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Abstract: I propose a possible way to introduce the effect of temperature (defined through the virial
theorem) into Einstein’s theory of general relativity. This requires the computation of a path integral
on a ten-dimensional flat space in a four-dimensional spacetime lattice. Standard path integral Monte
Carlo methods can be used to compute this.
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1. Introduction

A still unsolved problem in physics is the formulation of a well -defined theory
unifying gravity and quantum mechanics. In this paper, we propose a possible way to
estimate thermal statistical effects on the fabric of Einstein’s spacetime. Once an action for
the Einstein field equations of general relativity is found, we can use it to construct a path
integral formulation for statistical gravity which may able to describe quantum effects at low
temperatures. Recent progress on successful affine quantization [1] of euclidean relativistic
scalar field theories may be important in making this path integral mathematically well-
defined and numerically accessible, for example, through the usual path integral Monte
Carlo method [2].

Some recent developments on gravity-quantum physics(statistical physics) interplay
include the following:

On 15 August 2016 Jeff Steinhauer, an experimental physicist at the Technion-Israel
Institute of Technology in Haifa, created an artificial black hole that seemed to emit ‘Hawk-
ing radiation’ on its own, from quantum fluctuations that emerge from its experimental
set-up [3]. Using a Bose–Einstein condensate (BEC) of rubidium cold atoms, he created an
event horizon by accelerating the atoms until some were travelling at more than 1 mm/s—a
supersonic speed for the condensate. On one side of their acoustical event horizon, where
the atoms move at supersonic speeds, phonons became trapped. Furthermore, when Stein-
hauer took pictures of the BEC, he found correlations between the densities of atoms that
were at an equal distance from the event horizon but on opposite sides. This demonstrates
that pairs of phonons were entangled – a sign that they originated spontaneously from the
same quantum fluctuation and that the BEC was producing Hawking radiation.

Although quantum objects, like the proton, are not conventionally considered within
a unified physics framework that includes gravity, it is significant to note that it has
recently been discovered that these particles are more dense than massively compact objects
like neutron stars. Scientists at the Jefferson Lab have measured pressures of 100 billion
quintillion pascals at the proton’s core—about ten times greater than the pressure inside
neutron stars. These are the same pressure gradients computed by Haramein et al. [4], from
first-principle considerations alone, on quantum vacuum fluctuations and gravitational
effects at the proton scale, suggesting spacetime curvature alone is the source of the mass
and force. The measurements by the Jefferson Lab team were achieved through innovative
experiments that used pairs of photons to simulate gravitational interactions, allowing
researchers to map the internal forces and pressures of the proton for the first time. The
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team found two distinct regions of specific pressures, like two phases within the proton,
which were nearly exactly described in the study “The Origin of Mass and the Nature of
Gravity” [4] by Haramein and the research team at the International Space Federation. This
is a perfect example of how empirical research can reveal when a theory is on the right
track, like when the Muonic measurements of the proton radius confirmed Haramein’s
prediction of a smaller proton radius than what was expected by the Standard Model, and
now, experimental data is revealing that, indeed, the mass-energy and pressures within
the proton are sufficient and that spacetime curvature must be a major consideration in the
mass and binding forces that are observed for nucleons.

In 1974, Stephen Hawking predicted that quantum effects in the proximity of a black
hole lead to the emission of particles and black hole evaporation. At the very heart of this
process lies a logarithmic phase singularity which leads to the Bose–Einstein statistics of
Hawking radiation. An identical singularity appears in the elementary quantum system
of the inverted harmonic oscillator. In Ref. [5], the authors report the observation of the
onset of this logarithmic phase singularity emerging at a horizon in phase space and giving
rise to a Fermi–Dirac distribution. For this purpose, they utilize solitonic surface gravity
water waves and freely propagated an appropriately tailored energy wave function of the
inverted harmonic oscillator to reveal the phase space horizon and the intrinsic singularities.
Due to the presence of an amplitude singularity in this system, the analogous quantities
display a Fermi–Dirac rather than a Bose–Einstein distribution.

In this work, we explore the extreme consequences of the belief that the Wick rotation,
which allows us to go back and forth between quantum physics and statistical physics
in a non-general relativity framework, will continue to do so in a (quantum) general
relativity framework as well. This belief is based only on the grounds of a mathematical
extension, but it allows us to reach the amusing physical interpretation of a fabric of space–
time (the main actor of the new theory) which has itself thermal fluctuations. We will in
fact introduce an effective temperature (field) and we will show its relationship with the
absolute temperature of thermodynamics in the non-quantum non-relativistic limit.

