of their “cages,” minimizing the loss of
entropy. The hydrophobic interaction arises when overlap of
hydration-layers occurs, and becomes increasingly attractive
as the distance between two solute particles decreases.

This phenomenon in acqueous solutions of alcohols was
studied by Friedman and Krishnan �42�, who used a model
potential containing a repulsive term of the r−9 form, plus an
attractive Gurney term given by Eq. �37�, representing the

overlap between cospheres. For the sustances they consid-
ered, these authors found values of the Gurney coefficient
Axx in the range −190 to −60 cal mol−1. The cosphere thick-
ness � was taken to be 2.76 Å, corresponding to one molecu-
lar layer of water.

Clark et al. �43� investigated the same physical systems
with a more refined model, including a core potential based
upon Lennard-Jones potentials for individual atom-atom in-
teractions and again a Gurney term for the hydrophobic at-
traction. They found a minimum �−0.5kBT in their poten-
tials of average force that implies an overall tendency for
those alcohols to associate when in an aqueous environment.

Hydrophobic bonding is very important in interface and
colloid science. It is often the driving force behind the way
in which biomolecules organize themselves and it is respon-
sible for the formation of micelles, bimolecular layers, and
lamellar structures.

B. Reverse micelles in water-in-oil microemulsions

Molecules having both hydrophilic and hydrophobic parts
are said to be amphiphilic �“dual-loving,” in the sense of
being both “water-loving” and “water-hating;” from the
Greek ����= “on both sides”�. An important example is
provided by relatively short chain molecules with an ioniz-
able or polar �thus hydrophilic� head-group and a nonpolar
�thus hydrophobic� tail, consisting of one or several flexible
hydrocarbon chain�s�. Since these molecules can signifi-
cantly lower the surface tension of a solution, they are ge-
nerically called surfactants or surface-active agents �1,2,41�.
When immersed in water, the head-group may become nega-
tively or positively charged, or it remains polar with no net
electric charge. Accordingly, the surfactants are classified as
anionic, cationic, or nonionic.

Clearly, it is the hydrophilic head-group that keeps a sur-
factant solute dissolved in the water. The hydrophobic tail
tends to avoid contact with water and to seek, as far as pos-
sible, a nonaqueous environment. The longer the hydropho-
bic tail, the poorer the solubility in water and, hence, the
greater the tendency of the surfactant to escape from the
acqueous solution. Consequently, as the solute concentration
increases, a phase-separation may occur. Alternatively, the
surfactant molecules accumulate at interfaces between water
and other liquids or gases, or spontaneously self-assemble
into supramolecular aggregates of mesoscopic size that mini-
mize the number of contacts between water and hydrocarbon
tails and maximize the number of tail-tail interactions.

If a surfactant is added to pure water under atmospheric
pressure, its molecules first form a monolayer film at the
water-air interface, with polar heads pointing towards the
water and tails exposed to the air. Above a certain concen-
tration of surfactant �critical micellization concentration�,
one finds an abrupt change in the properties of the solution;
in fact, now the solute particles in the bulk begin to form
supramolecular aggregates like micelles, planar lamellar bi-
layers, and vesicles, whose size and shape are, to a large
extent, determined by the geometric properties of the surfac-
tant molecules �1,2�. These �direct� micelles have a nearly
spherical structure, in which the head-groups are placed at
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the surface and are thus exposed to the aqueous environment,
whereas the nonpolar tails occupy the interior of the micelle,
avoiding any contact with water.

A surfactant, when added to a mixture of water and oil �an
organic liquid immiscible with water�, forms monolayers at
every water-oil interface. Several disordered or partially or-
dered phases are possible, depending on temperature and sur-
factant concentration. In particular, one can get a microemul-
sion, which is a two-phase suspension of finely divided
droplets of oil in water �O/W�, or water in oil �W/O�, de-
pending on the relative concentration of the two liquids.
Each droplet is coated with a monolayer film of surfactant,
which separates water from oil. In W/O microemulsions one
finds reverse �or inverted� micelles, where the core is formed
by a droplet of water, and the surrounding surfactant mol-
ecules now have the head-groups inside the micelle, in con-
tact with water, while their hydrocarbon tails point towards
the outside oil phase �44–47�. Clearly, such flexible tails re-
semble the polymer-hair of sterically stabilized colloids, but
in reverse micelles the number of chains is lower and thus a
large amount of oil can penetrate the surfactant layer. For the
sake of simplicity, we do not consider the possible presence
of a cosurfactant, which is generally an alcohol and mixes
with surfactant in the outside layer.

