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Phase behaviour of polydisperse sticky hard spheres: analytical
solutions and perturbation theory
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Università di Venezia, S. Marta DD 2137, I-30123 Venezia, Italy

(Received 27 July 2006; in final form 13 September 2006)

We discuss the phase coexistence of polydisperse colloidal suspensions in the presence of
adhesion forces. The combined effect of polydispersity and Baxter’s sticky-hard-sphere (SHS)
potential, describing hard spheres interacting via strong and very short-ranged attractive
forces, give rise, within the Percus–Yevick (PY) approximation, to a system of coupled
quadratic equations which, in general, cannot be solved either analytically or numerically. We
review and compare two recent alternative proposals that have attempted to by-pass this
difficulty. In the first, truncating the density expansion of the direct correlation functions, we
have considered approximations simpler than the PY one. These Cn approximations can be
systematically improved. We have been able to provide a complete analytical description of
polydisperse SHS fluids using the simplest two orders C0 and C1. Such a simplification comes
at the price of a lower accuracy in the phase diagram, but has the advantage of providing an
analytical description of various new phenomena associated with the onset of polydispersity in
phase equilibria (e.g., fractionation). The second approach is based on a perturbative
expansion of the polydisperse PY solution around its monodisperse counterpart. This
approach provides a sound approximation to the real phase behaviour, at the cost of
considering only weak polydispersity. Although a final determination of the soundness of the
latter method would require numerical simulations for the polydisperse Baxter model, we
argue that this approach is expected to correctly take into account the effects of polydispersity,
at least qualitatively.

1. Introduction

New technological advances in the physico-chemical
manipulation of colloidal mixtures have re-ignited the
issue of gaining a theoretical understanding of the phase
behaviour of polydisperse systems [1]. ‘Polydispersity’ in
colloidal solutions means that, due to the production
process, suspended macroparticles with the same chemi-
cal composition cannot be exactly identical to each other,
but, in general, have different sizes, and possibly different
surface charges, shapes, etc. In practice, a polydisperse
system can be viewed as a mixture with a very large—or
essentially infinite—number M of different species or
components, identified by one or several parameters
(M large but finite refers to discrete polydispersity,
whereas M ! 1 with a continuous distribution of
polydisperse parameters corresponds to continuous poly-
dispersity). The present paper considers the discrete
polydispersity of spherical colloidal particles, with their

diameter being the only polydisperse attribute (size-
polydispersity).

When polydispersity is not negligible, the phase
behaviour becomes much richer, but determination of
the phase transition boundaries requires a much more
involved formalism compared with the monodisperse
counterpart. In fact, the coexistence condition in terms
of intensive variables requires that all phases must have
equal temperature, pressure and chemical potentials of
the M components. In the presence of polydispersity,
one should thus solve a number of equations of the
order of M2, a task that is practically impossible for
M large or infinite.

However, the study of phase equilibria can conveni-
ently start from the appropriate thermodynamic poten-
tial, which is the Helmholtz free energy A when the
experimentally controlled variables are temperature,
volume and number of different colloidal species. In
the one-component case, the coexistence condition of
equal pressure and chemical potential has a simple
geometrical interpretation in terms of free energy density
a: the densities of two coexisting phases are determined*Corresponding author. Email: gazzillo@unive.it

Molecular Physics, Vol. 104, Nos. 22–24, 20 November–20 December 2006, 3451–3459

Molecular Physics
ISSN 0026–8976 print/ISSN 1362–3028 online # 2006 Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/00268970601050892



D
ow

nloaded By: [U
nivers Venezia - C

a' Foscari] At: 10:43 24 January 2007 

by constructing a double-tangent to a plotted versus
particle density. This recipe leads to the well-known
Maxwell construction, which connects suitably selected
points along a van der Waals (vdW) subcritical
isotherm, in order to ‘reduce’ its unphysical loop to a
constant-pressure line characteristic of a first-order
phase transition.
In the polydisperse case, significant progress in the

