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Structure of colloidosomes with tunable particle density: Simulation versus experiment
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Colloidosomes are created in the laboratory from a Pickering emulsion of water droplets in oil. The
colloidosomes have approximately the same diameter and by choosing (hairy) particles of different diameters
it is possible to control the particle density on the droplets. The experiment is performed at room temperature.
The radial distribution function of the assembly of (primary) particles on the water droplet is measured in the
laboratory and in a computer experiment of a fluid model of particles with pairwise interactions on the surface
of a sphere.
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I. INTRODUCTION

Colloidosomes are hollow spherical structures that are
formed by the assembly of colloidal particles at the interfaces
of two immiscible liquids [1]. As a result the particles are
arranged in a shell that is inherently porous.

The assembly of colloidal particles at liquid interfaces is
used in various applications [2]. Moreover, it is a promis-
ing technique for the synthesis of novel materials [3] and
has recently led to the development of colloidosomes [1],
nanocomposite particles [4], porous solids [5], and foams [6].

In this work, we study colloidosomes that are composed of
uncharged spherical polystyrene particles of μm size moving
on the surface of a water droplet in oil. Similar studies
have also been done with charged particles [7]. The study
of particles on the surface of a sphere dates back to the old
Thomson problem [8] for classical electrons. The statistical
physics problem of a one-component plasma on a sphere
has been solved exactly analytically at a special value of the
temperature [9]. Nonpointwise particles on a sphere have the
additional complication of the geometrical frustration, which
can be described through the so-called grain boundary scars
[10–12]. There have been attempts to formulate a statistical
geometry of particle packing [13]. These systems opened up
a field of research that studies the effect of curvature and
topology of various surfaces on the organization of matter
in a more general sense [14]. Structuring at the surface
of a droplet can be viewed as a two-dimensional analog
to fluid like behavior, crystallization, or glass formation in
three-dimensional systems [15].

Fluids on Riemannian surfaces have been the subject of
various studies with few exact analytical results [9,16,17],
some approximate theories [18], and many Monte Carlo (MC)
simulations [19]. Colloidosomes with tunable particle density
were synthesized experimentally [20]. A sintering procedure is
then used to create capsules, which can be easily handled. The
capsules are then dried to obtain colloidal cages. The synthetic
details are explained in the next section.
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In this work we give the simplest statistical physics descrip-
tion of the colloidosome, where we describe the interaction of
the colloidal particles with the surrounding media, water and
oil, simply as a holonomic constraint on the particles positions
to stay at the water-oil (WO) interface and treat them as a fluid
of a fixed number of particles moving on a sphere, the droplet
of water in oil, with a mutual pairwise interaction, the pair
potential, at a temperature T . Additional frictional effects have
been neglected [21]. The assembly of particles on the sphere is
studied both in the laboratory and with a computer experiment
under certain conditions: number density and temperature. The
structural arrangement of the particles is characterized through
the radial distribution function. The colloidal particles created
in our laboratory are polystyrene solid spherical hairy particles
with controllable diameter of the order of 3 μm. The particles
will then exhibit a hard core interaction. Two types of particle
pair potentials were used in the Monte Carlo (MC) simulation
of the fluid, namely the hard-sphere one and the polarizable
hard-sphere one.

The work is organized as follows: in Sec. II the colloido-
some is described; in Sec. III the radial distribution function as
a means to probe the structure of the colloidosome is presented
in its mathematical definition described in Appendix A, its MC
estimator, and its experimental measure; in Sec. IV the MC
simulation results are presented; in Sec. V the theoretically
exact results of the MC simulation and the experimental results
are compared; Section VI is devoted to concluding remarks.

II. EXPERIMENTAL SYSTEM VERSUS STATISTICAL
PHYSICS PROBLEM

The details for the synthesis of the colloidosomes can
be found in our previous work [20]. Working at room
temperature, we first disperse the colloidal particles in a
hydrocarbon oil (heptane). Then, water is added while the
solution is being stirred vigorously. The function of the shear
is two fold. It causes the water to break up into small water
droplets and at the same time it allows to overcome the
barrier for adsorption of the particles, which are assembled
randomly at the WO interface of the droplets. Eventually
a stable Pickering emulsion [22] of water droplets covered
by polystyrene (pS) particles, the colloidosomes, in oil is
formed. The colloidosomes formed have all approximately
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FIG. 1. (Color online) The left panel shows a schematic representation of the equilibrium position of the particles at the WO interface; θ is
the three-phase contact angle, r is the particle separation, and σ is the particle diameter. The right panel shows a side view of the particle shell
of a colloidosome made with scanning electron microscopy.

