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Field-theoretical approach to a dense polymer with an ideal binary mixture of clustering centers
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We propose a field-theoretical approach to a polymer system immersed in an ideal mixture of clustering centers.
The system contains several species of these clustering centers with different functionality, each of which connects
a fixed number segments of the chain to each other. The field theory is solved using the saddle point approximation
and evaluated for dense polymer melts using the random phase approximation. We find a short-ranged effective
intersegment interaction with strength dependent on the average segment density and discuss the structure factor
within this approximation. We also determine the fractions of linkers of the different functionalities.
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I. INTRODUCTION

In this work we consider a system where a single polymer
chain is immersed in an ideal binary mixture of clustering
centers. The study of the resulting associating polymers has
a long history (see, e.g., in [1,2] and references therein).
Models for the reversible gelation of polymers range from
the consideration of pairwise associations of sticky chain
segments [3] to the formation of arbitrary size clusters due to
association of dipolar elements in polymer chains [4]. Whereas
a large number of theoretical treatments model association
with some form of crosslinking, that is, linking of two segments
only, or arbitrary size clusters, we present a treatment for
a small number of species of clusters consisting of a fixed
number of polymer segments. This falls into the so-called
closed multimerization scenario [5].

The reversible or permanent linking of polymer chains or
sections of polymers has been a topic of extensive investiga-
tions for many decades in a wide range of systems. The general
statistical physical scenario generally requires evaluating
both the statistical physics of the chains within a certain
linked scenario as well as a summation over all compatible
modes of linking the polymer constituents. Independent of
whether the linking (crosslinking, aggregation, clustering,
type of polycondensation, etc.) is permanent or reversible
the topologically and geometrically permissible combinations
of linking or clustering need to be evaluated, albeit with
different strategies for quenched or annealed situations [6].
Therefore it is natural to think in terms of the enumeration
of graphs, as extensively reviewed by Kuchanov et al. [7].
The ideas can then be applied to a variety of systems, such
as associating telechelics [8], polycondensation [9], polymers
with multiply aggregating groups [10], and general thermally
reversible aggregation, clustering, or association [11–19].

There are different possibilities in which the scenario of
fixed functionality clustering can be realized. One can think of
the segments of the chain connected to particles or sidechains
that assemble into structures with closed shells, akin to Janus

*rfantoni@ts.infn.it
†kkmn@physics.sun.ac.za

particles, where it was recently shown that monodisperse
ten-particle micelles, and 40-particle vesicles, are the ther-
modynamically dominant assembled structures [20–22].

We are interested in the properties of a solution of such a
polymer with clustering centers and in the relative dominance
of coexisting clusters with different, yet fixed, functionalities.
To this end we reformulate a field-theoretical method origi-
nally proposed by Edwards for permanent, arbitrary-functional
end-linking of chains [23]. The resultant field theory is highly
nonlinear, but can be treated analytically and numerically,
offering an additional theoretical tool to address questions
on the formation of localized, reversible structures of polymer
chains.

As already mentioned, in order to compute the partition
function or free energy one needs to evaluate the polymer
chain conformations subject to the restrictions imposed by the
functionalities of the linkers and include all possibilities of
linking or cluster formation. This is because we are modeling
a strong type of aggregation with fixed functionalities, where
the clusters are well-defined and local. In other words, all
permissible graphs must be generated, their connectivity
restrictions be imposed on the polymer chains and weighted
appropriately by Boltzmann factors. Kuchanov et al. [7], in
their exposition of strategies to do this, also point out the
very clear analogy between enumeration of spatially embedded
graphs and Feynman diagrams from field theories. The obvious
utility of a field-theoretical tactic lies in the large spectrum of
available approximation techniques and graphical expansions
but also in the freedom to choose the precise manner of
implementing the additional fields.

In this paper we introduce additional fields, with the
associated functional integration, whose role is to produce
the desirable linking, network-formation, or aggregate pos-
sibilities as well as enforcing the spatial consequences of
this on the appropriate monomers. The current approach is
similar to those used in Refs. [7,23] and in work that can be
seen as a precursor to the current formalism [24,25]. Whereas
the specific systems investigated in Refs. [23] and [7] are
addressed such that the ends of polymer chains or of star-like
polymer units can associate, respectively, the system under
investigation here deals with aggregation of segments of a
polymer chain. We show that this system allows a formulation
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of the field theory that has the mathematically advantageous
property that it is local in the introduced fields and these
additional fields also couple to the density of monomers in
a local way.

Clearly the sum over aggregated states, by whatever method
derived and approximated, would generally impose a compli-
cated form onto the polymer conformational averages. This
is also the case for theories with additional fields following
integration over the fields. In approximating the functional
integral over fields one expects to find nonlinear integral
equations for these fields in the kinds of self-consistent field
theory calculation that emerge in models for many systems
(as in [7,23]). However, in our formulation the saddle point
equations related to the additional fields (and taken before
integration over the polymer degrees of freedom) turn out
to be only algebraic, albeit nonlinear, providing a significant
advantage in tractability in comparison to nonlinear integral
equations obtained within other strategies (for other systems).
Analysis of the stability, etc. of the resulting theory is also
relatively simpler. Completing the integration over the fields
incorporates the clustering into the remaining weight for the
conformations of the chain (also in a local manner) giving
the “structural” contribution that is taken together with the
remaining polymer-polymer interactions.

Yet other path integration techniques have made use
of generating functional approaches to enumerate tree-like
configurations [26–28] in associating systems. Motivated by
a wide range of physical scenarios under which polymer
chains can aggregate, many different methods (mainly not
field theoretical in the sense as here) have been utilized
in determining the contribution of certain classes of con-
nections, ranging from summations over a subset of looped
conformations [4], sums of tree-like graphs [29], and trees
with cycles to analyses for stickers [3,8,30]. Typically the
effective polymer-polymer contributions can then be dealt
with through a further self-consistent field theory (e.g., [31])
or by determining fluctuations with respect to a reference
system (e.g., [32]) or through a mean-field treatment. In
principle, before our approximations at least, the field theory
introduced here is not restricted to subsets of connectivities
or specifically cyclized conformations nor is it a priori a
mean-field formalism.

In the current calculation we have a single polymer chain
that is immersed in an ideal binary mixture of pointwise
clustering centers with different functionality (number of links
that the center can have with the polymer segments). As a
mathematical device we can think of free segments of the
chain being part of clusters of functionality one, that is,
they cannot connect to any other segments. Moreover, the
system is in solution with clustering centers of functionalities
a and b �= a. The highly non-Gaussian field theory resulting
from the study of the model is quite complicated but can be
approached through the saddle point approximation. Assuming
the polymer to be highly dense we can then use the random
phase approximation (RPA) to describe the polymer degrees
of freedom. We are then able to extract the local densities
of segments that form part of clusters of different sizes, the
effective potential based on small density fluctuations around
a background of a given density, and the static structure factor.
In the current treatment we develop the formalism and then

investigate properties of the system in the scenario of the
uniform polymer segment density with Gaussian fluctuations.
However it is also shown where this approximation breaks
down. One could certainly expect nonhomogeneous phases
to develop which can in principle also be addressed by the
formalism together with the consideration of higher orders in
density fluctuations [33–35].