2. Einstein’s Field Equations from a Variational Principle

Sempre caro mi fu quest’ermo colle,
e questa siepe, che da tanta parte
dell’ultimo orizzonte il guardo esclude.
Giacomo Leopardi “L’ Infinito”

The Einstein–Hilbert action in general relativity is the action that yields the Einstein
field equations through the stationary-action principle. With the (− + ++) metric signa-
ture, the gravitational part of the action is given as follows [6,7]:

S =
1

2κ

∫
R
√
−g d4x, (1)

where g = det(gµν) is the determinant of the metric tensor matrix,
√−g is the scalar

density,
√−g d4x is the invariant volume element, R is the Ricci scalar, and κ = 8πGc−4 is

the Einstein gravitational constant (G is the gravitational constant and c is the speed of light
in vacuum). If it converges, the integral is taken over the whole spacetime. If it does not
converge, S is no longer well-defined, but a modified definition where one integrates over
arbitrarily large, relatively compact domains, still yields the Einstein equation as the Euler–
Lagrange equation of the Einstein–Hilbert action. The action was proposed [6] by David
Hilbert in 1915 as part of their application of the variational principle to a combination of
gravity and electromagnetism.
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The stationary-action principle then tells us that to recover a physical law, we must
demand that the variation of this action with respect to the inverse metric be zero, yielding
the following:

0 = δS =
∫ [

1
2κ

δ(
√−gR)
δgµν

]
δgµν d4x (2)

=
∫ [

1
2κ

(
δR

δgµν +
R√−g

δ
√−g
δgµν

)]
δgµν

√
−g d4x. (3)

Since this equation should hold for any variation of δgµν, it implies that

δR
δgµν +

R√−g
δ
√−g
δgµν = 0 (4)

is the equation of motion for the metric field.
The variation of the Ricci scalar in Equation (4) follows from varying the Riemann

curvature tensor, and then the Ricci curvature tensor. The first step is captured by the
Palatini identity as follows:

δRσν ≡ δRρ
σρν =

(
δΓρ

νσ

)
;ρ
−

(
δΓρ

ρσ

)
;ν

. (5)

Using the product rule, the variation of the Ricci scalar R = gσνRσν then becomes,

δR = Rσνδgσν + gσνδRσν

= Rσνδgσν +
(

gσνδΓρ
νσ − gσρδΓµ

µσ

)
;ρ

,
(6)

where we also used the metric compatibility gµν
;σ = 0, and renamed the summation indices

(ρ, ν) → (µ, ρ) in the last term. When multiplied by
√−g, the term

(
gσνδΓρ

νσ − gσρδΓµ
µσ

)
;ρ

becomes a total derivative, since for any vector Aλ and any tensor density
√−g Aλ,

we have √
−g Aλ

;λ =
(√

−g Aλ
)

;λ
=

(√
−g Aλ

)
,λ

. (7)

By Stokes’ theorem, this only yields a boundary term when integrated. The boundary
term is in general non-zero, because the integrand depends not only on δgµν but also on
its partial derivatives ∂λ δgµν ≡ δ ∂λgµν. However, when the variation of the metric δgµν

vanishes in a neighbourhood of the boundary, or when there is no boundary, this term
does not contribute to the variation of the action. Thus, we can forget about this term and
simply obtain

δR
δgµν = Rµν. (8)

at events not in the closure of the boundary.
The variation of the determinant in Equation (4) requires Jacobi’s formula, and the

rule for differentiating a determinant is as follows:

δg = ggµνδgµν. (9)

Using this we get

δ
√
−g = − 1

2
√−g

δg =
1
2
√
−g

(
gµνδgµν

)
= −1

2
√
−g

(
gµνδgµν

)
(10)
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In the last equation we used the fact that from the symmetry of the metric tensor and
gµνgνµ = δ

µ
µ = 4 follows

gµνδgµν = −gµνδgµν (11)

Thus, we conclude that

1√−g
δ
√−g
δgµν = −1

2
gµν. (12)

Now that we have all the necessary variations at our disposal, we can insert Equations (12)
and (8) into the equation of motion (4) for the metric field to obtain

Gµν ≡ Rµν −
1
2

gµνR = 0, (13)

which is the Einstein field equation in vacuum.
Moreover, since Einstein’s tensor Gµν appears from a variational principle as follows:

δS
δgµν =

1
2κ

√
−g

(
Rµν −

1
2

gµνR
)
=

1
2κ

Gµν, (14)

its covariant divergence is necessarily zero [7].
Matter or electromagnetic fields will produce a curvature of spacetime. In order to

take this into account, it is necessary to add a term LF as follows:

S =
∫ (

1
2κ

R + LF

)√
−g d4x. (15)

The equations of motion coming from the stationary-action principle now become

Gµν ≡ Rµν −
1
2

gµνR = κTµν, (16)

where

Tµν =
−2√−g

δ(
√−gLF)

δgµν = −2
δLF

δgµν + gµνLF, (17)

is the stress-energy tensor and κ = 8πG/c4 has been chosen such that the non-relativistic
limit yields the usual form of Newton’s gravity law.