the same diameter, and this, as well as the number of colloidal
particles on each colloidosome, does not change after the
colloidosomes are formed. For further imaging with scanning
electron microscopy (SEM) the particles surrounding the
droplets need to be (partially) sintered in order to form a
continuous and stable shell around the droplet, a capsule.
Heating the mixture to 35 ◦C for 30 minutes proved sufficient to
do so. A small amount of the sintered colloidosome dispersion
is placed on the SEM sample holder and dried in the fumehood.
This removes both the water and heptane remnants and leaves
only the capsules, the colloidal cages, which can then be
imaged by SEM.

The colloidal polystyrene solid particles are synthesized
by the dispersion polymerization of styrene in alcohol and
water [20], which is a well-established technique for the
formation of highly uniform polymer particles with a narrow
size polydispersity. AIBN [azo-bis(isobutyronitrile)] is used
as the initiator. The presence of a polymeric stabilizing
surface functional group is required for a controlled synthesis
of the particles. A nonionic polymeric stabilizer [poly(N-
vinylpyrrolidone) (pVP)] is used for this study. Hence, there
is no charge on the surface of the particles. During the
polymerization, pVP, which efficiently adsorbs on polystyrene,
is attached to the particle. In ethanol and water, pVP is soluble.
The polymeric chains are extended (with a radius of gyration
of Rg ≈ 15 nm) and are responsible for steric repulsion as
two particles get in close contact. This guarantees the steric
stabilization of the colloidal suspension. In the oil phase, pVP
is insoluble and the polymer chains are collapsed on the surface
of the particle, resulting in an attractive potential among the
particles. The final dispersion in ethanol and water, therefore,
consists of polystyrene particles that are sterically stabilized
with a layer of pVP. During the polymerization of styrene,
pVP attaches to the particle by both physical adsorption
to the particle’s surface and chemical grafting. These two
mechanisms occur simultaneously, however it is not known
to what extent. It is believed that the predominant mechanism
for stabilization is the physical adsorption. The particles are
washed with pure ethanol by three centrifugation-redispersion
cycles in order to remove the residual physically adsorbed pVP.
The particles settle due to the centrifugation. The supernatant

solution is decanted and clean ethanol is added to the remaining
particles. The particles are then redispersed and the whole
procedure is repeated three times. The physically adsorbed
pVP is removed, which produces a lower colloidal stability
of the particles in ethanol. Large aggregates were observed
during this procedure, which is an indication for the presence
of an attractive component in the pair potential between the
colloidal particles in the suspension. The chemically grafted
pVP remains attached to the particle’s surface. The remaining
particles are dried and redispersed in heptane, before the
colloidosomes are synthesized. In conclusion, the surface
chemical properties of the particles are mainly determined by
polystyrene and the fraction of pVP that is chemically grafted
to the surface, although a precise estimate of the grafting
density is lacking. It is believed that the grafting density is low,
due to the poor colloidal stability of the particles in ethanol
after removing the physically adsorbed pVP.

In Pickering emulsions, the particle is adsorbed at the WO
interface and is partly immersed in the oil and water phase.
The extent of immersion in both phases will eventually have an
influence on the particle pair potential. The three-phase contact
angle θ is used to denote the position at the interface as shown
in Fig. 1.1 It was determined in our earlier work [20] and is
approximately θ ≈ 130◦, which means that the particle is pre-
dominantly immersed in the oil. The surface tension of the par-
ticle is altered by the presence of the surface stabilizing groups,
which affects the wetting properties and the equilibrium posi-
tion of the particles at the interface [23]. An atomistic [24] level
of description of the core of the solid hairy particles suggests
the use of Hamaker [25] calculation for the determination of the
interaction between the two spherical cores. The calculation
predicts an attractive pair potential which, neglecting the
detailed behavior close to contact, is proportional to (σ/r)6, r

being the distance between the centers of the two cores of diam-
eter σ . Unlike this attraction, which is always present, the steric

1The right panel of Fig. 1 shows clearly flattening of the particles
on the inside of the capsules. We are convinced that this is an artifact
of the sintering process. During this process flattening of the particles
occurs, which we ascribe to particle deformation to reduce the contact
area between particle and water.