We shall refer to “polymer segments” as the monomeric
units of which the polymer chain is built. “Clustering centers”
refer to point-like seeds of “clusters” of segments of the
polymer chain. In other words, the clustering centers function
so as to attach to a specific number of the segments of
the polymer and in so doing to localize these segments
at a common point, binding them reversibly into a cluster.
Consequently, a polymer segment is also the basic unit to
which a single attachment to a single cluster is possible. We
shall deal with clustering centers of different functionalities
which form a multicomponent system with the polymer and
provide a “sea” of centers to form clusters with the polymer
segments.

Although our field-theoretical formulation includes no
precise model for the mechanism that causes clustering centers
of a given functionality to occur, we investigate in Sec. VI the
case where the functionalities (10 and 40) of the clustering
centers are the same as those determined for Janus particles
in recent studies [22]. Indeed there has recently been much
development in the techniques for the synthesis of new patchy
colloidal particles [36–39]. One particularly simple class of
these anisotropic particles, called Janus particles [40–43],
seem to form mainly clusters of either 10 or 40 particles. Here
Monte Carlo simulations [20,21] indicate that mainly stable
micelle (10 particles) or vesicle (40 particles) arrangements of
these particles are to be found in the vapor phase. Moreover,
it was found that the clusters behave very similarly to an ideal
gas, since the particles forming the cluster tend to arrange with
their active surfaces toward the cluster center.

Janus chains have been suggested as potentially useful
candidates for understanding interesting polymer phenomena
[44]. We will apply our formalism to the case of a dense
polymer in a Janus fluid and in so doing we hope to add to
the recent interest for Janus particles interacting with polymer
chains [43–45]. To the best of our knowledge there are no
results in the literature that prove the clustering in the Janus
fluid in the presence of the polymer. So we will take as a
working hypothesis the existence of such a clustering, and
make the approximation of treating the Janus fluid as an ideal
mixture of Janus particles, micelles of Janus particles, and
vesicles of Janus particles (in the spirit of Ref. [22]).

The paper is organized as follows: in Sec. II we describe the
model we are studying and formulate the field theory, in Sec. III
we perform the saddle point approximation, and discuss when
we expect the approximation to be most accurate. Section IV
is devoted to an investigation of dense polymer system with
clustering. We use the random phase approximation and derive
an expression for the free energy density of the system and
the effective interaction caused by the clustering centers. In
Sec. V we determine the structure factor and its curvature
at small wave vectors, in Sec. VI we finally solve the
Janus case numerically, and Sec. VII is devoted to the final
remarks.
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II. THE MODEL

The grand partition function for the ideal binary mixture of
clustering centers of functionality a and of functionality b can
be written as

� =
∞∑

N1=0

∞∑
Na=0

∞∑
Nb=0

(z1V )N1

N1!

(zaV )Na

Na!

(zbV )Nb

Nb!
,

where we also allowed for a third species of particles, of
functionality one, which cannot cause aggregation. zi are the
usual fugacities for species i, V is the volume of the system,
and N1 + Na + Nb is the total number of clustering centers.

We now wish to connect these to the polymer degrees of
freedom and develop a partition function for the system of
polymer together with the clustering centers. The “clusters or
clustering centers” represents the free macroparticles making
up the ideal mixture (a two component mixture with clusters of
two different functionalities that are living in a “sea” of clusters
of functionality one: the particles) in which the polymer is
immersed. These macroparticles are made up of a fixed number
of pointwise particles (i.e., they have fixed functionality) each
of which is linked with one polymer segment.

A suitable field-theoretic formalism was developed by
Edwards [23] to describe polymer gels. Consider a field
φ1 : R3 → R then the following Wick theorem holds (see
Appendix C)

I (r1,r2, . . . ,r2M )

= N
∫

[dφ1] φ1(r1)φ1(r2) · · · φ1(r2M ) e− 1
2

∫
dr φ2

1 (r)

=
∑

all pairing

δ
(
rl1 − rl2

)
δ
(
rl3 − rl4

) · · · δ(rl2M−1 − rl2M

)
, (1)

where li = 1,2, . . . ,2M and li �= lj for all i �= j , and N is the
Gaussian normalization.

If we introduce another field φ2, in terms of complex
fields ϕ = φ1 + iφ2 and ϕ� = φ1 − iφ2, the following identity
follows (see Fig. 1):

J = N ′
∫

[dφ1][dφ2]
M∏
i=1

[φ1(ri) + iφ2(ri)]
M ′∏
j=1

[φ1(Rj )

−iφ2(Rj )] e− ∫ dr φ2
1 (r)−∫ dr φ2

2 (r)

1ϕ (  )∗

R2ϕ (  )∗
r2ϕ(  )

r1ϕ(  )

R

FIG. 1. A schematic representation of the role of the field
theory. The fields ϕ and ϕ� are depicted as functions of spatial
variables. Multiplication by exp(− ∫ ϕϕ�) and subsequent functional
integration enforces the linking of the spatial coordinates between
pairs of ϕ and ϕ� (in all possible ways).

polymer

N

FIG. 2. Shows the polymer made up of N equispaced links that
are susceptible to being linked into clusters.

= N ′
∫

[dϕ][dϕ�]
M∏
i=1

ϕ(ri)
M ′∏
j=1

ϕ�(Rj ) e− ∫ dr ϕ(r)ϕ�(r)

= δM,M ′
∑

all pairing

δ
(
rl1 − Rm1

)
δ
(
rl2 − Rm2

)
· · · δ
(
rlM − RmM

)
, (2)

where li and mi can vary over (1,2, . . . ,M) with li �= lj and
mi �= mj for all i �= j . This means that each ϕ is associated
with another ϕ� through a Dirac δ function in all possible
pairwise combinations. As shown in Fig. 1, we can view the
fields ϕ and ϕ� as being complementary, since the δ-function
connection does not occur between pairs of ϕ or pairs of
ϕ�. This Gaussian theory, therefore, enumerates all possible
pairs of points ri and Rj and enforces this by inserting a
Dirac δ.