very difficult problem of predicting phase equilibria can
be obtained for models with truncatable free energies [1].
Here, ‘truncatable’ means that the excess free energy of
the polydisperse system turns out to depend only on a
finite number of moments of the distribution corre-
sponding to the polydisperse attribute (the diameter � in
the simplest case). For spherical colloids, the excess free
energy of the vdW model extended to polydisperse fluids
has such a truncatable structure. Due to this property,
this vdW theory has often been employed as the simplest
model to investigate the effects of polydispersity on the
gas–liquid transition [1, 2]. On the other hand, the
influence of polydispersity on freezing has been
addressed by using the hard-sphere (HS) mixture
model, which also admits a truncatable free energy [1]
(for the fluid phase, the Boublik–Mansoori–Carnahan–
Starling–Leland (BMCSL) [3] expression was
employed). It is worth recalling that it is currently
believed that size-polydispersity might destabilize crys-
tallization, eventually inhibiting freezing above a certain
‘terminal’ value of polydispersity [1].
The present paper focuses on—and reviews—a

number of recent attempts to investigate polydisperse
phase equilibria, at least within some approximations,
for another prototype model useful for studying
colloidal suspensions, namely Baxter’s sticky-hard-
spheres (SHS) model [4]. Here the particles are hard
spheres with surface adhesion, and the corresponding
potential can be obtained as a limit of an attractive
square-well which becomes infinitely deep and narrow,
according to a particular prescription which ensures a
finite non-zero contribution of adhesion to the second
virial coefficient (‘sticky limit’). For the one-component
version of this model, Baxter and collaborators [4]
solved the Ornstein–Zernike (OZ) integral equation
coupled with the Percus–Yevick (PY) approximation
(‘closure’). This fully analytical solution allows the
determination of all structural and thermodynamical
properties of the SHS fluid. On the other hand, the
multi-component PY solution, which soon followed
Baxter’s work [5, 6], is practically inapplicable in the
presence of significant polydispersity. In fact, it requires
the computation of a set of parameters fLijg determined
by a system of MðMþ 1Þ=2 quadratic equations, which,
in general, cannot be solved even numerically for a
mixture with a large number of components. Moreover,

even in the presence of a general solution for this
nonlinear algebraic system, the problem of phase
coexistence would still remain out of reach in view of
the previous remarks.

In a series of recent papers [7–9, 11–13], we attempted
to make some progress along two different lines.

First, starting from the density expansion of the cavity
function at contact, we considered a sequence of simpler
approximations (compared with the PY one) [7–11].
Within the two simplest of these approximations,
denoted C0 and C1 (for reasons that will become clear
below), we were able to derive analytically all relevant
information regarding structure and thermodynamics,
including the phase coexistence, in view of the fact that
the corresponding free energy turns out to be trunca-
table [11]. Due to the simplicity of C0 and C1, it is
however reasonable to expect these approximations to
fail at high packing fractions, with a consequent
incomplete or even incorrect description of the effects
of polydispersity on the phase diagram.

Therefore, in collaboration with Peter Sollich, we
recently explored a second approach [12], where the
expansion variable (which must be small) is an appro-
priate polydispersity index. In such a way, we tried to
solve the nonlinear algebraic system—involved in the
PY result—perturbatively in polydispersity, starting from
the monodisperse PY solution.

2. Baxter’s SHS model and PY solution

The SHS model is defined as a limiting case of a
particular square-well (SW) model [4], based upon a
potential including steeply repulsive core and short-
ranged attractive tail, i.e.

�Baxter SW
ij ðrÞ ¼

þ1, 0 < r < �ij � ð�i þ �jÞ=2,
��Baxter SWij , �ij � r � Rij � �ij þ wij,
0, r > Rij,

8<
:

ð1Þ

with

�Baxter SWij ¼ kBT ln 1þ tij
�ij
wij

� �
, ð2Þ

where �i is the HS diameter of species i, �Baxter SWij > 0
and wij are the depth and width of the well, respectively,
kB denotes Boltzmann’s constant, and T is the tempera-
ture. Moreover,

tij ¼
1

12�ij
� 0, ð3Þ

3452 D. Gazzillo et al.
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where the conventional Baxter parameter �ij is an
unspecified increasing function of T, and ��1

ij measures
the strength of the surface adhesion or ‘stickiness’
between particles of species i and j.
The ‘sticky limit’ of �Baxter SW

ij ðrÞ corresponds to taking
wij ! 0. While the SW width goes to zero, its depth
�Baxter SWij diverges, giving rise to a Dirac delta function in
the Boltzmann factor [4], i.e.