061404-2



STRUCTURE OF COLLOIDOSOMES WITH TUNABLE . . . PHYSICAL REVIEW E 85, 061404 (2012)

repulsion will have a very small range when θ is obtuse since
in this case the particle’s contact occurs in the oil phase [26].
We thus expect the balance between the attractive interaction
and the steric effects to depend on the angle θ . Moreover other
kinds of interactions such as depletion, hydrophobic, solvation,
or capillary should be taken into account for an accurate
description of our system. The simplest description for the
pair potential between the particles is the hard-spheres one.

The surface of a sphere of diameter D = 2R is A = πD2.
The surface area that a particle, with diameter σ , can occupy
is approximately a = √

3σ 2/2. The maximum number of
particles that can pack the surface of a sphere is approximately

Nmax � A

a
= 2π√

3

(
D

σ

)2

, (1)

where we assumed that the particles are in a close packing
regular hexagonal lattice neglecting curvature effects. The
maximum reduced particle density on the sphere will then
be ρmaxσ

2 � 2/
√

3 ≈ 1.155.
Similar experiments [27] make use of water and a liquid of

higher density, for the initial solution of the two immiscible
liquids. The droplets in the emulsion will now be of the higher
density liquid. In the limit of droplets of very high density
the particles are expected to be essentially unable to move
on the droplet. Our working hypothesis will be, instead, to
consider the particles as moving freely on the droplet surface,
completely neglecting the presence of the solvent. We then
treat the colloidosome of diameter D, number of particles N ,
and temperature T , through a canonical ensemble classical
statistical physics description of the assembly of particles on
the water droplet as a fluid of particles constrained to move
on the surface of a sphere with a pairwise interaction, the pair
potential.

A. Pair potential

Fixing the pair potential completely defines the fluid model,
as described in Appendix A and Eq. (8).

The simplest interaction between two colloidal particles is
the hard-spheres (HS) pair potential

φHS(r) =
{+∞ r < σ

0 r > σ
, (2)

where σ is the diameter of the spheres and r is the Euclidean
center to center distance [see Eq. (5)].

The interaction between two neutral particles far apart is
dominated by dipolar forces. The simplest model potential,
suggested by the London forces [28], corresponds to hard
spheres of diameter σ with dispersion attractions, the polariz-
able hard spheres (PHS),

φPHS(r) =
⎧⎨
⎩

+∞ r < σ

−εPHS

(σ

r

)6
r > σ

, (3)

where εPHS = AH /36 is a positive energy proportional to
Hamaker constant [25] AH , which is a property of the material
of which the particles are made and of the environment where
the particles are immersed. We here neglect the details of
Hamaker’s macroscopic approximation [28], which when the

two spheres are close to contact predicts a −(AH/24)/(r/σ −
1) behavior, as we believe they have not much influence on the
calculation.

III. RADIAL DISTRIBUTION FUNCTION

In this work we probed the structure of the colloidosome
using the radial distribution function (RDF). We compare
the experimental RDFs with the ones obtained from MC
simulations of a fluid of particles moving on a sphere and
interacting with a model pair-potential of the kinds described
in Sec. II A. This procedure will allow us to determine which
interaction model best describes the experimental assembly of
particles. Choosing σ as the unit length, the statistical physics
problem only depends on the number of particles N and the
reduced density ρσ 2 = N/[π (D/σ )2] for the athermal HS
model and also on the reduced temperature kBT /εPHS for the
PHS one.

A. Monte Carlo simulation

On a sphere, the Monte Carlo simulation [29] solves exactly
the statistical physics problem as, since one does not have
the additional thermodynamic limit problem, it reduces to an
integration, as described in Appendix B.

The particle’s positions are R = (r1,r2, . . . ,rN ) with

ri = R[sin θi cos ϕi x̂ + sin θi sin ϕi ŷ + cos θi ẑ]. (4)

The Euclidean distance between particles i and j is given by

rij = R
√

2 − 2r̂i · r̂j , (5)

where r̂i = ri/R is the versor that from the center of the sphere
points towards the center of the ith particle.