We consider a polymer chain consisting of N links (see
Fig. 2). Given the Green function G(r,r′) for the segment of
chain between two links, the conformation statistical weight
of the polymer, whose conformation is described by the points
{Ri}, is

P ({Ri}) = G(R1,R2)G(R2,R3) · · · G(RN−1,RN ). (3)

The polymer is immersed in an ideal mixture made up
of two types of crosslinked particles (see Fig. 3) with

(a)

(b)

micelle vescicle

FIG. 3. Shows the clusters of Janus particles: the micelles are
made of a = 10 links, whereas the vesicles of b = 40 links.
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functionalities a and b, respectively. We can also think of
the chain segments as forming two types of clusters (closed-
shell clusters, as for Janus particles [20]) called micelles
and vesicles. What is important is the fixed functionality.
The role of these clustering centers is to provide the links
of a certain fixed functionality between polymer segments,
thereby connecting a given number of segments of the
polymer chain together. Then the partition function can be

written as

ZN =
∞∑

N1,Na,Nb=0

ZN1,Na,Nb
, (4)

where N = N1 + aNa + bNb is the total number of polymer
segments or of particles (since the field theory requires that
each segment must be paired with a particle) and

ZN1,Na,Nb
= N
∫

dR1 · · · dRNe−v
∑N

n,m=1 δ(Rn−Rm)
∫

[dϕ][dϕ�] e− ∫ dr ϕ(r)ϕ�(r)ϕ�(R1)G(R1,R2)ϕ�(R2)G(R2,R3)

· · · G(RN−1,RN )ϕ�(RN )
1

N1!

[ ∫
dr z1ϕ(r)

]N1 1

Na!

[ ∫
dr zaϕ

a(r)

]Na 1

Nb!

[ ∫
dr zbϕ

b(r)

]Nb

, (5)

and the zi are generalized fugacities (that might also contain
a multiplicity associated with the functionality). We have
explicitly added clusters of functionality one (the single
particles) here to represent the sea of particles in which the
polymer and the a and b clusters are immersed. Clearly clusters
of size one simply link to a single polymer segment and
therefore do not cause association as the a and b clusters
do. Note that we are not interested in describing the precise
model for the mechanism by which the clusters of a given
functionality are formed from the aggregation of particles
(more on this in Sec. VI); we just assume that this aggregation
process takes place. At this level of description the physics
of the precise mechanism for the multimerization resides in
the fugacities. In our present formalism the clustering centers
and the particles are pointlike. In principle it is also possible
to extend the current formalism to model clusters of finite
extension. We have also added an excluded volume term v to
the polymer chain, with the dimensions of a volume.

It is possible to use the formalism without necessarily
introducing the essentially inert clusters of functionality one,
which turns out to be the fugacity z1 = 1 case of the equations
derived below. Appendix D shows the details. We continue
with the slightly more general formalism here, noting that
z1 → 1 will show no effects due to the addition of these
convenient clustering centers.

We then find in a short-hand notation, and neglecting for
the time being the excluded volume term,

ZN = N
∫

[dϕ][dϕ�]
{∏

dR
} {∏

G
}

ηN

× exp

{
−
∫

dr ϕ(r)ϕ�(r) +
∫

dr ρ(r) ln[ϕ�(r)/η]

+ z1

∫
dr ϕ(r) + za

∫
dr ϕa(r) + zb

∫
dr ϕb(r)

}
,

(6)

ZN = N
∫

[dϕ][dϕ�]
{∏

dR
} {∏

G
}

exp{F[ϕ,ϕ�]}, (7)

where we introduced the microscopic density of polymer links
ρ(r) =∑N

i=1 δ(r − Ri) and η is an arbitrary constant with the
dimensions of a length to the power −3/2. In the rest of the
paper we will measure lengths in units of η−2/3. A natural

choice would be η = 	−3/2, with 	 the Kuhn length of the
polymer segment.

A. A simple example

To clarify our formalism we consider here the simple
example of a polymer, with four polymer segments, interacting
with two clustering centers of functionality a = 2. Using
the properties of the Gaussian chains, the partition function,
neglecting the excluded volume term, is written as

Z = N
∫

[dϕ][dϕ�]

{
4∏

i=1

dRi

}{
2∏

i=1

dri

}{
3∏

i=1

G(Ri ,Ri+1)

}

×e− ∫ dr ϕ(r)ϕ�(r)

{
4∏

i=1

ϕ�(Ri)

}
z2

2ϕ
2(r1)ϕ2(r2)

= N z2
2

∫
dr1dr2

′∑
G(ri1 ,ri2 )G(ri2 ,ri3 )G(ri3 ,ri4 ). (8)

where we used Eq. (2) and the prime on the last summation
symbol indicates that we have to sum over all possible ways
of assigning to the indexes (i1,i2,i3,i4) the set (1,1,2,2). We
then see that the result is given by

Z = N z2
2

[
4
∫

dr1dr2G(r1,r1)G(r1,r2)G(r2,r2)

+ 4
∫

dr1dr2G(r1,r2)G(r2,r2)G(r2,r1)

+ 4
∫

dr1dr2G(r1,r2)G(r2,r1)G(r1,r2)

]

= 4

+ 4 + 4 ,

(9)
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where lines represent polymer segments and black circles
represent integration.

III. THE SADDLE POINT APPROXIMATION

We look at the saddle point equations for the fields ϕ and
ϕ� for any arbitrary yet fixed conformation of the polymer ρ =
ρ(r) � 0 ∀r ∈ R3. The saddle point approximation becomes
necessary because the field-theoretical formulation of the
system Eq. (6) is certainly highly non-Gaussian. We proceed
to calculate the saddle point and note that, for fixed polymer
conformation, the resulting condition is a set of algebraic
equations, that is, the saddle point depends only on the local
density. We shall also see that there always exists exactly one
saddle point, corresponding to the physical solution of the
equations.

We need to determine the critical point (ϕ̄,ϕ̄�), which
amounts to solving

δF
δϕ(r)

∣∣∣∣
ϕ̄,ϕ̄�

= 0,
δF

δϕ�(r)

∣∣∣∣
ϕ̄,ϕ̄�

= 0 (10)

or

−ϕ̄� + z1 + azaϕ̄
a−1 + bzbϕ̄

b−1 = 0, (11)

−ϕ̄ + ρ/ϕ̄� = 0. (12)

These can be combined to give

−ρ/ϕ̄ + z1 + azaϕ̄
a−1 + bzbϕ̄

b−1 = 0. (13)

A. Properties of the solutions of the saddle point approximation

From Eq. (13) we can write

−ρ + f (ϕ̄) = 0, (14)

where f (x) = z1x + azax
a + bzbx

b. We can then show that
there exists at least one positive solution of Eq. (13) for
ρ > 0. Indeed when ϕ̄ → 0 then −ρ + f (ϕ̄) = −ρ < 0,
whereas when ϕ̄ > ρ/z1 then −ρ + f (ϕ̄) > 0. Consequently
−ρ + f (ϕ̄) goes through a zero when ϕ̄ ∈ [0,∞). And it
is easy to show that there is exactly one positive solution
ϕ̄ > 0 for any ρ > 0. f ′(ϕ̄) = z1 + a2zaϕ̄

a−1 + b2zbϕ̄
b−1 so

f ′(ϕ̄) > 0 for all ϕ̄ � 0. Since the derivative is strictly positive
and the polynomial goes from negative to positive, there exists
exactly one positive root ϕ̄ for any ρ > 0. As we show in
Sec. IV B the local cluster densities of the saddle point are
proportional to z1ϕ̄, azaϕ̄

a, and bzbϕ̄
b, such that ϕ̄ must be

nonnegative.