In most models for W/O microemulsions the suspending
medium, containing mainly oil, is treated as a continuous
phase, and the reverse micelles are represented as composed
of two parts. The internal one, including both the water drop-
let and surfactant head-groups, is assumed to be a spherical
and impenetrable core, with HS radius R. The external part
consists of a concentric, penetrable spherical layer, with
thickness equal to the length � of the aliphatic chains of
surfactant in their fully extended conformation. Thus the to-
tal radius of a micelle is R�=R+�. Because of the flexibility
of the chains, � has sometimes been allowed to depend on
temperature, i.e., �=��T� �46�.

The short-ranged attraction between reverse micelles
seems to be mainly determined by the overlapping of the
penetrable surfactant layers during collisions �44,45,47�. The
interpenetration of the aliphatic chains of the surfactant in-
duces oil removal. Now, the partial molar volume of oil in-
side the surfactant layer is expected to be larger than in the
pure oil-phase �this effect is related to the volume of CH2
and CH3 groups in the aliphatic layers�. A difference of
0.2 Å3 seems to be sufficient to explain an interaction poten-
tial compatible with light scattering experiments �45�.

Roux and Bellocq �45� proposed the simplest model for
equal-sized micelles, assuming that the interaction potential
is proportional to the overlap volume. The extension of their
formula to mixtures is immediate. According to our termi-
nology, the resulting expression is equivalent to a particular
Gurney potential, i.e.,

�ij
rev.micel.�r�

= �+ � , r � �ij

− kBT��Voverlap�Ri + �,Rj + �,r� , �ij � r � �ij + 2�

0, r � �ij + 2� ,
�

�40�

where �� is an adjustable parameter which depends only on
the oil.

More refined models also include a Hamaker-vdW attrac-
tion between water cores. Electrostatic contributions and
other more complicated terms have not been considered in
the present paper.

VII. CONCLUSIONS

We have started from the problem of building up statisti-
cal mechanical models for fluid mixtures of mesoscopic par-
ticles, like colloids, micelles, or globular proteins, by using
very simple effective potentials containing a HS repulsion
plus a short-ranged attractive tail that represent the interac-
tion between big particles after averaging out the micro-
scopic degrees of freedom related to much smaller molecules
�solvent, added polymers, etc.�. The simplest tail corresponds
to the highly idealized surface adhesion, modeled through a
�+-term, of the SHS potential. Since we are interested in
multicomponent SHS fluids, and in the past difficulties had
been encountered in choosing their stickiness parameters tij,
the present paper has focused on the relationship between tij
and particle sizes, i.e., on the possible functional forms of
tij �T ,�i ,� j�. To elucidate this issue we have regarded the
SHS potentials as models that may be derived, with some
simplification, from more realistic interactions. The idea of
associating an equivalent SHS representation to a realistic
interaction, by requiring the equality of the second virial co-
efficients, is already known and widely accepted. We have
chosen this mapping based upon the virial equivalence be-
cause of its simplicity and partial analytical tractability.
Since B2 yields only the first correction of pressure with
respect to ideality, one can reasonably expect that the perfor-
mance of the resulting SHS model should worsen with in-
creasing density. By requiring the equivalence of quantities
different from B2, one could obtain alternative mappings and
generally different values for the effective parameters, lead-
ing to more successful results at high densities. An applica-
tion of such an idea was given, for example, in Ref. �47�,
where the solvent molecules were modeled as SHS by re-
quiring the equivalence of structural properties, i.e., the
solvent-solvent structure factor and the coordination number.
Unfortunately, this approach does not admit an analytical
treatment, and a comparison with it goes beyond the scope of
the present paper.

