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In a computer experiment the choice of suitable estimators to measure a physical quantity plays an

important role. We propose a new direct route to determine estimators for observables which do not

commute with the Hamiltonian. Our new route makes use of the Hellmann and Feynman theorem and

in a diffusion Monte Carlo simulation it introduces a new bias to the measure due to the choice of the

function. We used our route to measure the radial distribution function of a spin one half Fermion fluid.

& 2013 Elsevier Ltd. All rights reserved.
In a computer experiment of a many particles system, a fluid,
the determination of suitable estimators to measure, through a
statistical average, a given physical quantity, an observable, plays
an important role. Whereas the average from different estimators
must give the same result, the variance, the square of the
statistical error can be different for different estimators. We will
denote with /OSf the measure of the physical observable O and
with / � � �Sf the statistical average over the probability distribu-
tion f. In this communication we use the word estimator to
indicate the function O itself, unlike the more common use of
the word to indicate the usual Monte Carlo estimator

PN
i ¼ 1Oi=N

of the average, where fOig is the set obtained by evaluating O over
a finite number N of points distributed according to f. This aspect
of finding out different ways of calculating quantum properties in
some ways resembles experimental physics. The theoretical
concept may be perfectly well defined but it is up to the ingenuity
of the experimentalist to find the best way of doing the measure-
ment. Even what is meant by ‘‘best’’ is subject to debate.

In this communication we propose a new direct route to
determine, in a diffusion Monte Carlo simulation, estimators for
observables which do not commute with the Hamiltonian. Our
new route makes use of the Hellmann and Feynman theorem and
it introduces a new bias to the measure due to the choice of the
auxiliary function. We show how this bias is independent from
the usual one due to the choice of the trial wave function. We
ll rights reserved.
then use our route to measure the radial distribution function of a
spin one half Fermion fluid.

In ground state Monte Carlo simulations [1,2], unlike classical
Monte Carlo simulations [3–5] and path integral Monte Carlo
simulations [6], one has to resort to the use of a trial wave
function [1], C. While this is not a source of error, bias, in a
diffusion Monte Carlo simulation [2] of a system of Bosons, it is
for a system of Fermions, due to the sign problem [7]. Since this is
always present in a Monte Carlo simulation of Fermions we will
not consider it any further while talking about the bias.

Another source of bias inevitably present in all the three
experiments, which we will not take into consideration in the
following, is the finite size error. In the rest of the paper we will
generally refer to the bias to indicate the error (neglecting the
finite size error and the sign problem) that we make when
defining different estimators of the same quantity which do not
give the same average.

In a ground state Monte Carlo simulation, the energy has the
zero-variance principle [8]: as the trial wave function approaches
the exact ground state, the statistical error vanishes. In a diffusion
Monte Carlo simulation of a system of Bosons the local energy of
the trial wave function, ELðRÞ ¼ ½HCðRÞ�=CðRÞ, where R denotes a
configuration of the system of particles and H is the Hamiltonian
assumed to be real, is an unbiased estimator for the ground state.
For Fermions, the ground state energy measurement is biased by
the sign problem. For observables O which do not commute with
the Hamiltonian, the local estimator, OLðRÞ ¼ ½OCðRÞ�=CðRÞ, is
inevitably biased by the choice of the trial wave function. A way
of remedy to this bias can be the use of the forward walking
method [9,10] or the reptation quantum Monte Carlo method [11]
to reach pure estimates. Otherwise this bias can be made of
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leading order d2, with d¼f0�C, where f0 is the ground state
wave function, introducing the extrapolated measure, O

ext
¼

2/OLSf�/OLSf vmc
where the first statistical average, the mixed

measure, is over the diffusion Monte Carlo (DMC) stationary
probability distribution f and the second, the variational measure,
over the variational Monte Carlo (VMC) probability distribution
f vmc which can also be obtained as the stationary probability
distribution of a DMC without branching [12].