B. Solutions for ϕ̄ and ϕ̄�

Consider the particular case a = 2, b = 0, corresponding
to reversible crosslinking, then from Eq. (13) we find for the
critical point

ϕ̄± =
−z1 ±

√
z2

1 + 8z2ρ

4z2
, (15)

ϕ̄�
± = 4z2ρ

−z1 ±
√

z2
1 + 8z2ρ

, (16)

which rules out the ϕ̄− solution, as the logarithm of ϕ̄�
− is not

well defined.

C. Expansion of F around the critical point

We can expand the function F around the critical point to
second order in the fluctuations 
ϕ = ϕ − ϕ̄ = 
φ1 + i
φ2

and 
ϕ� = ϕ� − ϕ̄� = 
φ1 − i
φ2,

F[ϕ̄ + 
ϕ,ϕ̄� + 
ϕ�] = F[ϕ̄,ϕ̄�] + 1

2

∫
dr1

∫
dr2[ 
φ1(r1) 
φ2(r1) ] · F2(r1,r2) ·

(

φ1(r2)

φ2(r2)

)
+ third order terms, (17)

where F2(r1,r2) is the following 2 × 2 matrix:

F2(r1,r2) =

⎛⎜⎝ δ2F
δφ1(r1)δφ1(r2)

∣∣
ϕ̄,ϕ̄�

δ2F
δφ1(r1)δφ2(r2)

∣∣
ϕ̄,ϕ̄�

δ2F
δφ2(r1)δφ1(r2)

∣∣
ϕ̄,ϕ̄�

δ2F
δφ2(r1)δφ2(r2)

∣∣
ϕ̄,ϕ̄�

⎞⎟⎠ . (18)

We have

δ2F
δφ1(r1)δφ1(r2)

∣∣∣∣
ϕ̄,ϕ̄�

=
[
−2 − ρ

ϕ̄�2
+ a(a − 1)zaϕ̄

a−2 + b(b − 1)zbϕ̄
b−2

]
δ(r1 − r2), (19)

δ2F
δφ1(r1)δφ2(r2)

∣∣∣∣
ϕ̄,ϕ̄�

= i

[
ρ

ϕ̄�2
+ a(a − 1)zaϕ̄

a−2 + b(b − 1)zbϕ̄
b−2

]
δ(r1 − r2), (20)

δ2F
δφ2(r1)δφ2(r2)

∣∣∣∣
ϕ̄,ϕ̄�

=
[
−2 + ρ

ϕ̄�2
− a(a − 1)zaϕ̄

a−2 − b(b − 1)zbϕ̄
b−2

]
δ(r1 − r2). (21)

We can then introduce the matrix M[ρ] as(−2 − ρ

ϕ̄�2 + a(a − 1)zaϕ̄
a−2 + b(b − 1)zbϕ̄

b−2 i
[

ρ

ϕ̄�2 + a(a − 1)zaϕ̄
a−2 + b(b − 1)zbϕ̄

b−2
]

i
[

ρ

ϕ̄�2 + a(a − 1)zaϕ̄
a−2 + b(b − 1)zbϕ̄

b−2
] −2 + ρ

ϕ̄�2 − a(a − 1)zaϕ̄
a−2 − b(b − 1)zbϕ̄

b−2

)
, (22)
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RICCARDO FANTONI AND KRISTIAN K. MÜLLER-NEDEBOCK PHYSICAL REVIEW E 84, 011808 (2011)

Then the partition function can be rewritten as

ZN ≈ N ′
∫ {∏

dR
} {∏

G
}

exp{M[ρ]}, (23)

where

M[ρ] = F[ϕ̄,ϕ̄�] − 1

2

∫
dr ln {detM[ρ]} , (24)

and

detM[ρ] = 4[1 + zaa(a − 1)ϕ̄a/ρ + zbb(b − 1)ϕ̄b/ρ].

(25)

For finite ρ the determinant is always positive with positive
real parts of the eigenvalues, if ϕ̄ > 0. Hence the saddle point
is stable.

As the density ρ increases we note that the free energy
calculation due to the saddle point F[ϕ̄,ϕ̄�] grows at least as
ρ, but that the fluctuation contribution − 1

2

∫
dr ln{detM[ρ]}

strives to a constant. Therefore at sufficiently high density we
expect the relative contribution of the fluctuations to become
negligible.

In the particular case a = 2, b = 0 we find

detM±[ρ] = 4(1 + 2z2ϕ̄±/ϕ̄�
±). (26)

IV. THE RANDOM PHASE APPROXIMATION

In this section we express the polymer in terms of a segment
density via the so-called random phase approximation. We
restrict ourselves to the situations where the polymer segments
are presumed to be distributed homogeneously with Gaussian
density fluctuations around this value. For sufficiently dense
systems this has been treated as a reasonable approximation
[6] in permanently networked systems. We do not investigate
the cases of possible inhomogeneous phases. In principle we
would then need to expand our results in the preceding sections
to higher orders in the density fluctuations [33–35] or attempt
to express our results in terms of more complex quantities
[46,47]. However, we do investigate where our RPA with the
homogeneity assumption fails as one indicator for possibly
different phase behavior in the system.

A. Basic formulation

Clearly our clustering formalism produces a significantly
nontrivial density dependence. Presuming that our system be-
haves like a highly dense polymer melt, where the fluctuations
of ρ = ρ̄ + 
ρ are small, one can use the following random
phase approximation [35] (RPA) (see Appendix B),

∫ {∏
dR
} {∏

G
}

· · · = N ′′
∫

[d
ρ] exp

[
−1

2

∫
dr
∫

dr′ 
ρ(r)
̂̃S−1

0 (|r − r′|)
V


ρ(r′)

]
· · ·

= N ′′
∫

[d
ρ̃] exp

[
−1

2

1

V

∑
k


ρ̃(k)
S̃−1

0 (k)

V

ρ̃(−k)

]
· · · , (27)

where we denoted with a tilde the Fourier transform [48] and
with a hat an inverse Fourier transform. We note that this
type of approach is not atypical in calculations for quenched
gels [49].

Expanding to second order in the density fluctuations we
find, from Eq. (24) and Eqs. (11) and (12),

M[ρ̄ + 
ρ]

= AV + B

∫
dr 
ρ(r) + C

∫
dr [
ρ(r)]2 + · · ·

= AV + C

∫
dr [
ρ(r)]2 + · · · , (28)

where we used the fact that
∫

dr 
ρ(r) = 0. V is the volume of
the box, A, B, and C are given functions of z1, z2, and ρ̄ and
for the particular case a = 2, b = 0 can be found in Appendix
A. Notice that in this case A− is not defined for any values of
the average density so only the A+, B+, and C+ solution is
physically meaningful, that is, they correspond to the expected
positive ϕ̄ solution (see Sec. III A).

