
RAPID COMMUNICATIONS

PHYSICAL REVIEW E 90, 020102(R) (2014)

Gas-liquid coexistence for the boson square-well fluid and the 4He binodal anomaly
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The binodal of a boson square-well fluid is determined as a function of the particle mass through a quantum
Gibbs ensemble Monte Carlo algorithm devised by R. Fantoni and S. Moroni [J. Chem. Phys. (to be published)].
In the infinite mass limit we recover the classical result. As the particle mass decreases, the gas-liquid critical
point moves at lower temperatures. We explicitly study the case of a quantum delocalization de Boer parameter
close to the one of 4He. For comparison, we also determine the gas-liquid coexistence curve of 4He for which
we are able to observe the binodal anomaly below the λ-transition temperature.
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Soon after Feynman rewrote quantum mechanics and
quantum statistical physics in terms of the path integral
[1,2] it was realized that this new mathematical object could
be used as a powerful numerical instrument. The statistical
physics community soon realized that a path integral could be
calculated using the Monte Carlo method [3].

Consider a fluid of N bosons at a given absolute temper-
ature T = 1/kBβ, with kB the Boltzmann constant. Let the
system of particles have a Hamiltonian Ĥ = −λ

∑N
i=1 ∇2

i +∑
i<j φ(|ri − rj |) symmetric under particle exchange, with

λ = �
2/2m, m the mass of the particles, and φ(|ri − rj |) the

pair potential of the interaction between particle i at ri and
particle j at rj . The many-particle system will have spatial
configurations {R}, with R ≡ (r1, . . . ,rN ) the coordinates
of the N particles. The partition function of the fluid can
be calculated [3] as a sum over the N ! possible particle
permutations P of a path integral over many-particle closed
paths X ≡ (R0, . . . ,RP ) in the imaginary time interval τ ∈
[0,β = Pε], discretized into P intervals of equal length ε, the
time step, with RP = PR0 the β-periodic boundary condition.

More recently a grand-canonical ensemble algorithm has
been devised by Boninsegni et al. [4] for the path integral
Monte Carlo method. This paved the way to the development of
a quantum Gibbs ensemble Monte Carlo algorithm (QGEMC)
to study the gas-liquid coexistence of a generic boson fluid [5].
This algorithm is the quantum analog of the Panagiotopoulos
[6] method, which has now been successfully used for several
decades to study first-order phase transitions in classical fluids
[7]. However, as simulations in the grand-canonical ensemble,
the method does rely on a reasonable number of successful
particle insertions to achieve compositional equilibrium. As a
consequence, the Gibbs ensemble Monte Carlo method cannot
be used to study equilibria involving very dense phases. Unlike
previous extensions of the Gibbs ensemble Monte Carlo that
include quantum effects (some [8] only consider fluids with
internal quantum states; others [9] successfully exploit the
path integral Monte Carlo isomorphism between quantum
particles and classical ring polymers, but lack the structure
of particle exchanges which underlies the Bose or Fermi
statistics), the QGEMC scheme is viable even for systems
with strong quantum delocalization in the degenerate regime
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of temperature. Details of the QGEMC algorithm will be
presented elsewhere [5].

In this Rapid Communication we will apply the QGEMC
method to the fluid of square-well (SW) bosons in three spatial
dimensions as an extension of the work of Vega et al. [10]
on the classical fluid. The de Boer quantum delocalization
parameter � = �/σ (mE)1/2, with E and σ measures of the
energy and length scale of the potential energy, can be
used to estimate the quantum mechanical effects on the
thermodynamic properties of nearly classical liquids [11].
We will consider square-well fluids with two values of the
particle mass m: � = 1/

√
50, close but different from zero,

and � = 1/
√

5. In the first case we compare our result with
the one of Vega and in the second case with the one of 4He,
which we consider in our second application. When studying
the binodal of 4He in three spatial dimensions we are able to
reproduce the binodal anomaly appearing below the λ point,
where the liquid branch of the coexistence curve shows a
reentrant behavior.

In our implementation of the QGEMC [5] algorithm we
choose the primitive approximation to the path integral action
discussed in Ref. [3]. The simulation is performed in two boxes
(representing the two coexisting phases) of varying volumes
V1 and V2 = V − V1 and numbers of particles N1 = V1ρ1

and N2 = V2ρ2 = N − N1 with V and N = Vρ constants.
The Gibbs equilibrium conditions of pressure and chemical
potential equality between the two boxes is enforced by
allowing changes in the volumes of the two boxes (the
volume move, q = 5) and by allowing exchanges of particles
between the two boxes (the open-insert move, q = 1, plus the
complementary close-remove move, q = 2, plus the advance-
recede move, q = 3) while at the same time sampling the
closed path configuration space (the swap move, q = 4, plus
the displace move, q = 6, plus the wiggle move, q = 7). We
thus have a menu of seven, q = 1,2, . . . ,7, different Monte
Carlo moves where a single random attempt of any one of them
with a probability Gq = gq/

∑7
q=1 gq constitutes a Monte

Carlo step.
We denote with V the maximum displacement of ln(V1/V2)

in the volume move, with L(p) the maximum particle dis-
placement in box p = 1,2 in the displacement move, and with
Mq < P the maximum number of time slices involved in the
q �= 5,6 move. In order to fulfill a detailed balance we must
choose M1 = M2.
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Letting the system evolve at a given absolute temperature T

from a given initial state (for example, we shall take ρ1 = ρ2 =
ρ), we measure the densities of the two coexisting phases,
ρ1 < ρ and ρ2 > ρ, which soon approach the coexistence
equilibrium values.