3. Path Integral Formulation of Statistical Gravity

[. . .] e il suon di lei. Così tra questa
immensità s’annega il pensier mio:
e il naufragar m’è dolce in questo mare.
Giacomo Leopardi “L’ Infinito”

Then, the action for Einstein’s theory of general relativity is one for a particular field
theory where the field is the metric tensor gµν(x), a symmetric tensor with 10 independent
components, each of which is a smooth function of four variables. We will indicate all these
components with the notation {g}(x). We will also work in euclidean time x0 ≡ ct → ict
so that the metric signature becomes (+ + ++).

The thermal average of an observable O[{g}(x)] will then be given by the follow-
ing expression:

⟨O⟩ =
∫
O[{g}(x)] exp(−υS) D10{g}(x)∫

exp(−υS) D10{g}(x)
, (18)
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so that ⟨1⟩ = 1. Here 1/υ is a positive constant of the dimension of energy times the length,
ct ∈ [0, β] where β = 1/k̃BT̃, k̃B is a Boltzmann constant of dimensions of one divided
by the length and by degree Kelvin, and T̃, an effective temperature in degrees Kelvin.
Since the thermal average involves taking a trace, we must have gµν(t + β/c, x) = gµν(t, x),
where we denote with x ≡ (x1, x2, x3) a spatial point. S is the Einstein–Hilbert action
of Equation (15). We will also require periodic spatial boundary conditions on the finite
volume Ω ⊂ IR3, which is the closest thing to a formal thermodynamic limit. As usual,
we will use D10{g}(x) ≡ ∏x d10{g}(x) and the functional integrals will be calculated
on a lattice using the path integral Monte Carlo (PIMC) method [2]. Moreover we will
choose d10{g}(x) ≡ ∏µ≤ν dgµν(x), where the 10-dimensional space of the 10 independent
components of the symmetric metric tensor is assumed to be flat.

The real metric fields {g} take the values {g}(x) on each site of a periodic 4-dimensional
lattice of lattice spacing a, the ultraviolet cutoff, spatial periodicity L = Na, and temporal
periodicity β = N0a. The metric path is a closed loop on a 4-dimensional surface of a
5-dimensional β-cylinder. We are interested in reaching the continuum limit by taking
L = Na fixed and letting N → ∞ at fixed volume L3. As for the temporal periodicity we
can initially treat it similarly to spatial periodicity, taking β = L and N0 = N. On the
other hand, we can distinguish the two periodicities allowing the effective temperature
T̃ = 1/k̃Bβ to vary so that the number of discretization points for the imaginary time
interval [0, β] will be N0 = β/a. The PIMC simulation (the computer experiment) may use
the Metropolis algorithm [8,9] to calculate the discretized version of Equation (18), which
is a 10N3N0 multidimensional integral. So, clearly, the computational resources needed to
perform a given simulation depend critically on a. We may thus use natural Planck units
c = h̄ = kB = 1. The simulation is started from any initial condition. One MC step consists
of the random displacement of each one of the 10N3N0 independent components of {g}
as follows:

gµν → gµν + (2η − 1)δ, (19)

where η is a uniform pseudo random number in [0, 1] and δ is the amplitude of the
displacement. Each one of these 10N3N0 moves is accepted if exp(−υ∆S) > η, where ∆S
is the change in the action due to the move and is rejected otherwise. The amplitude δ
is chosen in such a way so as to have acceptance ratios as close to 1/2 as possible, and
is kept constant during the evolution of the simulation. One simulation consists of a
large number of p steps. The statistical error on the average ⟨O⟩ will then depend on the
correlation time, τO , necessary to decorrelate the property O which will be determined

as
√

σ2
OτO/[p10N3N0], where σ2

O is the intrinsic variance for O. Our estimate of the path
integrals will be generally subject to three sources of numerical uncertainties as follows:
one due to the statistical error, one due to the spacetime discretization, and one due to
the finite-size effects. Of these, the statistical error scales like P−1/2, where P = p10N3N0
is the computer time, the discretization of spacetime is responsible for the distance from
the continuum limit (which corresponds to a lattice spacing a → 0), and the finite-size
effects stem from the necessity to approximate the infinite spacetime system with one in a
hypertorus of volume L3β.