We then obtain the following approximation for the parti-
tion function of Eq. (23):

ZN ≈ N ′′′eAV − 1
2

∫
dr ln(̂̃S−1

0 /V −2C), (29)

where ̂̃S−1
0 is the operator whose r,r′ component is given bŷ̃S−1

0 (|r − r′|).
In terms of the free energy density βf = − ln(ZN )/V we

find, in the thermodynamic limit (V → ∞ with ρ̄ = N/V

constant),

βf = −A − 1
2 ln(−2C). (30)

B. Local clustered segment densities

Following the usual method for grand-canonical ensemble
it is possible to calculate the local densities of segments that
form part of different sizes of clusters. We then compute

n1 = z1

N

∂ ln ZN

∂z1
(31)

for segments of the chain that are not crosslinked, and

nx = x
zx

N

∂ ln ZN

∂zx

(32)

for the density of segments part of clusters of size x.
Neglecting the logarithmic corrections due to the quadratic

fluctuations, we have

ln ZN = V A = M[ρ̄]. (33)
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Within the saddle point approximation we split the contri-
butions into parts due to the saddle point above and due to
the quadratic fluctuations [notice that this analysis holds also
locally at the level of the partition function for an arbitrary
ρ = ρ(r) profile of polymer chain density]

nx = x
zx

N

∂F[ϕ̄,ϕ̄�]|ρ=ρ̄

∂zx

− x
zxV

2N

∂ ln detM[ρ̄]

∂zx

= nS
x + nQ

x , (34)

where x = 1, x = a, or x = b. We then find

nS
x = xzxϕ̄

x

ρ̄
. (35)

Since nS
x ’s have to be real and nonnegative, in the saddle

point approximation, the solutions ϕ̄ also have to be real
and nonnegative. Immediately from the saddle point Eq. (13)
follows that

nS
1 + nS

a + nS
b = 1 (36)

must hold generally. We also find after some algebra

n
Q
1 + nQ

a + n
Q
b = 0. (37)

This means that the saddle point approximation conserves the
total number of segments for any density. Consequently, any
average over these density dependent expressions, irrespective
of the approximation, must satisfy the conservation. However
we note that the conservation laws (36) and (37) do not prevent
possibly negative nS

x + nQ
x which can arise in the region where

the fluctuation part is not sufficiently smaller than the saddle
point. As the validity of the saddle point improves with density,
this possibility also disappears.

For the special case a = 2, b = 0 we have

nS
1 = 2z1

z1 +
√

z2
1 + 8z2ρ̄

, (38)

n
Q
1 =

z1
(−z1 +

√
z2

1 + 8z2ρ̄
)

2ρ̄
(
z2

1 + 8z2ρ̄
) , (39)

as a consequence we see that the fraction of monomers not in
a crosslink decreases with the density.

C. The effective potential

Upon integrating over the degrees of freedom associated
with the clustering centers the remaining integral in the
partition function is that over the polymer density degrees
of freedom (in the RPA). This permits us to interpret the
effective interaction between polymer segments as caused by
the clustering. It consists of the typically attractive contribution
to the polymer-polymer quadratic density fluctuations from the
aggregating fields and any direct polymer-polymer interaction
(such as excluded volume interactions).

From Eqs. (23), (27), and (28) we can rewrite the partition
function as

ZN ≈ N ′′′
∫

[d
ρ]e− 1
2

∫
dr
∫

dr′ 
ρ(r)
̂̃
S
−1
0 (|r−r′ |)

V

ρ(r′)

× eAV e− 1
2

∫
dr
∫

dr′ 
ρ(r)W (r−r′)
ρ(r′), (40)

where the effective potential between the polymer segments
W is given by

W (r − r′) = − δ2M[ρ]

δρ(r)δρ(r′)

∣∣∣∣
ρ(r)=ρ̄

= −2C(z1,za,zb; ρ̄)δ(r − r′). (41)

We can then split the contribution from the saddle point and
the quadratic contribution of Eq. (24) and write

C = CS + CQ, (42)

CS = 1

2

∂2f S(ϕ̄,ρ)

∂ρ2

∣∣∣∣
ρ=ρ̄

, (43)

CQ = 1

2

∂2f Q(ϕ̄,ρ)

∂ρ2

∣∣∣∣
ρ=ρ̄

, (44)

where

f S = −ρ + ρ ln(ρ/ϕ̄) + z1ϕ̄ + zaϕ̄
a + zbϕ̄

b, (45)

f Q = − 1
2 ln{4[1 + a(a − 1)zaϕ̄

a/ρ + b(b − 1)ϕ̄b/ρ]}. (46)

Now, using Eq. (13), we find ∂f S/∂ρ = ln ρ − ln ϕ̄ and,
using the property ∂ϕ̄/∂ρ = 1/(z1 + a2zaϕ̄

a−1 + b2zbϕ̄
b−1),

follows ∂2f S/∂ρ2 = 1/ρ − 1/(z1ϕ̄ + zaa
2ϕ̄a + zbb

2ϕ̄b). Let
us assume for definiteness that b > a. Then when ρ is very
small z1ϕ̄ ≈ ρ and ∂2f S/∂ρ2 ≈ a(a − 1)(za/z

a
1)ρa−2/[1 −

a(za/z
a
1)ρa−1], while when ρ is very large zbbϕ̄b ≈ ρ so that

∂2f S/∂ρ2 ≈ (b − 1)/(bρ). Moreover, we find in the large ρ

limit that ∂2f Q/∂ρ2 behaves at least as 1/ρ2.
We remark that in the small ρ limit in the a = 2, b = 0

case ∂2f Q/∂ρ2 ≈ 10z2
a/z

4
1, whereas in the a = 10, b = 40

case ∂2f Q/∂ρ2 ≈ −3240zaρ
7/z10

1 . However we guard against
interpreting this as a repulsive interaction as the saddle point
approximation to our field theory is not expected to be accurate
at small densities. This repulsive contribution in the small
density limit for the effective potential of the Janus case (see
Sec. VI) explains the fact that here the RPA can be valid
(see Sec. IV D) even if we do not add any excluded volume
interaction to the polymer.