First we study a system of bosons in three dimensions
interacting with a square-well pair potential,

φ(r) =
⎧⎨
⎩

+∞, r < σ,

−A, σ � r < σ (1 + 
),
0, σ (1 + 
) � r,

(1)

which, for example, can be used as an effective potential for
cold atoms [12] with a scattering length a = σ (1 + 
)[1 −
tan(σ


√
A/2λ)/σ (1 + 
)

√
A/2λ]. We choose A > 0 as the

unit of energies and σ as the unit of length. We then introduce
a reduced temperature T ∗ = kBT /A and a reduced density
ρ∗ = ρσ 3. When the mass of the boson is very large, i.e.,
λ∗ = λ/(Aσ 2) � 1, we are in the classical limit. The classical
fluid has been studied originally by Vega et al. [10], who found
that the critical point of the gas-liquid coexistence moves at
lower temperatures and higher densities as 
 gets smaller. The
quantum mechanical effects on the thermodynamic properties
of nearly classical liquids can be estimated by the de Boer
quantum delocalization parameter � = √

2λ∗.
During the subcritical temperature runs we register the

densities of the gas, ρg , and of the liquid, ρl (>ρg), phase
(box). When the densities of the two boxes are too close to one
another, we may observe the curves crossing, which implies
that the two boxes exchange identity. It is then necessary to
compute the density probability distribution function, created
using the densities of both boxes. When we are at temperatures
sufficiently below the critical point, this distribution appears to
be bimodal, i.e., it has two peaks approximated by Gaussians.
In some representative cases we checked that the peaks of
the bimodal calculated thusly occur at the same densities as
the peaks of the bimodal obtained from the single density
distribution of the worm algorithm after a careful tuning of the
chemical potential [13].

We study the model with 
 = 0.5 near their classical
limit λ∗ = 1/100 (� ≈ 0.14,a∗ = a/σ ≈ 1.44) and at an in-
termediate case λ∗ = 1/10 (� ≈ 0.45,a∗ ≈ 0.58). We choose
N = 50, ρ∗ = 0.3, L(p) = V

1/3
p /10, V = 1/10, and we take

all Mq equal, adjusted so as to have the acceptance ratios of
the wiggle move close to 50%, g1 = g2 = g3 = g4 = g7 = 1,
g5 = 0.0001, and g6 = 0.1. Moreover, we choose the relative
weight of the Z and G sectors of our extended worm algorithm
C [4] so as to have the Z-sector acceptance ratios close to
50%. We started from an initial configuration where we have
an equal number of particles in boxes of equal volumes at a
total density ρ∗ = 0.3.

All our runs were made of 105 blocks of 105 MC steps with
property measurements every 102 steps [14]. The time needed
to reach the equilibrium coexistence increases with P and in
general with a lowering of the temperature.

If we choose λ∗ = 1/100 and P = 2, Mq = 1 (in this
case the advance-recede move cannot occur), we find that our
algorithm gives results close to the ones of Vega [10] obtained
with the classical statistical mechanics (λ∗ = 0) algorithm
of Panagiotopoulos [6,15]. As we diminish the time step
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FIG. 1. (Color online) Linear fit to the zero time-step limit P →
∞ for T ∗ = 1 and λ∗ = 1/100.

ε∗ = 1/PT ∗ at a given temperature, we can extrapolate to
the zero time-step limit P → ∞ as shown in Fig. 1. We
thus obtain the fully quantum statistical mechanics result for
the binodal shown in Fig. 2, which turns out to exist for
T ∗ � 1. This shows that the critical point due to the effect
of the quantum statistics moves at lower temperatures. For the
temperatures studied the superfluid fraction [16] of the system
was always negligible as in the systems studied in Ref. [9], such
as neon (� ≈ 0.095) and molecular hydrogen (� ≈ 0.276).

