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We apply a simple statistical mechanics cluster approximation for studying clustering in the Kern and

Frenkel model of Janus fluids. The approach is motivated by recent Monte Carlo simulations work on

the same model revealing that the vapor coexisting with the liquid phase contains clusters of different

sizes and shapes whose equilibrium concentrations in general depend on the interaction range as well as

on thermodynamic parameters. The approximation hinges on a separation between the intra- and inter-

cluster contribution to thermodynamics, where only the former is explicitly computed by Monte Carlo

simulations. Two level of a simple liquid theory approximations are exploited for the description of the

latter. In the first we use the ideal-gas expressions and obtain a qualitative agreement with extensive

Monte Carlo bulk simulations. This can be improved to a semi-quantitative agreement, by using

a hard-sphere description for the cluster-cluster correlations.
I. Introduction

Recent advances in experimental techniques for chemical

synthesis have provided a well defined set of different protocols

for obtaining colloidal particles with different shapes, chemical

compositions and surface patterns. In particular it is now

possible to obtain colloidal particles with a pre-defined number

and distribution of solvophobic and solvophilic regions on their

surface. These are usually referred to as patchy colloids.1–4

The simplest example within this realm is constituted by the so-

called Janus particles, where the surface is partitioned in only two

parts with an even distribution of the two philicities. In spite of

their apparent simplicity, Janus particles have aroused increasing

interest in the last few years both for their potential technological

applications and in view of the rather unusual displayed self-

assembly properties as compared to conventional isotropic

colloidal particles.5–8

A detailed study of the fluid–fluid transition for Janus fluids

has recently been carried out by Monte Carlo (MC) simula-

tion9,10 using the Kern–Frenkel pair potential.11 Within this

model, the solvophobic and solvophilic hemispheres are

mimicked by an attractive square-well potential and a repulsive

hard-sphere potential respectively, and two spheres attract each

other only provided that their centers are within a given distance,
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as dictated by the width of the well, and the two attractive

patches on each sphere are properly aligned one another, that is,

lie within a predefined relative angular range.

The combined features of the equal amplitude of the two

philicities coupled with the specificity of the chosen potential

types give rise to a micellization process originating in the vapor

phase that severely destabilizes the condensation process thus

providing a re-entrant vapour coexistence curve that in the

temperature–density diagram is skewed toward higher densities

as the system is cooled to lower temperatures.9 A number of

additional unusual features were also found for the vapour

phase,10 including the fact that, for the chosen width of the

square-well potential (50% of the particle size), there appeared

a predominance of particular clusters formed by single-layer

(micelles of about 10 particles) and double-layer (vesicles of

about 40 particles) always exposing the hard-sphere part as an

external global surface, thus inhibiting the formation of a liquid

phase.

It should be emphasized that MC simulations are particularly

demanding for this system in that very low temperatures (of the

order of 0.25 or less in reduced units) are necessary to observe

these phenomena, and this is expected to be even more

demanding for decreasing range of the interactions.10

In this paper, we focus our interest on the study of the vapor

phase, following a different approach, hinging on a strategy

similar to that devised in the context of associating fluids, where

several different theories with different degrees of success have

been envisioned.12–15

Our approach has been inspired by the work of Tani and

Henderson,16 extending the Bjerrum theory for association in

electrolytic solutions17 where the total partition function is fac-

torized into a intra- and inter-cluster contribution, so that the

original task is reduced to the computation of the partition
Soft Matter
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function for clusters of increasing sizes along with the interaction

among them.

While the original approach16 was limited by the necessity of

evaluating analytically even the intra-cluster partition function,

in addition to the inter-cluster contribution, we propose to

determine the former by explicit Monte Carlo simulations for

each cluster and the latter using physically motivated fluid

theories. Within MC simulation of each n-cluster, we are then

able to determine the energy per particle as a function of

temperature and thereby compute the excess free energy of the

isolated cluster by thermodynamic integration.

Clearly, this approach is particularly suited to study the vapor

phase as once the first n-particle clusters have been simulated the

resulting information can be inserted in the inter-cluster theory,

and this is enough to determine the partition function of the

vapor at all thermodynamic states. We can then follow and

predict the dependence of cluster population on thermodynamic

conditions and interaction parameters. This is particularly rele-

vant in cases in which spontaneous cluster formation is partic-

ularly slow, due for example to the low value of the temperature

at which clustering takes place, a common case when the inter-

action range is very short.

The paper is organized as follows: in section II we describe the

model, in sections III and IV we introduce the cluster theory, in

section V we describe how we determined the intra-cluster

partition function. Additional results are then presented in

section VI, and section VII is for final remarks.