For the simple case a = 2, b = 0 we then find that C+ =
CS + CQ where

CS = 1

4ρ̄

(
1 − z1√

z2
1 + 8z2ρ̄

)
, (47)

CQ = 1

8ρ̄2

[
64(ρ̄z2)2(

z2
1 + 8z2ρ̄

)2 − 1 + z3
1 + 12z1z2ρ̄(
z2

1 + 8z2ρ̄
)3/2

]
. (48)

Here we also find in the small ρ̄ limit

CS = z2

z2
1

− 6z2
2

z4
1

ρ̄ + O(ρ̄2), (49)

CQ = 5z2
2

z4
1

− 88z3
2

z6
1

ρ̄ + O(ρ̄2), (50)

which tells us that the energy to crosslink goes to a constant
proportional to z2.
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In the large ρ̄ limit

CS = 1

4ρ̄
− z1

8
√

2z2ρ̄3/2
+ z3

1

128
√

2z3
2ρ̄

5/2
+ O(ρ̄−3), (51)

CQ = 3z1

32
√

2z2ρ̄5/2
+ O(ρ̄−3), (52)

which tells us that the energy to crosslink goes to zero as 1/ρ̄,
in accord with the fact that we are in a dense system.

The effective potential calculated here, based on small
density fluctuations around a background of a given density, is
dependent on the average density. As expected, the clustering
produces a local attractive interaction.

However, it is interesting to note that the strength of this
interaction decreases with average density. We attribute this to
the fact that the fraction of free segments (i.e., those in clusters
of size 1) decreases with the average density according to
Eq. (38). Therefore, for large ρ̄, the number of additional free
segments gained by increasing the density from ρ̄ to ρ̄ + 
 is
proportional to ρ̄−1/2 leading to a pairwise contribution 
2/ρ̄

as found in Eq. (51).

D. Validity of RPA

The RPA is based on a homogeneity assumption which
no longer holds when the RPA itself predicts overly large
fluctuations. In order to obtain Eq. (29) we must have that
S̃−1

0 (k)/V − 2C is a strictly positive function for all values of
the wave vector k. Since S̃−1

0 (k) is a monotonically increasing
function of k, the RPA will be valid as long as

C <
S̃−1

0 (0)

2V
= 1

2V ρ̄2
. (53)

In the thermodynamic limit one would require that C < 0 for
the validity of RPA.

We can then extend the region of the validity of RPA by
adding an excluded volume effect [50] to the polymer which
amounts to taking M[ρ] → M[ρ] − v

∫
dr ρ2(r) with v a

positive constant with the dimensions of a volume. We will
then have

A → A − ρ̄2v, B → B − 2ρ̄v, C → C − v, (54)

and the validity of RPA becomes C < v.
For the a = 2, b = 0 case we have that C+ is always posi-

tive so the RPA cannot be applied without the excluded volume
interaction. As a matter of fact we have limρ̄→∞ C+ = 0
and limρ̄→0 C+ = z2(z2

1 + 5z2)/z4
1 and C+ is a monotonically

decreasing function of ρ̄. So by choosing v any arbitrarily
small positive constant we are able to extend the range of
validity of RPA to arbitrarily large densities.

In this case choosing z1 = 1, z2 = e2β , and v = 1 the
validity domain in the phase diagram is determined in Fig. 4.

In Fig. 5 we show the behavior of the free energy
density as a function of density in the case a = 2, b = 0.
Here we choose z1 = 1, z2 = e2β where β = 1/kBT with kB

Boltzmann constant and T is the temperature and v = 1.

0.0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5

ρ

β

RPA invalid

C=v

RPA valid

FIG. 4. (Color online) Shows the RPA validity region of the phase
diagram, in the a = 2, b = 0 case, for z1 = 1, z2 = e2β and v = 1.

V. THE STATIC STRUCTURE FACTOR

The Fourier transform of the pair correlation function is
defined as [51]

g̃(k) = 1

N
〈ρ̃(k)ρ̃(−k)〉 = 1

N
〈
ρ̃(k)
ρ̃(−k)〉, k �= 0.

(55)

The quantity g̃(k) can be measured experimentally by light
scattering. Moreover one can extract some important infor-
mation on the polymer properties from the small k = |k|
behavior:

g̃(k) = g̃(0)

(
1 − k2

3
R2

g + · · ·
)

, (56)
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FIG. 5. (Color online) Shows the free energy density as a function
of the average density in the a = 2, b = 0 case, for z1 = 1, z2 = e2β

and v = 1.
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where Rg is the radius of gyration of the polymer, namely

R2
g = 1

2N2

N∑
n=1

N∑
m=1

〈(Rn − Rm)2〉. (57)

Now using the result from the RPA we find

Ng̃(k) = V
[
S̃−1

0 (k)
/
V − 2C

]−1
, (58)

which when C = −v, agrees with Edwards’ result [50,52] for
polymer chains with only excluded volume interactions [53].
Notice that the effective potential C is in general a function
of ρ̄, z1, za, and zb. As shown in Sec. IV C, C + v tends to
be positive (attractive interaction between polymer segments)
in the presence of clustering centers. So we expect there to be
a regime of density for which there is a balance between the
repulsion due to the excluded volume effect and the attraction
due to clustering making C ≈ 0. In such case our result
reproduces the one for the ideal chain (see section 1.2.3 in
Ref. [51]).

In the small k limit we find

Ng̃(k) = V 2

1/ρ̄2 − 2CV

(
1 − k2

3
ξ 2 + · · ·

)
, (59)

where ρ̄ = N/V is the average polymer segment density for a
single long polymer chain and the “curvature” of the structure
factor at k = 0 is

ξ 2 = 	2ρ̄V

6 − 12ρ̄2CV
, (60)

where 	 is the Kuhn length of the polymer. And in the
thermodynamic limit

(ξ/	)2 → − 1

12ρ̄C
. (61)

So that at large polymer densities the curvature tends to a
constant [we note that C now includes the excluded volume as
in Eq. (54)].

We also find, in the thermodynamic limit, the following
expression for the structure factor:

g(k) → 12

(	k)2 − 24ρ̄C
. (62)

Notice that in the absence of the effective interaction (C = 0)
the structure factor diverges at k = 0.

In the a = 2, b = 0 case, at constant V , in the small N limit
we find the free polymer result ξ 2 = N	2/6 + O(N3). In the
large N limit we find

(ξ/	)2 = 1

12v

V

N
+ 1

48v2

V 2

N2
+ O(1/N5/2). (63)

Given the densest possible filling N/V ∼ 1/v the curvature
tends to a constant.

VI. THE JANUS CASE

Although our field-theoretical formulation includes no
precise model for the mechanism that causes clustering centers
of a given functionality to occur, we investigate here the case
where the functionalities (10 and 40) of the clustering centers
are the same as those determined for Janus particles in recent

studies. Indeed there has recently been much development
in the techniques for the synthesis of new patchy colloidal
particles [36–39]. One particularly simple class of these
anisotropic particles, called Janus particles [40–43], seem to
form mainly clusters of either 10 or 40 particles. Here Monte
Carlo simulations [20,21] indicate that mainly stable micelle
(10 particles) or vesicle (40 particles) arrangements of these
particles are to be found in the vapor phase. Moreover it was
found that the clusters behave very similarly to an ideal gas,
since the particles forming the cluster tend to arrange with
their active surfaces toward the cluster center.