This makes sense since the Einstein theory does not predict a curvature of spacetime
due to temperature, so it does not consider the virial theorem of statistical physics. Accord-
ing to the virial theorem, the temperature of a portion of spacetime should be related to
kinetic energy which in turn should enter the stress energy tensor and be responsible for
the curvature of spacetime according to Equation (16). Here, we are thinking of LF as a
‘potential energy’ density of interaction of the metric field. Therefore we should take care of
the effect of temperature in some other way. Here, we propose using the usual formalism of
statistical physics to estimate the thermal averages ⟨. . .⟩ of observables that depend on the
metric tensor like, for example, the Riemann curvature tensor or the Christoffel symbols.
This requires us to use a path integral over a 10-dimensional space like in Equation (18).
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Then, both the curvature of spacetime and the geodesic equation of motion of a point parti-
cle will be influenced by temperature and one should replace them with their thermally
averaged versions more correctly. In the classical high temperature limit, applying a time
average to the contracted Einstein field Equation (16), −R = κTµ

µ , assuming LF is indepen-
dent of gµν so that Tµ

µ = 4LF, and replacing the time average with the ensemble average
of Equation (18) in the first member, we soon reach (see the Appendix A) the following
relation: −2κ/βῡ = κ

2 ⟨T
µ
µ ⟩t, with ⟨. . .⟩t = limτ→∞

∫ τ
0 . . . dt/τ as the time average, ῡ as

another constant of dimension length squared divided by energy, κ having the dimensions
of length divided by energy, and the stress energy tensor elements having the dimensions
of energy density. This gives a temperature definition of −k̃BT̃ = ῡ

4 ⟨T
µ
µ ⟩t.

In Equation (18), we assumed a constant temperature throughout the whole accessible
spacetime. This can be a too restrictive condition and it might be necessary to think about a
temperature scalar field T̃(x) which gives the value of the temperature in a neighborhood
of a given event x. Actually, we are bound to choose T̃(x) as the temperature in a neigh-
borhood of a given spatial point x since we must require x0 ∈ [0, β(x)]. Furthermore, the
temperature field T̃(x) = 1/k̃Bβ(x) could be available experimentally.

In Equation (18), we assumed that what gives rise to the thermal average is the product
of the 10 independent components of the tensor path integral Iµν =

∫
. . .Dgµν(x). This

may be regarded as a rather arbitrary finding but it gives us something that is numerically
amenable and directly accessible through the Monte Carlo path integral. Moreover it
gives the correct classical high temperature limit ⟨O⟩ → ⟨Oc⟩, where Oc is the value
of the observable temperature at the metric of the solution of the classical Einstein field
Equation (16).

In order to make these arguments precise, and to treat the integral in Equation (18)
correctly, we immediately recognize that it is necessary to split the time component
from the three spatial components in line with the Arnowitt–Deser–Misner (ADM) fo-
liation formalism. In this respect, affine quantization, as explained in Ref. [1], may
become useful.

4. Conclusions

We propose a way to include into Einstein’s general relativity theory the effect of
temperature. This involves the use of a path integral on a ten-dimensional flat space in a
four-dimensional spacetime lattice hypertorus. It may prove necessary to introduce a tem-
perature scalar field function of the position within the spatial volume under examination.
From the definition of the thermal average, we will have that at large temperatures, i.e.,
small β, the quantum effects of statistics on the spacetime fabric will be irrelevant. On the
other hand, the quantum effects will become important at low temperatures, i.e., large β.
This means that the quantum effects are negligible whenever the path in the metric compo-
nents extends over a short imaginary time interval, i.e., the hypertorus ‘radius’ around the
time curled dimension is small and reduces to something like a round closed hyper‘string’
whose thickness varies along its length. We will call our theory the FEBB after the initials
of the surnames of the key contributors of the three main advances in theoretical physics
as follows: Albert Einstein for physics of gravitation, Ludwig Boltzmann for statistical
physics, and Niels Bohr for quantum physics.

The internal consistency of our FEBB theory requires a definition of ‘temperature’ as

T̃ = − ῡ

4k̃B
⟨Tµ

µ ⟩t, (20)

where k̃B is a Boltzmann constant with dimensions of one divided by the length and
degrees Kelvin.