II. The Kern and Frenkel model

As in the work of Sciortino et al.9,10 we used the Kern and

Frenkel11 patchy hard sphere model to describe the Janus fluid.

Two spherical particles attract via a short-range square-well

potential only if the line segment joining the centers of the two

spheres intercepts a patch on the surface of the first particle and

one on the surface of the other. In the case of a single patch per

particle, the pair potential reads11

F(1,2) ¼ f(r12)J(n̂1,n̂2,̂r12), (1)

where

fðrÞ ¼

8<:þN r\s

�3 s\r\ls

0 ls\r

(2)

and

J
�
n̂1; n̂2; r̂12

�
¼
(

1 if n̂1,r̂12 $ cosq0 and� n̂2,r̂12 $ cosq0

0 otherwise (3)

where q0 is the angular semi-amplitude of the patch. Here n̂1(u1)

and n̂2(u2) are unit vectors giving the directions of the center of the

patch in spheres 1 and 2, respectively, with u1 ¼ (q1,41) and u2 ¼
(q2,42) their corresponding spherical angles in an arbitrary

oriented coordinate frame. Similarly, r̂12(U) is the unit vector of

the separation r12 between the centers of the two spheres and is

defined by the spherical angle U. As usual, we have denoted with s

the hard core diameter and l¼ 1 + D/s with D the width of the well.
Soft Matter
One can define the fraction of surface covered by the attractive

patch as

c ¼ J
�
n̂1; n̂2; r̂12

�1=2

u1 ;u2
¼ sin2

�
q0

2

�
(4)

where we have introduced h.iu ¼ (1/4p)
Ð

du(.) as the average

over the solid angle u.

Reduced units kBT/3 (kB is the Boltzmann constant) and rs3

will be used as a measure of the temperature and density in

numerical data.
III. A cluster theory for Janus particles

Following ref. 16, we split the partition function in an inter- and

intra-cluster contribution. Let Nn be the number of clusters

formed by n particles, where n ¼ 1,.,nc (nc being the number of

different clusters) and rn ¼ Nn/V their density. We then write the

total partition function as

Qtot ¼
X0
fNng

�Ync

n¼1

1

Nn!

�
qintra

n

�Nn

�
QinterðfNng;V ;TÞ; (5)

where the prime indicates that the sum is restricted to all possible

configurations satisfying the obvious constraint of conserving the

total number of particles N,Xnc

n¼1

nNn ¼ N: (6)

Here qintra
n is the ‘‘internal’’ partition function for an n-particle

cluster and Qinter({Nn},V,T) is the inter-cluster partition func-

tion. Additional controlled thermodynamic variables are the

total volume V and the temperature T.

The constraint can be dealt with by introducing a Lagrange

multiplier so that we minimize the quantity

ln bQtot ¼ lnQtot þ ðlnlÞ
Xnc

n¼1

nNn: (7)

In computing the partition function (5) we assume that the

sum can be replaced by its largest dominant contribution. With

the help of the Stirling approximation N! z (N/e)N one then

obtains

lnQtotz
Xnc

n¼1

�
Nnln qintra

n � ðNn lnNn �NnÞ
	
þ lnQinter: (8)

The correct cluster distribution { �Nn} is then found from the

variational condition

v

vNn

ln bQtot







fNn¼Nng

¼ 0 (9)

This allows the calculation of the resulting free energy, bFtot ¼
�lnQtot, in terms of the internal reduced free energy densities,

bf intra
n ¼ �lnqintra

n , so that

bFtot

V
¼
Xnc

n¼1

½�rn ln�rn � �rn� þ
Xnc

n¼1

�rnb f intra
n þ

Xnc

n¼1

�rn lnV � 1

V
lnQinter:

(10)

In the above expression, b ¼ 1/(kBT).
This journal is ª The Royal Society of Chemistry 2011
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IV. Specific models

We now consider two specific cases, where the inter-cluster

interaction is not accounted for (the ideal-gas case) or modeled as

an effective hard-sphere like interaction between clusters.

A. Ideal gas

The simplest possibility corresponds to considering different

clusters as non-interacting ideal particles so that

QinterðfNng;V ;TÞ ¼
Ync

n¼1

�
V

L3
n

�Nn

hQideal ; (11)

where Ln is the de Broglie thermal wavelength associated with

each n-cluster.

Using eqn (9) and (11) one easily obtains

�rn ¼ ln qintra
n

L3
n

; (12)

where �rn ¼ �Nn/V.