Janus chains have been suggested as potentially useful
candidates for understanding interesting polymer phenomena
[44]. We will apply our formalism to the case of a dense
polymer in a Janus fluid and in so doing we hope to add to
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C=0

effective
potential
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β
f
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FIG. 6. (Color online) The upper panel shows the RPA validity
region of the phase diagram, in the Janus case, for z1 = 1, z10 =
e10β, z40 = e40β , in the absence of any excluded volume effect. At β =
0 the C = 0 equation has solution ρ  0.647933 . . . . Note that the
validity region is in the small density region, where the contribution
from the quadratic fluctuations of the theory dominates, and the whole
theory is expected to be less significant. The lower panel shows the
free energy density as a function of the average density. The rapid in-
crease at high density is indicative of the limit of the RPA applicability.
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FIG. 7. (Color online) Shows the free energy density as a function
of the average density in the Janus case, for z1 = 1, z10 = e10β,

z40 = e40β , and v = 15.

the recent interest for Janus particles interacting with polymer
chains [43–45]. To the best of our knowledge there is no results
in the literature that proves the clustering in the Janus fluid in
the presence of the polymer. So we will take as a working
hypothesis the existence of such a clustering. And make the
approximation of treating the backbone units of the polymer
(the Janus particles) as an ideal fluid.

Given the general setting described above we can apply
our theoretical model to a polymer in a Janus fluid. By this
we think of chain segments only clustering to form limited
closed shell conformations, that is, micelles and vesicles. As
mentioned before, we however do not consider the nature of
spacial extent of the clustering in detail and simply presume
that it still occurs in the same way as if the Janus particles were
not connected to the polymer.

In the Janus case we have to choose a = 10 and b = 40 (see
Fig. 3). We then find for the determination of the critical point
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S
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Q
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S+n40

Q

FIG. 8. (Color online) In the Janus case for z1 = 1, z10 =
e10β, z40 = e40β , v = 15, and β = 1 shows the concentrations of
clusters of 1, 10, and 40 particles as a function of the density.
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FIG. 9. (Color online) In the Janus case for z1 = 1, z10 =
e10β, z40 = e40β , and v = 15, shows the concentrations of clusters
of 1 (nS

1 ), 10 (nS
10), and 40 (nS

40) particles as a function of the density
when we do not use the logarithmic correction in Eq. (24).

an algebraic equation of degree 40 Eq. (13). As expected, this
equation has just one solution for which A [from Eq. (28)] is
real and nonnegative.

We can see the generalized fugacities defined as zi ∝
exp(−βui + βμi) for i = 1, 10, 40, where ui is the average
internal energies of the cluster of i Janus particles and μi is
the chemical potential of this cluster species. It is moreover
reasonable to take μi ≈ μ independent of i (μ being the
chemical potential of the vapor phase of the Janus fluid) so
that we get zi ∝ exp(−βui).

Choosing z1 = 1, z10 = e10β, and z40 = e40β we find that
at small densities (where the theory is expected to be not
good) the effective potential is repulsive (due to the quadratic
fluctuations in the theory) even without adding an excluded
volume to the polymer (see Sec. IV C). The range of validity
of RPA in the phase diagram is shown in Fig. 6. In Fig. 6 we
show the behavior of the free energy density which clearly
shows the signature for the breakdown of the RPA theory at
high density.

Notice that, also in this case, limρ̄→∞ C = 0 so that by
adding a small excluded volume will allow us to reach the
high densities domain with RPA. At a fixed temperature C, as
a function of density, has a global maximum, so that choosing
the excluded volume v bigger than this value, the RPA can
be made valid at any density (see Fig. 7). Moreover, we
expect the theory to give consistent results in the high density
regime.

Our choice for the fugacities is justified a posteriori since
for β < 1 we are in the high temperature regime of the Janus
vapor [20] where the internal energy of a cluster of i Janus
particles is with a good approximation given by −(i − 1) ≈ −i

(corresponding to a completely stretched cluster).
Since ZN is a grand canonical in the clusters of Janus par-

ticles, we can take derivatives with respect to the generalized
fugacity zi to determine the concentration ni of clusters of i
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Janus particles as follows:

ni = i〈Ni〉
N

= i

N

∂ ln ZN

∂ ln zi

, (64)

where ln ZN = V [A + ln(−2C)/2].
A graph of the concentrations as a function of the average

polymer density is shown in Fig. 8. From Fig. 8 one can see the
difference between nx = nS

x and nx = nS
x + nQ

x for x = 1, 10,

and 40 and β = 1. Note that the conservation of particles
n1 + n10 + n40 = 1 is exactly satisfied at all densities and
temperatures in both cases. In Fig. 9 we show the dependence
of the concentrations from the temperature. Thus we would
say that at sufficiently high densities the vesicles appear and
as a consequence the micelles are reduced.

We conclude that this suggests strong dominance of
nonclustering at low densities. As the density is increased
smaller clusters and eventually larger clusters dominate the
linking behavior.

VII. CONCLUSIONS

In this work we have studied and developed a field-
theoretical formalism for a polymer immersed in an ideal
mixture of clustering centers. These centers cause clustering of
either a particles or b particles, that is, clusters of either species
are monodisperse. The field theory couples fields associated
with stickers to the polymer chain density and provides a
formally exact expression for the partition function (canonical
in polymer and grand canonical for the clustering centers).
We showed that it is possible to compute quantities using the
nonlinear theory by means of a saddle point approximation
and we argue that the approximation improves as the density
of the polymer chain increases. The current system and the
choice of implementation of additional fields enabled us to
derive saddle-point equations that are simpler than those

that arise in some other formalisms by not requiring the
solution of nonlinear integral equations. The benefit of the
local saddle-point equations is that they also enable a relatively
simple analysis of the stability and applicability considerations
of the theory.

For a homogeneous, dense polymer system, we computed
the effective interaction potential (up to quadratic density
fluctuations) and computed properties of the structure factor
within the random phase approximation. As expected, the
addition of an excluded volume interaction will compensate for
the attraction due to aggregation effects and extend the validity
of the RPA. The effective pairwise potential obtained in this
approximation has interesting, nontrivial density dependence.
Another clear consequence of increasing chain density is the
growing dominance of the higher functional clustering centers.