Our aim was to investigate the most interesting cases of
short-ranged attractive interactions for some paradigmatic
physical systems. To provide a physically sound basis for the
choice of tij and, in particular, its dependence on the particle
diameters, we have presented a detailed and self-contained
overview on several topics related to short-ranged attractive
interactions in real mixtures of neutral mesoscopic particles.
We have considered: �i� the van der Waals or dispersion
forces—direct interactions—and three cases with indirect,
solvent-mediated, attractions: �ii� depletion forces, �iii�
polymer-coated colloids, and �iv� solvation forces �in par-
ticular, hydrophobic bonding and interactions between re-
verse micelles in water-in-oil microemulsions�.

Due to obvious analytical difficulties, our analysis has
been restricted to the determination of the leading terms of
tij. These have been evaluated by series expansion of the
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Mayer function that appears in the second virial coefficient.
We have discussed in particular the linear, quadratic, and
cubic approximations and their respective ranges of validity.

The main result is that, in almost all cases considered, the
leading contributions to tij can be expressed as

tij
eq�tail�  C1	Mij�X, . . . �

�i� j

�ij
2 
 + C2	Mij�X, . . . �

�i� j

�ij
2 
2

+ ¯ , �41�

where, in most scenarios, X is the temperature T, and the
property

lim
T→+�

Mij�T, . . . � = 0 �42�

ensures that the high-temperature condition of Eq. �10� is
satisfied. In the case of the depletion attraction, X coincides
with the packing fraction �0 of the depletant particles. For

hairy HS, both T and �� are variables included in Mij. As
regards the dependence of tij on the big particle sizes, which
was the basic question of the present work, it is remarkable
that tij can be expressed as a simple polynomial in the vari-
able ��i� j /�ij

2 �. A quadratic approximation may already be
sufficient. The only case in which the expression for tij dif-
fers from that given in Eq. �41� is the Sutherland model for
polarizable HS, which yields

tij
eq�PHS� = 12

TH

T
��i� j

�ij
2 �3

+ 15	TH

T
��i� j

�ij
2 �3
2

+ 8	TH

T
��i� j

�ij
2 �3
3

. �43�

It is pleasant that even here we find powers of the same basic
size-dependent factor, ��i� j /�ij

2 �. Note that this factor has
the property that the sticky attraction vanishes when at least

FIG. 1. �Color online� Schematic representation of some systems described by SHS equivalent models in the text. Upper left panel:
Excluded-volume depletion attraction between big spheres �solutes� in a sea of smaller depletant particles �light-gray�. The dashed curves
represent the excluded-volume regions where the centers of the depletant particles cannot penetrate. Upper right panel: Polymer-coated
colloids or hairy spheres, when their sterically stabilizing layers of grafted polymers overlap. Lower left panel: Overlap of solvation layers
�“cospheres”� in the Gurney-Friedman model, and expulsion of solvent from the overlapping region. The small spheres �dark-gray� represent
solvent molecules. Lower right panel: Interaction between reverse micelles in water-in-oil microemulsions. In each micelle the internal
dashed curve indicates the impenetrable core, formed by a droplet of water where the head-groups of the surfactant molecules are immersed.
The region between the core and the external dashed curve is the penetrable part of the micelle, corresponding to the hydrocarbon tails and
containing some oil molecules �small spheres�. The micellar attraction is mainly due to oil removing from the overlapping region and its
transfer to the bulk.
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one of the two particles i and j becomes a point, i.e., it
satisfies the point-limit condition

lim
�i or �j→0

tij�T,�i,� j� = 0. �44�

This condition would be expected to hold for any interaction
of “adhesive” type which in the limit involves a particle
surface of vanishing area �48�.