The actual value of the Lagrange multiplier l can then be

numerically obtained upon inverting the constraint (6)Xnc

n¼1

nln qintra
n

L3
n

¼ rh
N

V
: (13)

Substitution of eqn (11) into the general expression of the free

energy (10) leads to18

bFtot

V
¼
XN

n¼1

�
�rn ln

�
�rnL3

n

�
� �rn

	
þ
XN

n¼1

�rnb f intra
n : (14)

B. Chemical equilibrium

The above result (14) can be used to compute chemical equilib-

rium among different clusters. Indeed, on defining mn as the

chemical potential associated to the n-th cluster, we have

bmn ¼
vðbFtotÞ

vNn

¼ vðbFtot=VÞ
vrn

¼ ln
�
rnL3

n

�
þ b f intra

n (15)

We can then impose the equilibrium condition mn¼ nm1 to obtain

f intra
n ¼ nf intra

1 þ kBT ln

"
rnL3

n�
r1L3

1

�n

#
(16)

which can be used to compute the internal free energies, given the

cluster distributions. An alternative procedure, based on the

explicit computation of the internal energy per particle within

each cluster, will be discussed in Section V.

C. Connection with Wertheim association theory

An interesting comparison can be found with Wertheim first-order

association theory12 which is frequently used in this context (see e.g.

ref. 19 and references therein). Within this theory, the bond

contribution to the Hemholtz free energy can be computed from

a chemical equilibrium equation under the condition that only

a suitable subset of diagrams are included in the cluster expansion

and each attractive site is engaged at most in a single bond, the limit

of a single-bond per patch in the language of the present paper.
This journal is ª The Royal Society of Chemistry 2011
Consider a system formed by only monomers and dimers, that

is n¼ 1,2. Then from eqn (12) and condition (6) limited to n¼ 1,2

we can obtain a quadratic equation in the Lagrange multiplier l.

The only acceptable root can then be substituted into eqn (12) for

n¼ 1 to obtain the fraction of patches that are not bonded, that is

the fraction of monomers

�r1

r
¼ 2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8r�D

p : (17)

Using numerical simulations for n ¼ 1,2 clusters we are able to

determine the energy per particle in an n-cluster as a function of

temperature and thereby determine the excess free energy of the

isolated cluster by integration where �D ¼ (qintra
2 /[qintra

1 ]2)(L2
1/L2)3.

This equation is identical to the result from Wertheim’s theory

(see eqn (10) in ref. 19) when translated into the appropriate

language. Therefore, the present formulation is equivalent to

Wertheim’s theory provided that temperatures are sufficiently

low (see ref. 19 for further details) and the condition single-bond

per binding site is satisfied. On the other hand, the present theory

allows for an arbitrary amplitude of the patch thus including the

possibility of multiple bonding.

Note that while in the case of only two clusters (n ¼ 1,2)

requires the solution of a system of 2 coupled equations that

results into a quadratic equation for l, a general case with clus-

ters up to the total number of clusters nc clearly requires the

solution of a system of nc coupled equation, a task that—in

general—has to be carried out numerically.
D. Effective hard sphere inter-cluster interaction

While simple, the ideal gas is clearly rather unphysical even at

very low densities. A more physical description amounts to

consider all n-particle clusters as identical hard spheres with

diameters sn and packing fractions hn ¼ (p/6)rns3
n. A rather

precise approximate solution in this case is provided by the

Boubl�ık, Mansoori, Carnahan, and Starling expression,20,21 but

for simplicity we here only consider the case sn ¼ s0 for all n,

whose thermodynamics is well described by the simple mono-

disperse Carnahan–Starling formulae.22 This can be motivated

by the fact that only a minor variation is found in the linear

cluster dimensions (see Table 1 and discussion further below) and

by the observation that instantaneous size variations of an n-

particle cluster are comparable with the variation of the average

cluster radii for n within a few tens. It is then attempting to

approximate the correlations between different shaped pop-

ulations of clusters by a single effective one-component hard

sphere system to take care of the average inter-cluster correla-

tions. Then

Qinter({Nn},V,T) ¼ Qideale
�bFcs (18)

where Qideal is given in eqn (11) and Fcs is the Carnahan–Star-

ling23 excess free energy

bFcsðhtÞ
Nt

¼ htð4� 3htÞ
ð1� htÞ

2
; (19)

where Nt ¼
Pnc

n¼1Nn is the total number of clusters and

ht ¼
Pnc

n¼1hn is the total cluster packing fraction. Following the

same steps as before one obtains
Soft Matter
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Table 1 The low temperatures internal energy per particle of the clusters
with up to 12 particles when D ¼ 0.5s. Also shown is the gyration radius
Rg defined in eqn (27)