e���SHS
ij ðrÞ

¼ �ðr� �ijÞ þ tij�ij�ðr� �ijÞ, ð4Þ

where � ¼ ðkBTÞ
�1, and � and � are the Heaviside step

function and the Dirac delta function, respectively.
The advantage of the sticky limit is that one effectively

deals with a single parameter �ij for each pair, rather
than a combination of energy and length scales (as
occurs in the square-well model, for which no analytical
solution is known). On the one hand, this particular
limit has the disadvantage of introducing some pathol-
ogies into the model, notably in the one-component case
[14]. On the other hand, Baxter’s model represents the
simplest paradigmatic example of a combination of
steep repulsion and short-range attraction which entails
a complete analytical solution in the one-component
case, within a robust approximation such as the PY
closure.
In the multi-component case, the PY solution of the

OZ equation in terms of Baxter’s factor correlation
function reads [5, 6]

qijðrÞ ¼

�
1
2aiðr� �ijÞ

2
þ ðbi þ ai�ijÞ

ðr� �ijÞ þ�ij,
� ð�i � �jÞ=2� r� �ij,

0, elsewhere,

8>><
>>:

ð5Þ

where the expressions for the parameters ai and bi may
be found in [7], while the quantity

�ij ¼ tijyijð�ijÞ�
2
ij, ð6Þ

which depends on the cavity function at contact yijð�ijÞ,
must be a solution of the following system of quadratic
equations:

�ij ¼ �ij þ �ij

X
m

xm �im�jm �
1

2
ð�im�mj þ�jm�miÞ

� �
,

i, j ¼ 1, 2, . . . ,M: ð7Þ

Here, xm is the molar fraction of the mth species
(m ¼ 1, . . . ,M), and �ij ¼ tijy

HS�PY
ij ð�ijÞ�

2
ij, �ij ¼ 12	tij�ij

(	 is the total number density), and �ij ¼ �i�j=ð1� 
Þ,

with 
 being the packing fraction [12]. The solution of
these equations for f�ijg is the real bottleneck of the
multi-component PY result, as mentioned in the
Introduction: for large M (and, in particular, for
M ! 1 ), this calculation is next to impossible,
analytically and numerically.

As a consequence, although the PY closure is
commonly believed to be very sound for short-range
potentials (for one-component SHS fluids this was
confirmed by recent numerical simulations [15]), one
has to conclude that, in the multi-component (poly-
disperse) case, the PY solution has very limited practical
usefulness, since its solution scheme cannot be fully
accomplished. This is the reason why other possible
routes have been attempted, as we discuss next.

3. Simplified closures: the class of Cn approximations

A ‘closure’ is a relationship, added to the OZ equation,
between the direct correlation function cijðrÞ and
hijðrÞ ¼ gijðrÞ � 1 or �ijðrÞ ¼ hijðrÞ � cijðrÞ (gijðrÞ being the
radial distribution function) [16].

Let us return to Baxter’s SW model given by
equation (1) (i.e. before the ‘sticky limit’), and consider
the following general class of ‘closures’ [10]:

cijðrÞ ¼

�1� �ijðrÞ, 0 < r < �ij,

cshrinkij ðrÞ, �ij � r � Rij,

0, r > Rij:

8>><
>>:

ð8Þ

The expression cijðrÞ ¼ �1� �ijðrÞ inside the core
(r < �ij) is exact and dictated by the HS potential. The
form outside the well (r > Rij) may then be identified
with the PY approximation,

cPYij ðrÞ ¼ fijðrÞ½1þ �ijðrÞ�, ð9Þ

since, for Baxter’s potential, the Mayer function,
fijðrÞ ¼ exp½���ijðrÞ� � 1, vanishes for r > Rij.

The choice of cshrinkij ðrÞ inside the well (region which
‘shrinks’ in the sticky limit) defines one particular
closure within the proposed class. Of course,
cshrinkij ðrÞ ¼ cPYij ðrÞ corresponds to the PY approximation.
On the other hand, when cshrinkij ðrÞ 6¼ cPYij ðrÞ, we are in the
presence of mixed closures, which have frequently
appeared in the literature [17]. In order to define
mixed closures simpler than the PY approximation, we
consider the density expansion of the exact direct
correlation function [16], and denote by the