One may follow different routes to determine estimators such
as the direct microscopic route, the virial route through the use of
the virial theorem, or the thermodynamic route through the use of
thermodynamic identities. In an unbiased experiment the differ-
ent routes to the same observable must give the same average.

In this communication we propose to use the Hellmann and
Feynman theorem as a direct route for the determination of
estimators in a diffusion Monte Carlo simulation. Some attempts
in this direction have been tried before [13,14]. The novelty of our
approach, in respect to Ref. [13], is a different definition of the
correction to the variational measure, necessary in the diffusion
experiment, and, in respect to Ref. [14], the fact is that the bias
stemming from the sign problem does not exhaust all the bias due
to the choice of the trial wave function.

We start with the eigenvalue expression ðHl
�ElÞCl

¼ 0 for the
ground state of the perturbed Hamiltonian Hl

¼HþlO, by taking
the derivative with respect to the parameter l, multiplying on the
right by the ground state at l¼ 0, f0, and integrating over the
particles configuration to getZ

dR f0ðH
l
�ElÞ

@Cl

@l
¼

Z
dR f0

dEl

dl
�

dHl

dl

 !
Cl:

Then we note that due to the Hermiticity of the Hamiltonian the
left hand side vanishes at l¼ 0 so that we further getR

dR f0OClR
dR f0C

l

�����
l ¼ 0

¼
dEl

dl

�����
l ¼ 0

: ð1Þ

This relation holds only in the l-0 limit unlike the more
common form [15] which holds for any l. Given El ¼R

dR f0HlCl=
R

dR f0C
l the ‘‘Hellmann and Feynman’’ (HF)

measure in a diffusion Monte Carlo experiment is then defined
as follows:

O
HF
¼

dEl

dl

�����
l ¼ 0

�/OLðRÞSf þ/DOa
L ðRÞSf þ/DOb

L ðRÞSf : ð2Þ

The a correction is

DOa
L ðRÞ ¼

HC0ðRÞ
C0ðRÞ

�ELðRÞ

� �
C0ðRÞ
CðRÞ

: ð3Þ

In a variational Monte Carlo experiment this term, usually, does
not contribute to the average (with respect to f vmcpC2) due to
the Hermiticity of the Hamiltonian. We will then define a
Hellmann and Feynman variational (HFv) estimator as OHFv

¼

OLþDOa
L . The b correction is

DOb
L ðRÞ ¼ ½ELðRÞ�E0�

C0ðRÞ
CðRÞ

, ð4Þ

where E0 ¼ El ¼ 0 is the ground state energy. It should be noticed
that our correction differs by a factor 1/2 from the zero-bias
correction defined in Ref. [13] because these authors chose

El ¼
R

dR ClHlCl=
R

dRðCl
Þ
2 right from the start. This correction

is necessary in a diffusion Monte Carlo experiment not to bias the
measure. The extrapolated Hellmann and Feynman measure will

then be O
HF�ext

¼ 2O
HF
�/OHFvSf vmc

. Both corrections a and b to

the local estimator depend on the auxiliary function,

C0 ¼ @Cl=@l9l ¼ 0. Of course if, on the left hand side of Eq. (2),
we had chosen Cl ¼ 0 as the exact ground state wave function, f0,
instead of the trial wave function, C, then both the corrections
would have vanished. When the trial wave function is sufficiently
close to the exact ground state function a good approximation to
the auxiliary function can be obtained from the first-order

perturbation theory for l51. So the Hellmann and Feynman
measure is affected by the new source of bias due to the choice of
the auxiliary function which is independent from the bias due to
the choice of the trial wave function.

We applied the Hellmann and Feynman route to the measure-
ment of the radial distribution function (RDF) of the Fermion fluid
studied by Paziani [16]. This is a fluid of spin one-half particles
interacting with a bare pair-potential vmðrÞ ¼ erfðmrÞ=r immersed
in a ‘‘neutralizing’’ background. The pair-potential depends on the
parameter m in such a way that in the limit m-0 one recovers the
ideal Fermi gas and in the limit m-1 one finds the Jellium model.
We chose this model because it allows to move continuously from
a situation where the trial wave function coincides with the exact
ground state, in the m-0 limit, to a situation where the correla-
tions due to the particles interaction become important, in the
opposite m-1 limit.