The density of particles on the surface of the sphere is

ρ = N

4πR2
. (6)

In the MC simulation [29] the RDF between two points
on the sphere, r and r′, is calculated through the following
histogram estimator [see Eq. (A14)]

g(d) = 〈ghistogram(d,R)〉, (7)

where d = 2R sin[arccos(r̂ · r̂′)/2] is the Euclidean
distance between r and r′, 〈. . .〉 = ∫

SN
R

exp[−βUN (R)] . . .

dR/
∫
SN

R
exp[−βUN (R)] dR is the thermal average, here

UN (R) =
∑
i<j

φ(rij ), (8)

is the total potential energy of the fluid of particles, φ is the pair
potential, and the integrals are taken in such way that ri ∈ SR

for i = 1,2, . . . ,N with SR the sphere of diameter D = 2R, so
that dR = ∏

i dri with dri = R2d
i = R2 sin θidθidϕi , and

ghistogram(d,R) =
∑
i 
=j

1[d−�/2,d+�/2[(rij )

Nnid (d)
(9)

here 1[a,b[(r) = 1 if r ∈ [a,b[ and 0 otherwise, and

nid (d) = N

[(
d + �/2

2R

)2

−
(

d − �/2

2R

)2
]

, (10)
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is the average number of particles on the surface [d − �/2,d +
�/2[ for the ideal gas of density ρ. ρ2g(d) gives the probability
that sitting on a particle at r one has to find another particle at r′.

B. Experiment

The positional data of the particles in the colloidal cages
is directly extracted from SEM images, which allowed the
calculation of the particle separation for all visible particle
pairs. � is set to an arbitrary value of σ/20. To exclude
edge effects, a selection of particles located sufficiently at
the center of the SEM image of the colloidal cage is taken into
account. The RDF is determined from just one hemisphere.
The particle positions from five SEM images of similar
colloidal cages were used for the statistical average. The
detailed procedure, the selection of particles, and validation
of the procedure is described in our previous work [20]. In
that work we calculated the radial distribution function from
just one SEM image. Here we refined that analysis averaging
the results from five SEM images, which is in spirit closer
to the procedure used in the MC simulations. Although five
images are still a rather small number our present procedure
carries nevertheless more information than the one used in
Ref. [20]. The absolute error on the experimental g(r) is around
0.3. In the experiment unlike in the simulations each image
measurement is uncorrelated from the other.

IV. MONTE CARLO RESULTS

We performed constant N , ρ, and T canonical MC simu-
lations [29]. A typical run would consist of about 5 × 105N

single-particle moves, keeping the acceptance ratios constant
(≈ 0.3). In all the presented graphs of the simulated RDF the
statistical error from the MC integration are not visible on the
chosen scale.

We initially chose the PHS model pair potential to see how
the RDF would change upon changing the temperature and
the density. In order to find agreement with the experimental
results it proved necessary to use the simpler HS model, as
shown in Sec. V. We then compared the HS results with the
soft-sphere model φSS(r) = εSS( σ

r
)6 considered in Ref. [18].

For case “a” of Table I a reduced temperature of kBT /εSS =
0.05 is sufficient to have similar RDFs for the HS and the
SS model on the half hemisphere, but when looking at the
RDFs on the whole sphere, the SS RDF, unlike the HS one,

TABLE I. Characteristics of the experimental colloidosomes
analyzed. In all cases, the water droplet was of the same diameter
D = 64.8 μm. Different colloidosomes differed by the diameter σ

of the colloidal particles and by the number N of colloidal particles
they carried. The same systems, “a”, “b”, “c”, “d”, have been studied
through MC simulations.

case σ (μm) N D/σ ρσ 2

a 4.80 561 13.5 0.98
b 3.32 1065 19.5 0.89
c 2.72 1498 23.8 0.84
d 2.56 1449 25.3 0.72
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FIG. 2. (Color online) RDF for approximately one hemisphere of
the colloidosome “c” of Table I with N = 1498, D/σ = 23.8, and
various reduced temperatures, calculated with MC simulations of the
PHS fluid. Also shown are the locations (vertical lines) of the first
eight coordination shells of a regular planar hexagonal lattice of the
hard-core particles (here σ = 2.72 μm). The mismatch between the
peaks of the RDF and these shells is a manifestation of the curvature
of the surface.

shows relevant correlations between particles at opposite poles
(|g(2R) − 1| ≈ 0.3).