Phase behaviour of polydisperse sticky hard spheres 3453
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Cn approximation a truncation of this series to order
Oð	nÞ. The simplest two approximations are

cshrinkij ðrÞ ¼ fijðrÞ ðC0 closureÞ,

cshrinkij ðrÞ ¼ fijðrÞ½1þ ð
P

k 	kfik*fkjÞðrÞ� ðC1 closureÞ,

ð10Þ

where 	k is the number density of species k, and *
denotes convolutive integration [10].
In the ‘sticky limit’ Rij ! �þ

ij the well region shrinks,
but a ‘memory’ of the approximation chosen for cshrinkij

remains in the solution of the OZ integral equation.
In fact, although all solutions qijðrÞ corresponding to
closures belonging to the class given by equation (8)
have the same functional form as the PY solution
(equation (5)), each closure is characterized by its own
approximation to yijð�ijÞ, which is involved in the
expressions of the parameters ai, bi and �ij. For
instance, the C0 and C1 approximations correspond to

yijð�ijÞ ¼ 1 ðC0 closureÞ,

yijð�ijÞ ¼ 1þ y
ð1Þ
ij ð�ijÞ
 ðC1 closureÞ, ð11Þ

which are, respectively, the zeroth- and first-order
truncations of the density expansion for the exact cavity
function at contact (see [10] for details).
While a brute-force truncation of the above density

expansions leads to analytical expressions sufficiently
simple to be applied to the multi-component (poly-
disperse) case, one should reasonably expect less

accuracy, especially in the high-density regime. In the
one-component case, we can carefully check this point.

In figure 1, coexistence curves obtained from the
C0 and C1 approximations are compared with the PY
ones (using both compressibility and energy routes), and
with Monte Carlo simulations from [15]. It is apparent
how the PY energy route (PYE) yields a rather precise
representation of the MC results, unlike the compressi-
bility route (PYC). It is worth noting that the results
stemming from the C1 approximation, although rather
close to the MC data in the low-density branch, clearly
fail to accurately reproduce them for higher densities,
as expected.

In spite of their lack of accuracy, the C0 and C1

approximations provide a rather sound basis for
obtaining insight into the phase equilibria of polydis-
perse SHS fluids, since they allow simple analytical, or
semi-analytical, treatments.

A first important feature of the C0 and C1 approx-
imations for polydisperse SHS is that the corresponding
free energy has a truncatable structure, that is it depends
upon a few (four at most) moments of the (discrete) size
distribution, �
 ¼ ðp=6Þ	

P
j xj�



j , with 
¼ 0, 1, 2, 3.

A second remarkable fact is that the C0 and C1

approximations are able to describe the so-called
fractionation phenomena characteristic in phase equili-
bria of polydisperse systems. While we refer to a recent
review [1] for a detailed description of the increased
complexity in the polydisperse phase diagrams, here we
just mention two important points. First, fractionation
means that the daughter phases, obtained from the
demixing of a parent homogeneous phase, need not have
the same composition as the parent phase. As a
consequence, there is no single coexistence line
(‘binodal’) as in the one-component case, but one rather
finds a cloud curve, representing the temperature–density
dependence line of the low-density majority phase
(‘gas’), and a shadow curve, representing the tempera-
ture–density dependence of the high-density minority
phase (incipient ‘liquid’). While for one-component
systems these two curves are identical, for polydisperse
systems in general they are not, with the exception of the
critical point, where they coincide by definition.

However, in order to apply the C0 and C1 approxima-
tions to the multi-component SHS model, we have to
tackle a further important problem, that is the definition
of the stickiness parameters �ij.

4. Size dependence of stickiness parameters

In mixtures, �ij will depend on the particular pair i , j
considered, and should reasonably be expected to be
related to the particle sizes. Assuming that we are

0 0.1 0.2 0.3 0.4 0.5

η

0

0.05

0.1

τ

MC

PYC

C0

C1

PYE

Figure 1. Coexistence (binodal) curves for the one-compo-
nent Baxter model. Both the compressibility (PYC) and the
energy (PYE) results as obtained from the Percus–Yevick
approximation [4] are reported and compared with the C0 and
C1 approximations from [11] and with Monte Carlo simula-
tions (MC) from [15]. In the MC case the continuous line is
simply a guide to the eye.
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dealing only with size-polydispersity, we can always
decouple temperature and adhesion as

1

�ij
¼

1

�
�ij ¼

1

�
Fð�i, �jÞ, ð12Þ

where the last equality stems from the assumption of
size-polydispersity and of a purely pairwise potential.
Unfortunately, the exact form of the size dependence of
these stickiness parameters is still an open problem, due
to the lack of experimental and theoretical insights [13].
On the other hand, a few guidelines—based on
arguments discussed in [11, 12]—provide, as reasonable
and plausible, the following dependencies:

�ij ¼ Fð�i, �jÞ ¼

�2
0=�

2
ij, Case I,

�i�j=�
2
ij, Case II,

1, Case IV,
�0=�ij, Case V:

8>><
>>:

ð13Þ

Here, �0 is a characteristic reference length (e.g., the
parental mean diameter) and the numbering of the
various cases follows the convention of previous work
[11, 12].
Figure 2 reports the results of the calculation of the

cloud and shadow curves for polydisperse SHS within
the simple C0 approximation. Here and below, poly-
dispersity is measured by an index s, which is the
normalized standard deviation of the size distribution.
Hence, s¼ 0 corresponds to a mono-disperse case,
whereas s¼ 0.1 and s¼ 0.3 indicate moderate and
significant polydispersity, respectively. The top panel
of figure 2 depicts the results for case I of the size
dependence of the stickiness parameters. As s increases,
the coexistence region shrinks, thus suggesting that
polydispersity disfavours the phase transition. On the
other hand, this trend is markedly case dependent,
as illustrated in the bottom panel of figure 2, where
the cloud–shadow pairs with polydispersity s¼ 0.3 are
displayed for different size dependence cases. It can
clearly be seen that, whereas for cases I and V the same
trend is observed, case IV seems to suggest a widening of
the phase coexistence region (hence favouring the phase
transition).
In view of the lack of numerical simulations for

polydisperse SHS in order to make a comparison, we
have no way, at the present stage, of checking how
realistic these results are. On the other hand, we might
suspect, based on the comparison in the one-component
case, C0 to fail to provide an accurate representation in
the region of low temperatures and high densities. This
is the reason why other possible approaches have
recently been tested. We now illustrate a different

perturbative approach that has proved to be promising
in this context.

5. Perturbative treatment of the SHS-PY solution

The main difficulty in dealing with the PY solution for
polydisperse SHS stems from the solution of the coupled
quadratic system of equations (7). As the one-compo-
nent case has a well-defined solution, one might then
suspect that—for weak polydispersity—a perturbative
expansion around this solution might include the main
effects of polydispersity. This is, in fact, what happens,
as recently shown [12] by exploiting a general perturba-
tion theory due to Evans [18]. The main idea is that,
for weak polydispersity, size distributions are narrowly
peaked around a mean reference value (�0 in the present
case), and hence all quantities such as

�i ¼
�i � �0
�0

� 1 ð14Þ

are small. Therefore, one might expand both �ij, and all
quantities appearing in �ij, in powers of �i. A similar
expansion can be performed in the free energy, and
hence all thermodynamic quantities can be computed.
The entire procedure is described in detail in [1, 12 ,18].
Here, we just summarize the main results.

The approximate range of validity of the perturba-
tion expansion can be envisaged by considering the
polydisperse HS case where the ‘exact’ BMCSL
approximation [3] can be compared with the corre-
sponding perturbative solution based on the one-
component (s¼ 0) counterpart. This is reported in the
top-left part of figure 3, where the quantity
�Pv0 (v0 ¼ p�3

0=6) is plotted against the packing
fraction 
 for increasing values of polydispersity. It is
apparent that the perturbative solution remains rather
close to the ‘exact’ polydisperse BMCSL solution even
for moderate polydispersity s � 0:3, which is the
maximum value considered in the remaining part of
this work. The remaining plots in figure 3 display the
effect of polydispersity on the PY pressure equation of
state as obtained from the energy route and for
decreasing values of the temperature �. In the one-
component case s¼ 0, a van der Waals loop starts to
appear when we cross the critical temperature
�c � 0:1185 coming from the high � regime.
Obviously, this signals the onset of a liquid–gas phase
transition, and the corresponding phase diagram can be
obtained by a standard Maxwell construction by
connecting appropriate points with the same pressure.
In the presence of polydispersity (here represented by
choice IV for the size dependence of the stickiness