Affine quantization, as explained in Ref. [1], may be useful in making these arguments
precise and for the physical meaning of the factor ῡ.
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We conclude by noting that for an ideal fluid in thermodynamic equilibrium in imag-
inary time Tµ

µ = 5P + ρc2, where P is the pressure and ρ the mass-energy density, the
non-relativistic and non-quantum limits required are as follows:

−4
k̃BT̃

ῡ
− ρc2 → 5nkBT, (21)

where kB and T are the usual Boltzmann constant and absolute temperature, respectively.
Thus, we recover the usual ideal gas equation of state P = nkBT, where P = ⟨P⟩t = ⟨P⟩
is the pressure and n = ⟨n⟩t = ⟨n⟩ is the number density. Note that in Equation (21)
ῡ > 0, ρc2 > 0, and the right hand side is also a positive quantity. However, thanks to
the circular boundary conditions around the imaginary time, we are free to choose β < 0.
Furthermore, this should be the case (Note that

∫ ∞
0 e−αy dy = 1

α when α > 0. So that
[(d/dα)

∫ ∞
0 e−αy dy]/

∫ ∞
0 e−αy dy = − 1

α . Moreover in imaginary time we have a negative
Ricci scalar curvature, i.e., R < 0, so that we must have β < 0) since by tracing the Einstein
field equations we follow, in imaginary time, −R = κTµ

µ > 0, i.e., R < 0. Since in the
non-relativistic limit, c → ∞, we have in imaginary time ρc2 → nm0c2 − n 1

2 m0v2, with m0
as the rest mass of the particles and v as their velocities. We will find the following for the
equipartition theorem ⟨ρc2⟩ → nm0c2 − 3

2 kBT we require, in the non-relativistic (c → ∞)
non-quantum (T̃ → ∞) limits:

4
k̃BT̃

υ̃
− nm0c2 → 7

2
nkBT, (22)

where we called υ̃ = −ῡ. We then see that T̃ should be chosen to be proportional to the
number density n. This is a necessary constraint if we are to maintain our initial belief that
a Wick rotation will take us from quantum gravity to statistical gravity. Our Equation (22)
makes sense, since infinity minus infinity is an indeterminate form and can be equal to a
finite result.

We ask the reader, could our effective (obscure) temperature give some hints in the
search for the dark matter in the universe. Also, could our new theory explain the recent
findings about the tension in the universe [10].
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Appendix A. Derivation of the Virial Theorem

Taking the thermal average of the trace of the Einstein field Equation (16), we find

⟨−R⟩ = κ⟨Tµ
µ ⟩. (A1)

Now we notice that we can evaluate the left hand side as follows:

⟨−R⟩ =

∫
(−R) exp(−υS) D10{g}(x)∫

exp(−υS) D10{g}(x)
. (A2)

In the high temperature limit we will have, from Equation (15),

υS ≈ βῡ

(
1

2κ
R + LF

)
. (A3)
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Note that this is only an approximation and we would more correctly need a 3 + 1
splitting of space from imaginary time. If we do not account for these details, for the time
being, we reach the following result:

⟨−R⟩ ≈ 2κ

ῡ

(d/dβ)
∫

exp(−υS) D10{g}(x)∫
exp(−υS) D10{g}(x)

+ 2κ⟨LF⟩. (A4)

Now, assuming LF is independent from the metric tensor, we find from Equation (17)
that Tµ

µ = 4LF and also

⟨−R⟩ ≈ 2κ

ῡ

(d/dβ)
∫

exp(−υS) D10{g}(x)∫
exp(−υS) D10{g}(x)

+
κ

2
⟨Tµ

µ ⟩ (A5)

= − 2κ

βῡ
+

κ

2
⟨Tµ

µ ⟩, (A6)

where in the last equality, we took profit of the fact that LF is independent from the metric
tensor components {g}, so that its contribution simplifies from the two path integrals in
the numerator and in the denominator (Note that

∫ ∞
0 e−αy dy = 1

α when α > 0. So that
[(d/dα)

∫ ∞
0 e−αy dy]/

∫ ∞
0 e−αy dy = − 1

α . Moreover, in imaginary time, we have a negative
Ricci scalar curvature, i.e., R < 0, so that we must have β < 0).

Incorporating this result into Equation (A1), we reach the following result:

− 2κ

βῡ
+

κ

2
⟨Tµ

µ ⟩ ≈ κ⟨Tµ
µ ⟩, (A7)

or

− 2κ

βῡ
≈ κ

2
⟨Tµ

µ ⟩. (A8)

which gives the desired result upon replacing the thermal average with the time average
introduced in the main text ⟨. . .⟩ → ⟨. . .⟩t.
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