A. Dependence on temperature

The HS model is athermal so the structure is independent of
temperature but only depends on the density. We thus simulated
the colloidosome “c” in Table I with the PHS model. We chose
different values of the reduced temperature, kBT /εPHS to see
how the RDF would change.

As expected we found the occurrence of an ordered
structure at small reduced temperatures (see Fig. 2). In
particular we observe the formation of a regular hexagonal
lattice distorted by the curvature of the spherical surface.
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ρσ2=0.70
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FIG. 3. (Color online) RDF for approximately one hemisphere of
the colloidosome with D/σ = 23.8 and σ = 2.72 μm at a reduced
temperature kBT /εPHS = 9.1 and various densities, calculated with a
MC simulation of the PHS fluid.
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FIG. 4. SEM images of colloidal cages with a fluidlike particle configuration (left panel, ρσ 2 = 0.84 and D/σ = 23.8) and a crystallinelike
particle configuration (right panel, ρσ 2 = 0.98 and D/σ = 13.5).

Recall that in a planar perfect hexagonal lattice arrangement
of spheres of diameter σ the first coordination shells are as
follows: r/σ = 1,

√
3,2,

√
7,3,2

√
3,

√
13,4,

√
19,

√
21,5, . . . .

From Fig. 2 we can clearly see how at this reduced density,
0.84, well below the maximum density, the PHS model reduces
to the HS model for reduced temperatures � 1. As we lower
the temperature, the attractive tail in the pair potential starts to
play a role resulting in a solidification of the fluid. As the fluid

crystallizes, it may experience the cage effect going through
glassy phases. The particles become confined in transient cages
formed by their neighbors. This prevents them from diffusing
freely on the surface of the sphere [30]. A related problem is
the extremely long MC equilibration time necessary to draw
the RDF of the figure at a temperature of 0.1, starting from a
disordered initial configuration. In the limit of T → 0, in our
calculation, the equilibrium configuration of the (classical)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 5 10 15 20 25

g(
r)

r (μm)

simulation
experiment

(a)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 5 10 15 20 25

g(
r)

r (μm)

simulation
experiment

(b)

(a)

(b)

FIG. 5. (Color online) The experimental (dashed red line) and simulated (solid black line) RDF of colloidosomes “a” (top panel) and “b”
(bottom panel) of Table I. The fluid model used in the MC simulations was the HS. The graphical representation of a snapshot of the particle
positions when the MC has reached equilibrium, shows resemblance with the SEM images.
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particles is the one R0 for which UN (R) has its minimum:
the probability density is zero everywhere except on R0. We
have a spontaneous breaking of the rotational symmetry (see
Appendix A). The monotonously increasing tails in the PHS
pair potential produce an equilibrium configuration with the
particles forming one cluster of touching spheres. On the
contrary, in the SS model the equilibrium configuration will
be one where the interparticle spacing depends on the density.

B. Dependence on density

For case “c” in Table I (D/σ = 23.8 and σ = 2.72 μm)
we chose different values of the density to see how the RDF
would change for the PHS model at a relatively high value of
the reduced temperature kBT /εPHS = 9.1.

We succeeded in reaching high particle densities (with-
out overlaps) by placing one particle at the north pole
and then others centered at θ = 2n arcsin(1/2R) and ϕ =
2m arcsin(1/2R sin θ ) with n,m = 1,2,3, . . . . This way we
were, in particular, able to reach the 0.91 critical density
observed by Prestipino Giarritta et al. [19] for HS. In
doing so we observed the splitting of the second peak
into a pair of adjacent peaks corresponding to the second
and third coordination shells of a regular hexagonal lattice
(see Fig. 3).

From Fig. 3 we can clearly see how the fluid tends to reach
an ordered phase at high densities (even at high temperatures).
The realization of these ordered phases will go through the
formation of colloidal geometrical cages (due to geometrical
frustration) on the surface of the water droplet, which is
inevitable as the density slowly approaches the maximum
density at any temperature.

V. COMPARISON BETWEEN EXPERIMENTAL AND
MONTE CARLO SIMULATION RESULTS

The results of the experimental colloidosomes are now
compared with the Monte Carlo (MC) simulations. Scanning
Electron Microscopy (SEM) images of two different colloidal
cages can be found in Fig. 4. The RDF of these colloidal cages
and two others are shown in Figs. 5 and 6. The experimental
colloidosomes studied differ from one another by particle
size and particle density; the water droplets were of the
same diameter and the temperature was room temperature,
as summarized in Table I. The same values for number of
particles, N , and sphere diameter, D/σ , are used in the MC
simulations. Our first choice for the pair potential was the HS
fluid model, as justified in Sec. II.