In order to extrapolate the binodal to the critical point
we used the law of “rectilinear diameters,” ρl + ρg = 2ρc +
a|T − Tc|, and the Fisher expansion [17], ρl − ρg = b|T −
Tc|β1 (|T − Tc| + c)β0−β1 , with β1 = 1/2 and β0 = 0.3265, and
a,b,c fitting parameters with c = 0 for λ = 0 and c �= 0 for
λ �= 0.
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FIG. 2. (Color online) Binodal for the square-well fluid in three
dimensions. Shown are the classical results of Vega et al. [10] at
λ∗ = 0 and our results in the P → ∞ limit for λ∗ = 1/100,1/10.
In the simulations we used N = 50 and for the extrapolation to the
zero time-step limit up to P = 20 for λ∗ = 1/100 and P = 500 for
λ∗ = 1/10. The curves extrapolating to the critical point are obtained
as described in the text. The solid triangles are the expected critical
points.
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Upon increasing λ∗ to 1/10, the binodal now appears at
T ∗ � 0.008, where we had a non-negligible superfluid fraction
[16] [ρs/ρ ≈ 0.32(2) at T ∗ = 0.006 on the liquid branch]. As
a consequence it proves necessary to use larger P in the ex-
trapolation to the zero time-step limit. Notice also that at lower
temperature it is necessary to run longer simulations due to the
longer paths and equilibration times. We generally expect that
by increasing λ∗ the gas-liquid critical temperature decreases
and the normal-superfluid critical temperature increases. So
the window of temperature for the normal liquid tends to close.

Our second study is on 4He, for which λ∗ = 6.0596. We
now take 1 Å as the unit of length and kB K as the unit of
energy. In this case σ ≈ 2.5 Å, E ≈ 10.9 K, and � ≈ 0.42.
This situation is comparable to a square-well case with λ∗ =
1/10. We use N = 128 and the Aziz HFDHE2 pair potential
[18]

φ(r) =
{
εφ∗(x), r < rcut,

0, r � rcut,
(2)

φ∗(x) = A exp(−αx) −
(

C6

x6
+ C8

x8
+ C10

x10

)
F (x), (3)

F (x) =
{

exp[−(D/x − 1)2], x < D,

1, x � D,
(4)

where x = r/rm, rm = 2.9673, ε/kB = 10.8, A = 0.544
850 4, α = 13.353 384, C6 = 1.373 241 2, C8 = 0.425 378 5,
C10 = 0.178 100, D = 1.241 314, and rcut = 6 Å (here we
explicitly checked that during the simulation the conditions
V

1/3
p > 2rcut for p = 1,2 are always satisfied). In this case

it proves convenient to choose ρ∗ = 0.01, L(p) = V
1/3
p /10,

V = 1/10, g1 = g2 = g3 = g4 = g7 = 1, g5 = 0.0001, and
g6 = 0.1. As for the SW case we observe a decrease in the
width of the coexistence curve ρl − ρg as the number of
time slices increases. We thus work at a small (fixed) time
step ε∗ = 0.002, about 1/1000 of the superfluid transition
temperature, as advised in Ref. [3] to be necessary when
studying helium with the primitive approximation for the
action.

The results for the binodal are shown in Fig. 3. The exper-
imental critical point is at Tc = 5.25 K and ρc = 17.3 mol/l
[19]. Factors explaining the discrepancy with experiment
could be the size error or the choice of the pair potential.
Choosing larger sizes N it is possible to increase rcut and this
shifts the simulated critical temperature to higher values. For
the three-dimensional 4He we expect to have the superfluid
below a λ temperature T ∗

λ = 2.193(6) [4], so our results again
show that our method works well even in the presence of a
non-negligible superfluid fraction. Moreover, as shown by the
points, at the two lowest temperatures we observe the expected
[20] binodal anomaly below the λ point.
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FIG. 3. (Color online) Binodal for the 4He of Aziz [18] in three
dimensions. In our simulations we used N = 128, r∗

cut = 6, and a
time step ε∗ = 0.002. The continuous (red) curve extrapolating to the
critical point is obtained as described in the text. The solid triangle is
the estimated critical point. The experimental results from Ref. [19]
are also shown as a dashed curve.

In conclusion, we determined the gas-liquid binodal of a
square-well fluid of bosons as a function of the particle mass
and of 4He, in three spatial dimensions, from first principles.
The critical point of the square-well fluid moves to lower
temperatures as the mass of the particles decreases, or as the
de Boer parameter increases, while the critical density stays
approximately constant.

Our results for 4He compare well with the experimental
critical density even if a lower critical temperature is observed
in the simulation. We expect this to be due mainly to a finite-
size effect that is unavoidable in the simulation. Nonetheless,
we are able to determine the binodal anomaly [20] occurring
below the λ-transition temperature. The anomaly that we
observe in the simulation appears to be more accentuated than
in the experiment and the liquid branch of the binodal falls at
slightly lower densities.

Even if our QGEMC method is more efficient at high
temperatures, it is able to detect the liquid phase at low
temperatures even below the superfluid transition temperature.
This numerical method is extremely simple to use and, unlike
current methods, does not need the matching of free energies
calculated separately for each phase or the simulation of large
systems containing both phases and their interface.
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helpful comments.
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