We chose as auxiliary function C0 ¼QC, the first one of
Toulouse et al. [17] (their Eq. (30))

Qs,s0 ðr,RÞ ¼�
r2

s

8pVnsns0

X
i,ja i

ds,si
ds0 ,sj

Z
dOr

4p
1

9r�rij9
, ð5Þ

where s and s0 denote the spin species, r¼ 9r9 the separation

between two particles, rij the separation between particle i and j,

si the spin species of particle i, and dOr the solid angle element of
integration. The particles are in a recipient of volume V at a

density n¼ nþ þn� ¼ 1=½4pða0rsÞ
3=3� with a0 being the Bohr

radius, a¼ a0rs the lengths unit, and ns the density of the spin
s particles. With this choice the a correction partially cancels the

histogram estimator Is,s0 ðr,RÞ ¼
P

i,ja ids,si
ds0 ,sj

R
dðr�rijÞ dOr=

ð4pVnsns0 Þ, and one is left with a HFv estimator which goes to

zero at large r. This is because the quantity /DIas,s0 ðr,RÞSC2

¼�
R
@VNC2

ðRÞ=RQs,s0 ðr,RÞ � dS=r2
s equals minus one for all r with

rAV , instead of zero as normally expected. This is ultimately
related to the behavior of the auxiliary function on the border of VN.

The measure of the b correction also goes to zero at large r because
one is left with a statistical average of a quantity proportional to
ELðRÞ�E0. The Hellmann and Feynman measure then needs to be
shifted by þ1.

Our variational Monte Carlo experiments showed that in the
variational measure the average of the histogram estimator
agrees with the average of the HFv estimator within the square
root of the variance of the average sav ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2K=N

p
(here s2 is the

variance, K the correlation time of the random walk, and N the
number of Monte Carlo steps) and the two sav are comparable.
This is expected since the HFv estimator is defined exactly in
Ref. [13] which correctly takes into account the definition of the
HF estimator within a variational Monte Carlo simulation. In the
fixed nodes diffusion experiment, where one has to add the
b correction not to bias the average (note once again that this is
defined by us as one half the zero-bias correction of Ref. [13]), the
Hellmann and Feynman measure has an average in agreement
with the one of the histogram estimator but sav increases. This is
to be expected from the extensive nature of b correction in which
the energy appears. Of course the averages from the extrapolated
Hellmann and Feynman measure and the extrapolated measure
for the histogram estimator also agree.

In the simulation for the Coulomb case, m-1, we made
extrapolations in time step and number of walkers for each value
of rs. Given a relative precision de0

¼De0=ex
p, where e0 ¼/ELSf =N,



Table 1
Contact values for the unlike RDF of the unpolarized fluid of Paziani [16] at various

rs and m from the mixed measure of the histogram estimator (hist) and the HF

measure (HF) with the auxiliary function chosen as in Eq. (5), also reported are the

two extrapolated measures (ext and HF-ext). The trial wave function used was of

the Slater-Jastrow type with the Jastrow of Ref. [21], J 2. The last column gives the

error on the HF measure. One-hundred sixty two particles were used with

105 Monte Carlo steps.

rs m Hist Ext HF HF-ext sav on HF
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De0 is the statistical error on e0, and ep
x is the exchange energy,

we set relative precision de0
¼ 10�2% as our target. The extra-

polated values of the time step and number of walkers were then
used for all other values of m. We chose the trial wave function of
the Bijl–Dingle–Jastrow [18–20] form as a product of Slater
determinants and a Jastrow factor. The pseudo-potential was
chosen as in Ref. [21], J 2, is expected to give better results for
Jellium. Comparison with the simulation of the unpolarized fluid
at rs¼1 and m¼ 1 with the pseudo potential of Ref. [22], J 1, for
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Fig. 1. (Color online) Unlike RDF for the unpolarized fluid of Paziani [16] at rs¼1