It is important to stress that in the experiment we measured
the RDF from five images of different colloidal cages. Now,
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FIG. 6. (Color online) Same as Fig. 5 for the colloidosomes “c” (top panel) and “d” (bottom panel) of Table I.
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FIG. 7. (Color online) The experimental (dashed red line) and simulated (solid black line) RDF of colloidosomes “a”, “b” (top panel) and
“c”, “d” (bottom panel) of Table I. The fluid model used in the MC simulations was the PHS with a reduced temperature of 0.3.

there are two processes responsible for the assembly of the
particles on the colloidosome: (i) the adsorption of the particles
on the interface at the moment of the formation of the Pickering
emulsion and (ii) the motion of the particles on the interface.
Our experimental measure is clearly not able to discriminate
which one of the two processes is the more relevant, even if we
expect that the structure of the colloidal cages obtained after
the sintering procedure will carry no history of the former
process. Moreover theoretical studies of process (i) are, to
the best of our knowledge [31], much less developed than the
ones of the latter. Our computer experiment only takes into
account the second process assuming that the colloidosome
is formed and the particles are in thermal equilibrium on the
droplet.

From Figs. 5 and 6 we can see that there is a good agreement
between the experimental and the theoretical RDF. This
indicates that the HS fluid model gives a good description of the
experimental system. The snapshots from the MC simulation
of the colloidosome differ from the SEM images of the
colloidal cages. The colloidal cages are formed by a network
of touching particles. The structure of the experimental fluid
points to a pretty strong short-range attraction between the
particles mainly as a result of the sintering process. The
measure of structure used, g(r), is not sensitive to these
structural differences.

We also simulated the experimental colloidosomes with
the more realistic PHS model. Initially, the fluid with the

highest particle density (“a”) was used to adjust the reduced
temperature. By trial and error we found that kBT /εPHS = 0.3
gave a satisfying agreement with the experiment (see Fig. 7).
However when we simulated the other colloidal cages with the
same reduced temperature (the experimental temperature in all
cases did not vary and the Hamaker constant did not change
from one colloidosome to the other) we found disagreement
between the MC simulation and the experiment as clearly
shown by the last panel of Fig. 7. This is an indication that the
particles used in the experiment do not interact as PHS. An
explanation for this is the balance, in the oil phase, between
the steric repulsion of the polymer chains and the Hamaker

TABLE II. Excess internal energy per particle uex = 〈UN 〉/N for
the simulated PHS fluids on the sphere.

kBT /εPHS N D/σ uex/εPHS

0.3 561 13.5 −2.1509(6)
0.3 1065 19.5 −1.862(3)
0.3 1498 23.8 −1.732(2)
0.3 1449 25.3 −1.586(3)
0.1 1498 23.8 −2.3484(8)
1.0 1498 23.8 −1.5450(4)
9.1 1498 23.8 −1.5136(3)
9.1 1747 23.8 −2.0932(2)
9.1 1248 23.8 −1.0741(2)
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attraction. However, steric repulsion through the oil phase
is unlikely, because pVP is insoluble in heptane. Another,
possible explanation is that during emulsification the attractive
interaction is balanced by the shear that is applied, and this
could be reflected on the capsules structures sintered after the
emulsification process.

In Table II we report the excess internal energy per particle
measured in the MC simulations of the PHS model in the
various systems studied. We can clearly see that as the fluid
develops towards a solid phase there is a lowering of the energy.

VI. CONCLUSION

We have studied a colloidosome of polystyrene hairy
particles of μm size moving on the surface of a water droplet
in oil both experimentally and theoretically through canonical
Monte Carlo simulations, which is the ensemble of choice
for the description of the experimental system where the
number of particles does not vary. In particular we studied the
radial distribution function. Agreement was found between
the experimental measure and the measure in the computer
experiment of the theoretical model of the fluid of pure
hard-sphere particles on the surface of a sphere. We did not
find agreement between the experiment and the polarizable
hard-sphere fluid model.