N U/n U Rg

1 0 0 0
2 �0.5 �1 �1/2
3 �1 �3 �1/O3
4 �1.5 �6 0.83
5 �2.0 �10 0.76
6 �2.50 �15 0.75
7 �2.71 �19 0.91
8 �2.88 �23 0.93
9 �3.10 �28 0.96
10 �3.20 �32 1.00
11 �3.36 �37 1.04
12 �3.42 �41 1.08
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�rn ¼ ln qintra
n

L3
n

GðhtÞ; (20)

where we have introduced the function

GðxÞ ¼ exp

"
� xð8� 9xþ 3x2Þ

ð1� xÞ3

#
: (21)

For the free energy one obtains from eqn (10)

bFtot

V
¼
Xnc

n¼1

�
�rnln

�
�rnL3

n

�
� �rn

	
þ
Xnc

n¼1

�rnb f intra
n þ bFcsð�htÞ

V
; (22)

that differs from the ideal gas counterpart eqn (14) only for the

last additional term. Clearly one recovers the ideal gas in the limit

�rn / 0 as it should. In order to find the correct solution for this

system of equation it is important to choose the one that is

continuously obtained from the solution of the ideal gas case at

s0 / 0.
E. Thermodynamic quantities

It proves convenient to express our analysis in terms of reduced

partition functions Z rather than of the full partition functions

Q used in Section III. This can be conveniently done by the

definitions

Qinter ¼
Ync

n¼1

Zinter

L3Nn

n

; qintra
n ¼ L3

nZintra
n : (23)

Given the partition function Qtot we can determine the Car-

nahan–Starling excess free energy

bF exc ¼ �ln

�
Qtot

V N

�
; (24)

the internal energy per particle

u ¼ 3

2b
þ 1

N

vðbF excÞ
vb

¼ 3

2b
�
Xnc

n¼1

Nn

N

v
�
lnZintra

n

�
vb

¼ 3

2b
þ
Xnc

n¼1

n
Nn

N
unðTÞ; (25)

where un is the internal energy per particle of an n-cluster (see

Section V). We can also determine the compressibility factor
Soft Matter
bP

r
¼ 1

r

vðlnQtotÞ
vV

¼ 1

r

vðlnZinterÞ
vV

¼ 1þ ht þ h2
t � h3

t

ð1� htÞ
3

: (26)

V. Computation of the intra-cluster free energy

The simulation were carried out following the same prescription

used for the bulk fluid phases.9,10 Two kind of moves for each

chosen particle—a random translation and a random rotation—

were allowed, following standard recipes24 and a standard

Metropolis25 algorithm was used to compute the energy per

particle of the system of n particles.

Typical runs were of about 5� 106 steps, one step consisting of

n particles moves.

We studied first the case of clusters in the neighborhood of

n ¼ 10 particles which is expected to be sufficient to observe the

micellization process due to the single layer clustering.10

To this aim we started with an initial configuration of two

pentagons with particles at their vertices juxtaposed one above

the other. The two pentagons are parallel to the x–y plane, have

the z axis passing from their centers, and are one at z ¼ +s/2 and

the other at z ¼ �s/2. The unit vectors attached to the spheres

were chosen to connect the origin to the center of the given

sphere. We obtained the clusters with a lower number of particles

by simply deleting particles and obtained the clusters with

a higher number of particles by adding on the z axis a particle just

above the upper pentagon and/or just below the lower one.

However the results of the simulations are independent of the

initial configuration chosen.

In order to compare with previous studies,9 we consider the

D ¼ 0.5s case first.

We performed the simulations of the isolated cluster and we

have explicitly tested that results coincide with the calculation

stemming for the bulk low density Janus fluid from which we

extract cluster informations by taking all the clusters found with

the same size and averaging their properties.

During the simulation we allow all possible moves but we do

not count the configurations which are not topologically con-

nected, i.e. those configurations where it is not possible to go

from one sphere to all the others through a path; the path being

allowed or not to move from one particle 1 to particle 2

depending whether F(12) has value �3 or not.