and m¼ 1 with 162 particles. On the left panel the calculation with the Jastrow J 1

with various measures: variational histogram (variational) and variational HFv

(HFv), mixed histogram (mixed) and HF (HF), and extrapolated histogram (extra-

polated). On the right panel the calculation with the Jastrow J 2 with the

histogram variational (variational J 2), mixed (mixed J 2), and extrapolated

(extrapolated J 2) measures. Also the extrapolated measure with the Jastrow J 2

is compared with the extrapolated measure with the Jastrow J 1. In the inset is

shown the difference between the histogram extrapolated measure of the

calculation with J 1 and the histogram extrapolated measure of the calculation

with J 2. 105 Monte Carlo steps were used in the simulations.

10 1/2 1.000 (4) 0.91 (1) 1.00 0.92 0.03

10 1 0.644 (3) 0.582 (8) 0.65 0.59 0.03

10 2 0.182 (1) 0.146 (4) 0.18 0.14 0.06

10 4 0.0506 (8) 0.048 (2) 0.05 0.04 0.07

10 1 0.0096 (3) 0.0118 (8) 0.00 0.00 0.09

5 1/2 1.034 (3) 0.94 (1) 1.03 0.94 0.03

5 1 0.796 (3) 0.743 (9) 0.79 0.73 0.02

5 2 0.405 (2) 0.362 (6) 0.40 0.36 0.02

5 4 0.199 (1) 0.184 (4) 0.20 0.18 0.03

5 1 0.0799 (8) 0.080 (2) 0.06 0.06 0.03

2 1/2 1.0618 (4) 0.97 (1) 1.05 0.95 0.04

2 1 0.927 (3) 0.852 (9) 0.93 0.86 0.03

2 2 0.697 (3) 0.639 (9) 0.69 0.63 0.02

2 4 0.511 (2) 0.473 (7) 0.51 0.47 0.02

2 1 0.349 (2) 0.323 (5) 0.32 0.30 0.02

1 1/2 1.077 (3) 0.98 (1) 1.07 0.97 0.02

1 1 0.994 (3) 0.91 (1) 0.99 0.91 0.02

1 2 0.855 (3) 0.787 (9) 0.86 0.81 0.02

1 4 0.730 (2) 0.676 (8) 0.73 0.66 0.01

1 1 0.602 (2) 0.560 (7) 0.58 0.53 0.01
which the trial wave function becomes the exact ground state
wave function in the m-0 limit, shows that the two extrapolated
measures of the unlike histogram estimator differ one from the
other by less than 7� 10�3, the largest difference being at contact
(see the inset of Fig. 1). The use of more sophisticated trial wave
functions, taking into account the effect of backflow and three-
body correlations, is found to affect the measure even less. In
Table 1 we compare the contact values of the unlike RDF of the
unpolarized fluid at various rs and m from the measures of the
histogram estimator and the HF measures. We see that there is a
disagreement between the measure from the histogram estimator
and the HF measure only in the Coulomb m-1 case at rs ¼ 1,2.

In conclusions we defined a Hellmann and Feynman estimator
to measure a given physical property either in a variational Monte
Carlo experiment or in a diffusion Monte Carlo experiment. Our
definition coincides with the one of reference [13] in the varia-
tional case but is different in the diffusion case. We proof tested
our definitions on the calculation of the radial distribution
function of a particular Fermion fluid. Our simulations showed
that the bias is correctly accounted for in both kinds of experi-
ments but the variance increases in the diffusion experiment
relative to the one of the histogram estimator. We believe that the
one of determining the relationship between the choice of the
auxiliary function and the variance of the Hellmann and Feynman
measure is still an open problem.
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