It would certainly be interesting to pursue a different
determination of the radial distribution function through the
imaging of the same colloidosome without going through the
sintering procedure. This would allow an unbiased determina-
tion of the structure of the fluid of particles in their thermal
equilibrium on the droplet surface.

Within the Monte Carlo simulation, a wide range of particle
densities on the colloidosome was studied. At high density, the
particles tend to arrange in a hexagonal lattice, distorted by
the curvature of the droplet and the radial distribution function
shows clear signatures of the first coordination shells. While
at low densities a fluidlike behavior is manifested.

Our Monte Carlo simulation results further show that
the addition of an attractive tail to the pure hard-sphere
pair potential allows to reach solidification by lowering the
temperature even at low densities. We discussed that for pair
potentials with support on the whole [0,2R], crystallization
has to be expected at low temperatures at any density.

In our Monte Carlo study we have only considered direct
interactions between the colloidal particles and not solvent-
mediated indirect interactions, such as excluded volume
depletion forces, the hairy hard-spheres interaction [32], or
the Gourney solvation interaction, which depend on the
thermodynamic state of the system [28]. We have simulated
two fluid models on the spherical surface: the athermal HS
one and the PHS one. By tuning the reduced temperature in
the PHS model so as to get a structure similar to the one of
the experimental case “a” of Table I, we were then unable to
reproduce the experimental radial distribution function of the
other cases “b”, “c”, and “d”. Only the HS model agrees with
all four experimental cases.

Our simulations show that the HS fluid model has small
correlations between particles at opposite poles even at high
densities [19], this is not any more so for particles with a soft
core [18]. From the point of view of our work this remains

just a theoretical prediction as our experimental measure of
the radial distribution function is only able to probe half
hemisphere. Moreover we expect the polystyrene particles
used to be well described by the hard-core pair interaction. A
further interesting comparison between the experiment and the
simulation would be to compute the orientational correlation
function Q6 [33].

A possible further development of the work could be the
realization of the binary mixture of small and large particles
on the water droplet [34] to find experimental evidences for
demixing predicted by the nonadditive hard-sphere model with
negative nonadditivity [35]. Or as a possible way to push the
fluidlike behavior at larger densities, diminishing the glass
gap, as predicted by the additive hard-sphere model [36]. A
natural extension would then be the multicomponent mixture,
which in its polydisperse limit may leave no space to the
glass. It would also be possible to simulate the particles as
penetrable-square-well ones [37].

Colloidosomes may be used to isolate viruses when at the
moment of the formation of the Pickering emulsion only one is
captured inside each droplet. This may be a way to overcome
the usual staining procedure. Of course the opposite situation
may also be possible when many living cells, for example
eukaryotic flagella [38], coordinate themselves in the confined
geometry of the drop.
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APPENDIX A: PAIR CORRELATION FUNCTION

Given a classical system of N particles of mass m moving
in a region R of a Riemannian manifold of dimension d and
metric tensor gμν(q) with Hamiltonian,

HN = TN + UN, (A1)

TN = 1

2m

N∑
i=1

gμν(qi)piμpiν, (A2)

UN = UN (q1, . . . ,qN ), (A3)

where we denote with q = (q1, . . . ,qd ) a point of the manifold,
with qi = (q1

i , . . . ,q
d
i ) the coordinates of particle i and with

pi = (pi1, . . . ,pid ) its canonically conjugate momenta, and we
use the Einstein summation convention to omit the sum over
the repeated Greek indices. The canonical ensemble probabil-
ity density to find the statistical system of distinguishable parti-
cles, the fluid, in thermal equilibrium at an inverse temperature
β = 1/kBT (with kB Boltzmann constant) with coordinates
Q = (q1, . . . ,qN ) and momenta P = (p1, . . . ,pN ) is

F(Q,P,N ) = 1



1

hdNN !
e−β(TN +UN ), (A4)

where h is Planck constant and the normalization factor 

is the partition function of the canonical ensemble of the
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identical particles

 = 1

hdNN !

∫
RN

dQ
∫

dPe−β(TN +UN )

= 1

�dNN !