At high temperatures the limiting value for the energy per

particle is �3(n � 1)/n. At low temperature (kBT/s < 0.15) the

clusters tend to freeze into certain energy minima. This can be

improved by ‘‘regularizing’’ the angular part of the Kern–Frenkel

potential into J(n̂1, n̂2, r̂12) ¼ {tanh[l(n̂1$r̂12 � cosq0)] +

1}{tanh[l(�n̂2$r̂12 � cosq0)] + 1}/4 and gradually increase

l starting from 1/2 during the simulation up to values where there

is no actual difference between the continuous potential and the

original stepwise one. This allowed us to reach the configuration

with the real minimum energy with a certain confidence.

In Fig. 1 we depict the relative cluster population Nn/N

as a function of the reduced density rs3 in the ideal-gas case for

n # 12 and two different temperatures kBT/3 ¼ 0.25 (top panel)

and kBT/3 ¼ 0.30 (bottom panel). Temperature values were

selected to bracket the expected critical temperature kBT/3 z
0.28 on transition from a vapor phase mostly formed by
This journal is ª The Royal Society of Chemistry 2011
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Table 2 Fit to a Gaussian of the energy per particle as a function of the
temperature (see eqn (28)). cn values are common to the three cases

D ¼ 0.5s D ¼ 0.25s D ¼ 0.15s

n an bn an bn an bn cn

2 0 1 0 1 0 1 �0.50
3 �0.337 3.880 �0.339 6.905 �0.346 10.780 �0.67
4 �0.778 4.670 �0.771 7.502 �0.774 7.975 �0.75
5 �1.226 5.162 �1.025 5.890 �1.034 9.366 �0.80
6 �1.700 5.600 �1.381 7.361 �1.207 9.214 �0.83
7 �1.899 5.263 �1.423 6.767 �1.480 8.277 �0.86
8 �2.064 5.080 �1.520 4.179 �1.551 8.503 �0.88
9 �2.301 5.478 �1.579 4.367 �1.681 10.160 �0.89
10 �2.394 5.509 �1.725 4.271 �1.551 9.419 �0.90
11 �2.556 5.644 �1.846 4.829 �1.696 9.755 �0.91
12 �2.598 6.077 �1.854 5.723 �1.814 10.567 �0.92
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monomers (at higher temperatures) and a vapor phase with

predominant clusters (at lower temperatures) in the chosen range

of densities.10

As expected, we observe a predominance of monomers and

higher order clusters at low and high density respectively. No

significant difference is apparent for the results of the two

temperatures. This is most likely due to the ideal-gas nature of

the interacting part and can be improved by using the Carnahan–

Startling fluid description, as we shall see.

Next we consider the internal energy per particle un ¼ hUi/n
within the n-th cluster along with the gyration radii defined by

R2
g ¼

Xn

j¼1




rj � rav




2=n (27)

with rav ¼
Pn

j¼1rj=n, rj being the position of the j-th particle.

Results for both internal energy and gyration radii for such

configurations are tabulated in Table 1. This provides an addi-

tional insight on the morphologies of the obtained clusters, in

particular on the relative weak n dependence of the linear size of

the obtained clusters.

The results for un as a function of temperature are reported in

Table 2 and can be conveniently fitted by a Gaussian profile

un(T) ¼ anexp[�bnT2] + cn, (28)

where the fitting parameters an, bn, and cn for the n ¼ 2,3,.,12

clusters (u1 ¼ 0 by definition) can also be found in Table 2.

From this expression we can determine the excess free energy

of the cluster fex,intra
n ¼ bFex,intra/n by thermodynamic integration
Fig. 1 Values of Nn/N, n ¼ 1,2,3,.,12 as a function of the density for

D¼ 0.5s and kBT/3¼ 0.25 (top panels) and kBT/3¼ 0.30 (bottom panels).

In both cases curves for n ¼ 1,.,6 are on the left panels and those

associated with n ¼ 7,.,12 are on the right panels. All plots have been

reported on the same scale for a better comparison. Clusters associated

with values n ¼ 4,5 have curves lying below the lower limit of 0.001

concentration in the case kBT/3 ¼ 0.25.

This journal is ª The Royal Society of Chemistry 2011
f ex;intra
n ðbÞ ¼

ðb

0

dxunð1=xÞ (29)

So that fintra
n ¼ fex,intra,

n + fid,intra
n with the ideal free energy

contribution being

fid,intra
n (b) ¼ 3lnLn + (lnn!)/n � lny0, (30)

where y0 ¼ ps3
0/6 is the volume of one n-cluster, and with the

excess part given by

f ex;intra
n ¼ cnbþ an

ffiffiffiffiffi
bn

p 8><>: e�bn=b2ffiffiffiffiffiffiffiffiffiffiffiffi
bn=b2

q þ
ffiffiffi
p
p �

erf

� ffiffiffiffiffiffiffiffiffiffiffiffi
bn=b2

q �
� 1

�9>=>;:
(31)

The intra-cluster partition function is then Zintra
n ¼ yn

0e
�nfex,intra

n (of

course Zintra
1 ¼ y0). As anticipated we here choose sn ¼ s0, for all

n, where s0 is the only undetermined parameter in the theory.
VI. Additional results

A. Carnahan–Starling results

In this case the theory depends upon the average diameter of

a cluster s0. This is obtained by the requirement that the Car-

nahan–Starling results best match MC results for the bulk

simulations.