The similarity among most of the resulting expressions
for tij

eq�tail� can easily be understood. In fact, most of the dif-
ferent short-ranged attractions considered here have been ex-
plained, by different authors, in terms of quite similar mod-
els, where mesoscopic particles are represented as hard
spheres with a surrounding, concentric spherical layer �see
Fig. 1�. In the AO case this layer is characterized somewhat
indirectly by the fact that the density of the centers of mass
of the depletant polymers is zero inside the layer but has a
nonzero value outside it. In the other cases, the layer has a
clearer physical reality. For polymer-coated colloids, for ex-
ample, the layer is the polymeric film grafted on the colloidal
surface. In the hydrophobic bonding the layer is formed by
the solvation water molecules. For reverse micelles, the core
comprising the water droplet and the polar heads of surfac-
tants is surrounded by a layer made up of hydrocarbon tails
of surfactants plus a certain quantity of oil.

It is very appealing, and somewhat surprising, that the
factor �i� j /�ij

2 appears even in our result for the Hamaker
potential, which refers to a direct interaction where no
spherical layer around the solutes is involved. Note that this
dependence on the particle diameters is clearly due to the
Hamaker integration, since for point-dipoles at the center of
hard spheres �polarizable HS� we have found a different fac-
tor, i.e., ��i� j /�ij

2 �3.
We remark that the models we have considered can be

divided into two different classes. The first one includes the
two models of dispersion forces �Hamaker potential and po-
larizable HS�, with the common feature of having an attrac-
tive r−6 tail. The second class refers to the solvent-mediated
attractions �depletion effects, polymer-coated colloids, solva-
tion forces�. Here, we have reported the simplest examples,
which can be regarded as variants of one single model: hard
spheres with a penetrable concentric spherical layer �“co-
sphere,” in a wider sense�. As a consequence, since the at-
traction depends on the volume overlap of the cospheres, the
potentials of all these models are “truncated,” i.e., they are
rigorously zero beyond some characteristic distance.

The main difference between the above-mentioned
classes—infinite tail in the first, finite tail in the second—
might suggest that the idea of representing realistic potentials
by an equivalent SHS model is justifiable for the second
class, but somewhat more questionable when the tail is infi-
nite. In particular, since a proper treatment of long tails is
essential for thermodynamics, the SHS-mapping of the Ha-
maker and Sutherland potentials might introduce some quali-
tative differences in such a kind of properties. This viewpoint
is certainly correct and Hamaker and Sutherland potentials
should be appropriately distinguished from the remaining
models of this paper. In fact, an “exact” treatment of all these
models would surely yield very different thermodynamic and
structural predictions. Nevertheless, in our context the
B2-mapping onto SHS can be expected to yield a represen-
tation of realistic interactions that is simple, analytically trac-
table, and reliable in appropriate regimes, at low and inter-
mediate densities.

In a companion paper �49�, we have applied a perturbative
approach to the solution of the polydisperse SHS model
within the Percus-Yevick approximation. The suggestions
put forward in the present paper regarding the relationship
between stickiness and size could help to improve the nec-
essary input to that kind of scheme.

In conclusion, the present paper suggests—for multicom-
ponent SHS models—the expression for tij given by Eq. �41�
as a simple choice that is physically justified by its relation to
the above-mentioned models of real interactions. Clearly, Eq.
�41� is an approximate result, but we believe that it correctly
includes the leading terms of the dependence of tij on the
particle sizes. In spite of the rather drastic approximations
used here, this could be useful with the rationale of having a
simple and tractable representation of rather complex inter-
actions, at the simplest possible level of description.
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APPENDIX: VOLUME OVERLAP BETWEEN SPHERES

The volume of the intersection between HS with radii a
and b, at distance r, is

Voverlap�a,b,r� = �
�4	/3�min�a3,b3� , 0 � r � �a − b� ,

	

12
	− 3�a2 − b2�21

r
+ 8�a3 + b3� − 6�a2 + b2�r + r3
 , �a − b� � r � a + b ,

0, r � a + b .
� �A1�
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For �a−b��r�a+b this expression can conveniently be rewritten as

Voverlap�a,b,r� =
	

12
�12ab�r − a − b�2 + 4�a + b��r − a − b�3 + �r − a − b�4�

1

r
. �A2�

Taking a=�i0= ��i+�0� /2 and b=�0j = �� j +�0� /2, one gets Voverlap��i0 ,� j0 ,r�=Vij
overlap�r� of Eq. �29�.
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