Phase behaviour of polydisperse sticky hard spheres 3455
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parameters), the same procedure cannot be applied due
to fractionation, as already discussed. Nevertheless, we
can clearly see that, as s increases, the van der Waals
loop region (when present) expands, thus suggesting
that a phase transition is favoured by the presence of
polydispersity. A similar feature occurs for the poly-
disperse van der Waals model [2] and for the numerical
results of the PY compressibility equation of state [19]
(note that, in the latter, a gap rather than a loop signals
the onset of the transition). A somewhat surprising
feature is that, at fixed packing fraction 
, the pressure
decreases with increasing polydispersity less in the
presence of adhesion rather than in its absence (i.e. for
the HS case). An intuitive plausible interpretation of
this feature can be found in [12].
The same perturbative approach allows the determi-

nation of the cloud and shadow curves for the various
size dependence cases of ��1

ij . This is reported in figure 4

for cases II, IV (top panel) and I, V (bottom panel). In
the first case, the cloud and shadow lines collapse into a
single curve, and this can be understood on the basis of
the particular scaling properties of the free energy to this
order in perturbation theory [12]. In all cases, there is a
breakdown of the perturbation theory on approaching
the critical point, and this is a known general drawback
of Evans’ perturbative scheme. Nevertheless, in all cases
and to this order in perturbation theory, there is a
tendency of the phase coexistence region to increase with
polydispersity, in qualitative agreement with the intui-
tive picture obtained from figure 3.

It is worth stressing the difference with respect to
previous non-perturbative results stemming from the
C0 solution, where all different cases (with the notable
exception of IV) predicted a reduction of the phase
coexistence region. While in the C0 description we have
provided a careful treatment of polydispersity at the

0 0.1 0.2 0.3 0.4

η

0.08

0.084

0.088

0.092

0.096

τ

Cloud
Shadow

s=0

s=0.1

s=0.3

0 0.1 0.2 0.3 0.4

η

0.08

0.084

0.088

0.092

0.096

τ

s=0
Cloud
Shadow

IV

V

I

Figure 2. (Top) Cloud and shadow curve for model I within the C0 approximation at increasing polydispersity: s¼ 0, s¼ 0.1 and
s¼ 0.3. (Bottom) Same as above but for a fixed value of polydispersity s¼ 0.3 and different choices for the stickiness adhesion
(models I, IV and V).
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expense of the accuracy of the exploited approximation,
in the perturbative description of the PY solution,
polydispersity is assumed to be small and hence one
might suspect that solutions with large polydispersities
cannot fit within this picture. On balance, however, we
would favour the latter rather than the former descrip-
tion. An almost correct representation of the one-
component counterpart is a necessary requirement for
checking the effect of polydispersity, and we are not
aware of any physical or experimental system where the
effects of polydispersity are so strong that they could not
be taken into account, at least at the simplest qualitative
level, by the perturbative scheme proposed here.
Along this line, some further proposals have been put
forward in [12] to derive a phenomenological BMCSL-
like approximation for SHS, which might be regarded as
our ‘best and simplest guess’ to the exact phase

behaviour of polydisperse SHS. Even on the size
dependence of ��1

ij some possible support of the
proposed forms may be put forward [12, 13].

6. Conclusions

In this work, we have summarized recent advances in
predicting, theoretically, the phase diagram for poly-
disperse suspensions of colloidal particles with surface
adhesion, within the simple description of Baxter’s
model. Emphasis was placed on the crucial—
unsolved—step required to obtain the multi-
component SHS-PY solution, and the proposed
recipes to deal with this problem. The first is based
on a simplification of the closure. It has the
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Figure 3. Behaviour of the energy equation of state within our perturbative scheme. In all cases the quantity �Pv0 is plotted
against the packing fraction 
. In clockwise order, the first curve (left, top) reports a comparison of the perturbative versus the
‘exact’ BMCSL solution in the equation of state for polydisperse HS (� ¼ þ1). The other curves report the perturbative solution
for the energy equation of state within the PY approximation for the SHS Baxter model. Results are depicted for three values of
temperature, � ¼ 0:15 > �c, � ¼ 0:1185 � �c and � ¼ 0:1 < �c, and for different degrees of polydispersity. The choice for the size
dependence of the stickiness parameters corresponds to model IV.
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advantage of allowing a complete analytical analysis
on the effects of polydispersity, including fractiona-
tion, but has the disadvantage of very questionable
accuracy. The second is based on a perturbative
method, starting from the energy PY one-component
solution, which is known to provide an accurate
description of the phase diagram. The drawback of
this scheme is that it works for mild polydispersity,
but it cannot describe the changes in the critical point
region. Notwithstanding these limitations, this novel
approach is expected to find practical application in
the interpretation of all those phenomena where
Baxter’s model and polydispersity both play a role.
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