To this aim, we consider Monte Carlo results at rs3 ¼ 0.01 on

the vapor phase, for the distribution of the cluster sizes, with our

theory. This is depicted in Fig. 2 where we compare the Carna-

han–Starling approximation with the MC data for the distribu-

tion of cluster sizes at decreasing values of temperatures starting

from kBT/3 ¼ 0.5 which provides a good match with MC results

for s0 z 2.64s. This value is then used in all subsequent calcu-

lations.

It is important to remark that, in order to find the correct

solution for this system of equations, it is important to choose the

one that is continuously obtained from the solution of the ideal

gas case at s0 / 0.

At lower temperatures the discrepancy with the MC data for

the vapor increases. This was to be expected in view of the fact

that the two-layer vesicles (n-clusters with n¼ 40) contribution to
Soft Matter
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Fig. 2 Comparison between the MC data (points) and our calculations

using the effective one component hard sphere inter-cluster partition

function within the Carnahan–Starling approximation for s0 ¼ 2.64s

(lines), for Nn/N, n ¼ 1,2,3,.,12 as a function of the clusters size n at

rs3 ¼ 0.01, D ¼ 0.5s, and various temperatures. Also shown is the ideal

gas approximation.
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the vapor phase, and not included in the present computation,

becomes increasingly important.10 The agreement could be

clearly improved by allowing a temperature dependence of the

effective cluster diameter s0, but we have chosen to keep s0 fixed

to maintain a clear control of the approximations involved in our

approach.

In Fig. 3 (top panel) we show the resulting cluster distribution

for the Nn/N as a function of density for a temperature (kBT/3 ¼
0.27) at the onset of the expected critical micelle concentration.10

Unlike the previous case with an ideal gas, there is now a clear
Fig. 3 Values of Nn/N, n ¼ 1,2,3,.,12 as a function of the density for

kBT/3 ¼ 0.27 (top panels). Clusters with n ¼ 1,.,6 are on the left, those

with n ¼ 7,.,12 on the right. The bottom panels depict the monomer

concentration r1s3 as a function of the total density rs3 for decreasing

temperatures. The result of the present approach (left) is contrasted with

MC simulations (right). All results refer to the D¼ 0.5s case with a cluster

diameter s0 ¼ 2.64s.

Soft Matter
predominance of the n z 10 clusters in the whole concentration

range. Additional insights can be obtained by plotting the

monomer density r1s3 versus the total concentration rs3 for

decreasing temperatures, as reported in the bottom panels of the

same figure, where the result of the present approach is con-

trasted with bulk numerical simulations of the same quantity.10

This clearly shows the onset of a critical concentration where

clusterization becomes the predominant mechanism at each

temperature (this can be obtained by extrapolating the flat part

of the curves to the vertical axis).

In order to assess the range of reliability of our results, we have

also attempted to include in the theory all clusters of size up to 20

particles. Fig. 4 shows how the theory compares with the MC

results at kBT/3 ¼ 0.4 for the distribution of the cluster sizes.

Note that the vertical axis spans about 8 order of magnitudes.

Here we used a slightly different value s0 z 2.92s for the cluster

diameters. Our theory nicely follows the MC data for the vapor

phase up to n # 12. For larger clusters discrepancies begin to

show up most likely due to the fact isolated clusters tend to

frequently disaggregate during the simulation thus providing

a very low acceptance ratio. As anticipated, for thes larger cluster

sizes, a full simulation of the bulk vapor phase begins to be

competitive with the present methodology, and this is the main

reason why, in the remainder of the paper, we only consider

a mixture of n-clusters with n # 12.

As remarked, the present theory depends upon a free param-

eter (the average cluster diameter s0) that is computed by a best

fit with the bulk MC simulations.