∫
RN

dVe−βUN = e−βF , (A5)

where in the second equality we performed the Gaussian
integral over the conjugated momenta so that dV = dv1 · · ·
dvN with dvi = √

g
∏d

μ=1 dq
μ

i (here g = det ||gμν(qi)|| =
[det ||gμν(qi)||]−1) the infinitesimal volume element of the
manifold and � =

√
2πβh̄2/m is the de Broglie thermal

wavelength. To justify a classical treatment of the statistical
properties it is necessary that � be much less than the mean
nearest neighbor distance between the particles. In the last
equality we used the definition of entropy and F is the
Helmholtz free energy.

If the particles move on a sphere of radius one, R = S1,
then the coordinates are the polar coordinates on the sphere
qi = (θi,ϕi) with θi ∈ [0,π ] the polar angle and ϕi ∈ [0,2π )
the azimuthal angle, and the metric tensor is

||gμν(q)|| =
(

1 0

0 sin2 θ

)
, (A6)

so that det ||gμν(qi)|| = sin2 θi and dvi = sin θidθidϕi ≡ d
i

the solid angle spanned by the three-dimensional vector ri

of the position of particle i in the Euclidean space with
origin on the sphere center. Given a physical observable only
function of the coordinates ON = ON (Q), we can then
measure its average value as

〈ON 〉 =
∫
RN ON (Q)e−βUN (Q) ∏N

i=1 dvi∫
RN e−βUN (Q)

∏N
i=1 dvi

. (A7)

For example the one-body correlation function [39] for the
particles on a sphere of radius R is measured as

ρ(q) =
〈

N∑
i=1

δ(2)(q,qi)

R2

〉
, (A8)

where δ(2)(q,q′) = δ(θ − θ ′)δ(ϕ − ϕ′)/
√

g is the Dirac δ

function on the manifold. We now use the fact that our potential
energy (8) is invariant under any rotation of the reference frame
to say that ρ(q) has to be independent of q and [by integrating
(A8) over dv] we must have ρ(q) = ρ = N/(4πR2).

The two-body correlation function [39] is measured as

g(q,q′) =
〈∑

i 
=j

δ(2)(q,qi)

R2

δ(2)(q′,qj )

R2

〉/
[ρ(q)ρ(q′)] . (A9)

Because of rotational invariance g can only depend on the
geodesic distance d between q and q′. We can then calculate it
on a reference frame where ϕ = ϕ′ so that d = R(θ − θ ′) and

g(d) =
〈∑

i 
=j

δ(θ − θi)

R2 sin θi

δ(θ ′ − θj )

sin θ ′ δ(ϕ′ − ϕi)δ(ϕ′ − ϕj )

〉 /

× (R2ρ2). (A10)

If we now choose θ = θ̄ + θ ′ and integrate over dv′ we get

g(d) =
〈∑

i 
=j

δ(θ̄ − θij )

R2 sin θi

δ(ϕij )

〉 /
(Nρ), (A11)

where θij = θi − θj and ϕij = ϕi − ϕj . We can use rotational
invariance to choose the sphere north pole sitting on particle j

to get further

g(d) =
〈∑

i 
=j

δ(θ̄ − θij )δ(ϕij )

〉/
(NρR2 sin θ̄ ). (A12)

In place of the geodesic distance Rθ̄ we can use the Euclidean
distance d = 2R sin(θ̄/2). We can then use the equality δ(θ̄ −
θij ) = δ(d − dij )R cos(θ̄/2), here dij = 2R sin(θij /2), to write

g(d) =
〈∑

i 
=j

δ(d − dij )δ(ϕij )

〉/
(Nρd)

=
〈∑

i 
=j

δ(d − rij )δ(ϕij )

〉/
(Nρd), (A13)

where rij is defined in Eq. (5) of the main text. Now we use
rotational invariance noticing again that given any two point
qi and qj on the sphere one can always find a reference frame
in which ϕi = ϕj to get

g(d) =
〈∑

i 
=j

δ(d − rij )

〉/
(Nρ2πd). (A14)

APPENDIX B: MONTE CARLO SIMULATION

In the Monte Carlo integration one does a random walk [40]
in Q with θi ∈ [0,π ],ϕi ∈ [−π/2,π/2) for all i = 1, . . . ,N

with periodic boundary conditions: ϕ = ϕ + 2π and θ = θ +
π . In the Metropolis algorithm [40] one takes as the acceptance
probability

A[Q → Q′] = min

{
1,e−β[UN (Q′)−UN (Q)]

∏N
i=1 sin θ ′

i∏N
i=1 sin θi

}
. (B1)
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