Fig. 5 displays the sensitivity of some of the computed quan-

tities to the choice of the average cluster diameter s0/s. In

particular, we have considered the compressibility factor bP/r,

the internal energy per particle u ¼ U/N and the reduced free

energy per particle ln(Qtot)/N. In all cases, there is a non-negli-

gible dependence on the s0/s value indicating the importance of

selecting the correct effective cluster diameter. This could be

improved by considering a distribution of cluster diameters.

Notice that as s0 increases the packing fraction of the clusters

ht quickly exceeds unity, thus limiting the possible range of
Fig. 4 Comparison between MC data and cluster theory using

the Carnahan–Starling approximation (for s0/s ¼ 2.92) for Nn/N,

n ¼ 1,2,3,.,20 as a function of the clusters size n at kBT/3 ¼ 0.4,

rs3 ¼ 0.01, and D ¼ 0.5s.

This journal is ª The Royal Society of Chemistry 2011
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Fig. 6 Compressibility factor as predicted by the Carnahan–Starling

(s0 ¼ 2.64s) cluster theory (top panel). In the bottom panel we compare

the MC data and the Carnahan–Starling cluster theory (same diameter as

above) for the excess internal energy per particle for three different values

of temperatures. In all cases D ¼ 0.5s.

Fig. 5 Values for the compressibility factor, the internal energy per

particle, and the logarithm of the total partition function as a function of

the n-cluster diameter s0/s at rs3 ¼ 0.01, kBT/3 ¼ 0.5, and D ¼ 0.5s.

This journal is ª The Royal Society of Chemistry 2011
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acceptance for the cluster diameter. Similarly, in Fig. 6 we report

the compressibility factor and the excess internal energy per

particle. The excess internal energy is compared with the MC

data for the vapor phase.9
B. Prediction for a different range of the square well

So far, we have considered the case where the range of interaction

(the width of the square well) D was 50% of the particle size s.

This is the value which has been exploited in details in past MC

studies of the bulk Janus fluid.9,10 As this range decreases, typical

relevant temperatures decrease and simulations become

increasingly more demanding from the computational point of

view to equilibrate. It is then not surprising that no results have

been yet reported in the literature for these ranges. On the other

hand, these are the ranges most frequently encountered in the

experiments,26 and this is where the usefulness of our method can

be assessed.

We have then repeated the calculations for D/s ¼ 0.25, that is

half of previous value.

Fig. 7 reports the cluster distributions for the ideal and the

Carnahan–Starling fluids (lower temperatures), the counterparts

of Fig. 1 and 3. Concentrations of the n-clusters are now shifted

towards higher densities with respect to the case with the twice as

wide range, as expected. Also now the roles of the 10-cluster and

the 11-cluster are inverted with respect to before. This means that

lower attractive range provides, on average, smaller stable clus-

ters, a results that can be understood on an intuitive basis.

We also found that the thermodynamic quantities considered

above are only marginally affected by the reduction of the width

well in the considered range of densities and temperature.
Fig. 7 Cluster distribution in the case of D ¼ 0.25s. The top panels

report the ideal gas result at kBT/3 ¼ 0.25 (n ¼ 1,.,6 on the left and n ¼
7,.,12 on the right). This is the same as Fig. 1. The bottom panels depict

with the same distribution of curves the results obtained with the Car-

nahan–Starling approximation at kBT/3 ¼ 0.27 which is the counterpart

of Fig. 3.

Soft Matter
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Fig. 8 Same as Fig. 7 for D ¼ 0.15s.
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We have also considered the case of D ¼ 0.15s. From Fig. 8 it

is apparent that the concentrations of the n-clusters are once

again shifted towards higher densities with respect to the case

with D ¼ 0.25s. Also now the 7- and 8-clusters seems to be the

ones favoured at T ¼ 0.27 in a range of densities in a neighbor-

hood of rs3 ¼ 0.1. This confirms the trend found in the case of

D ¼ 0.25s.

VII. Conclusions

In this paper, we have constructed a cluster theory for the vapor

of Janus fluid. This is an approach that is complementary to

previous studies based on highly demanding MC simulations,9,10

with the aim of providing a detailed description of the vapor

phase in view of its remarkable unusual micellization properties.

The main idea behind the present approach is to consider the

vapor phase as formed by clusters, containing an increasing

number of particles, that are weakly interacting among each

other so that simple fluid models—such as ideal gas or hard

spheres—can be used to mimick their physical properties. The

internal degrees of freedom of each clusters are instead obtained

through a direct MC simulation of a single isolated cluster,

a much simpler task as compared to the bulk simulation, and

a procedure akin to those used in the framework of simple

fluids16 is then used to combine the two calculations and obtain

the full description of the system.

It is worth noticing that, in the ideal-gas case, a similar

procedure has also been already implemented in micellization

theories by several groups,27,28 and the results we obtain in the

present context are quite consistent with those.

There are two basic reasons why we expect this approach to be

valuable. First because previous full bulk simulations showed

micelles to be only weakly interacting in the vapor density range

and hence a simple description for the inter-cluster part is

expected to be sufficient. Second, because it has been observed

that the vapor properties are mostly dominated by particular

cluster sizes corresponding to n z 10 and n z 40 particles, so
Soft Matter
only a limited number of cluster sizes is necessary to obtain

a complete description.

In the present work, we have considered clusters up to 12

particles and compared the ideal-gas description with the

description of a gas of hard-spheres, mimicking the original

clusters and with an effective cluster diameter s0, using the

Carnahan–Starling approximate description. The value of s0 has

been obtained by a matching of the results for the internal energy

with full bulk MC simulations. A good agreement was found at

kBT/3 ¼ 0.5 and at densities rs3 ¼ 0.01 when s0 z 2.64s. Results

from the Carnahan–Starling theory is found to be far superior as

compared to the ideal-gas description, thus emphasizing the

importance of inter cluster correlations in the vapor phase.

We also considered higher sizes clusters (of up to 20 particles)

but the agreement with the simulations for the larger sizes

becomes less satisfactory. The theory becomes less and less

accurate as oscillations in the behavior of the concentrations of

the big clusters with size appear. This may be due to the difficulty

in an accurate determination of the internal energy of isolated big

clusters. In this respect in order to be able to observe the vesicles

(clusters of around 40 particles9) phenomenology we certainly

need to include additional insights to avoid the task of the

solution of a system of about 40 coupled equations. An addi-

tional difficulty consists in the fact that in this case the single

diameter effective approximation used for all clusters up to 12 in

the present study will no longer be realistic, not even at the

simplest possible level of description. Both these problems could

be tackled by focussing only on clusters bracketing the inter-

esting ones (n z 10 and n z 40 in the present case).

We showed that in accord with the simulation results of ref. 9,

at temperatures around kBT/3 ¼ 0.27 there is a gap of densities

where the number of clusters of 11 particles (micelles) surpasses

the number of any other cluster. This gap shrinks as we increase

the temperature.

The determined approximation to the partition function of the

vapor phase of the Janus fluid can then be used to compute

various thermodynamical quantities.

We found reasonable quantitative agreement between the

Monte Carlo data of ref. 9 and our theory for the excess internal

energy of the vapor phase of the Janus fluid. We additionally

computed the compressibility factor for which no simulation

data are yet available.

Having validated the model against numerical predictions for

D ¼ 0.5s we pursued the analysis for lower widths of the well,

values that are closer to the experimental range of interactions.26

In view of the overall decrease in the attractions, characteristic

critical temperatures also decrease, thus making numerical

simulations increasingly demanding from the computational

point of view.

For the case of D¼ 0.25s we produced new predictions for the

concentrations, the compressibility factor, and the internal

energy per particle as a function of density. In particular we saw

that as the range of the attraction diminishes the Janus fluid

prefers to form clusters of a lower number of particles.

Consistent results are also found for the case of D ¼ 0.15s,

a value which is rather close to those used in experiments.

An attempt to push the cluster theory to bigger cluster sizes

showed that the theory becomes less and less accurate as oscil-

lations in the behavior of the concentrations of the big clusters
This journal is ª The Royal Society of Chemistry 2011
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with size appear. This may be due to the difficulty in an accurate

determination of the internal energy of isolated big clusters. In

this respect in order to be able to observe the vesicles (clusters of

around 40 particles9) phenomenology we certainly need to

include additional insights to avoid the task of the solution of

a system of about 40 coupled equations. An additional difficulty

consists in the fact that in this case the single diameter effective

approximation used for all clusters up to 12 in the present study

will no longer be realistic, not even at the simplest possible level

of description. Both these problems could be tackled by focus-

sing only on clusters bracketing the interesting ones (n z 10 and

n z 40 in the present case).

Two additional perspectives will be the subject of a future

study. First the dependence on coverage c could also be tackled

using the present approach, and this would provide invaluable

information on the micellization mechanism for small coverage,

a task that is still out of reach of direct numerical simulations.

Secondly, it would be extremely interesting to address the issue of

the reentrant phase diagram and the (possible) existence of an

additional liquid–liquid critical point. This has been recently

attempted in a very recent preprint,29 using a monomer–cluster

equilibrium theory in the same spirit as that presented here.
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