The nature of the clustering process is definitely of impor-
tance in aggregating polymer systems. (Recently, a theory for
cluster formation in homopolymer melts was introduced by
Semenov [17]). One motivation for our study is the closed
multimerization scenario suggested by particles in a Janus
fluid, where micelles (a = 10) and vesicles (b = 40) are
known to occur [20,21]. Future work will focus the attention
on the stability of such Janus-type multimers when connected
to a polymer with more detailed models of the cluster itself.
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APPENDIX A: COEFFICIENTS A, B, AND C
FOR THE A = 2, B = 0 CASE

The A, B, and C coefficients are given by

A± = 1

8z2

{
−z2

1 ± z1

√
z2

1 + 8ρ̄z2 + 8ρ̄z2 ln

(
4ρ̄z2

−z1 ±
√

z2
1 + 8ρ̄z2

)
+ 4z2

[
ρ̄ + ln

(
1 ± z1√

z2
1 + 8ρ̄z2

)
− ln 8

]}
, (A1)

B± = − 2z2

z2
1 + 8ρ̄z2

+ 1

4ρ̄

(
1 ∓ z1√

z2
1 + 8ρ̄z2

)
+ ln

(
4ρ̄z2

−z1 ±
√

z2
1 + 8ρ̄z2

)
, (A2)

C± = 8z2
2(

z2
1 + 8ρ̄z2

)2 + 1

8ρ̄2

[
−1 ± z1√

z2
1 + 8ρ̄z2

+ ρ̄

(
2 ∓ 2z1

(
z2

1 − 2z2 + 8ρ̄z2
)(

z2
1 + 8ρ̄z2

)3/2

)]
. (A3)

APPENDIX B: THE RANDOM PHASE APPROXIMATION

For the polymer chain, with a Kuhn length 	, we can write∫ {∏
dR
} {∏

G
}

=
∫

[dρ]
∫

[dζ ]
∫

[dR] e− 3
2	

∫ L

0 ds Ṙ2(s)ei
∫

dr ζ (r){ρ(r)−∫ L

0
ds
	

δ[r−R(s)]}

=
∫

[dρ]
∫

[dζ ]
∫

[dR] e− 3
2	

∫ L

0 ds Ṙ2(s)ei
∫

dr ζ (r)ρ(r)

{
1 − i

∫
dr
∫ L

0

ds

	
ζ (r)δ[r − R(s)]

− 1

2

∫
dr
∫ L

0

ds

	
ζ (r)δ[r − R(s)]

∫
dr′
∫ L

0

ds ′

	
ζ (r′)δ[r′ − R(s ′)] + · · ·

}
, (B1)

where L = N	 is the total polymer length and the dot denotes a derivative with respect to s.
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Now the first term gives just a normalization constant N . To calculate the second term we introduce the polymer
center of mass R0 so that R(s) = R0 + 
R(s) and write∫

[dζ ]
∫

[dR] e− 3
2	

∫ L

0 ds Ṙ2(s)ei
∫

dr ζ (r)ρ(r)
∫

dr
∫ L

0

ds

	
ζ (r)δ[r − R(s)]

=
∫

[dζ ]
∫

[dR] e− 3
2	

∫ L

0 ds Ṙ2(s)ei
∫

dr ζ (r)ρ(r)
∫

dr
∫ L

0

ds

	
ζ (r)

1

V

∑
k

eikr−ikR(s)

=
∫

[dζ ]
∫

[d
R]
∫

dR0 e− 3
2	

∫ L

0 ds 
Ṙ2(s)ei
∫

dr ζ (r)ρ(r)
∫

dr
∫ L

0

ds

	

1

V

∑
k

ζ (r)eikre−ik[R0+
R(s)]

=
∫

[dζ ]ei
∫

dr ζ (r)ρ(r)N 1

V

∫
dr
∫ L

0

ds

	

∑
k

ζ (r)δk,0

=
∫

[dζ ]ei
∫

dr ζ (r)ρ(r)N N

V

∫
dr ζ (r), (B2)

where V is the volume of the box and δk,0 is the Kronecker delta.
The third term gives∫

[dζ ]ei
∫

dr ζ (r)ρ(r)
∫

[d
R]
∫

dR0 e− 3
2	

∫ L

0 ds 
Ṙ2(s) 1

V 2

∑
k

∑
k′

∫
dr
∫ L

0

ds

	

∫
dr′
∫ L

0

ds ′

	

× ζ (r)ζ (r′)eikreik′r′
ei(k+k′)R0eik
R(s)eik′
R(s ′)

=
∫

[dζ ]ei
∫

dr ζ (r)ρ(r)N 1

V 2

∫ L

0

ds

	

∫ L

0

ds ′

	

∑
k

ζ̃ (k)ζ̃ (−k)〈eik[R(s)−R(s ′)]〉0, (B3)

where we denoted with the average

〈· · ·〉0 =
∫

[dR]e− 3
2	

∫ L

0 ds Ṙ2(s)[· · ·]∫
[dR]e− 3

2	

∫ L

0 ds Ṙ2(s)
, (B4)

and with the tilde the Fourier transform [48].
Now the average 〈eik[R(s)−R(s ′)]〉0 can be easily calculated by

discretizing the polymer and integrating over the bond vectors
bi = Ri+1 − Ri as follows:

〈eik[R(s)−R(s ′)]〉0 =
∫ ∏

i dbie
− 3

2	2

∑
i b2

i eik(b1+b2+···+bn)∫ ∏
i dbie

− 3
2	2

∑
i b2

i

= (e− k2	2

6
)n

, (B5)

where n = |s − s ′|/	. Since∫ L

0
ds

∫ L

0
ds ′ e−a|s−s ′ | = 2(aL − 1 + e−aL)

a2
, (B6)

we can introduce the function

S̃0(k) = 72
(
k2	L/6 − 1 + e− k2	L

6
)

V 2k4	4
, (B7)

with S̃0(0) = (N/V )2 = ρ̄2.
Then the expression we started with in Eq. (B1) can be

rewritten, omitting the functional integral over the density
collective variable, as

N
∫

[dζ̃ ]e
i
V

∑
k ζ̃ (k)ρ̃(−k)

[
1 − i

N

V
ζ̃ (0)

− 1

2V

∑
k

ζ̃ (k)V S̃0(k)ζ̃ (−k) + · · ·
]
. (B8)

We can now reconstruct the exponential to obtain∫
[dζ̃ ]e

i
V

∑
k ζ̃ (k)ρ̃(−k)e− 1

2V

∑
k ζ̃ (k)V S̃0(k)ζ̃ (−k)−i N

V
ζ̃ (0)

= N ′e− 1
2V

∑
k ln[S̃0(k)V ]e− 1

2V

∑
k 
ρ̃(k)

S̃
−1
0 (k)

V

ρ̃(−k). (B9)

Here 
ρ̃(k) = ρ̃(k) − ρ̄V δk,0.

APPENDIX C: THE GAUSSIAN DISTRIBUTION

The Gaussian distribution function for a set of real variables
x1,x2, . . . ,xN is defined as

�(x1,x2, . . . ,xN ) = C exp

(
−1

2

∑
n,m

Anmxnxm

)
, (C1)

where Anm is a symmetric positive definite matrix and
C is a normalization constant given by the requirement∫∞
−∞ · · · ∫∞

−∞
∏

n dxn� = 1.
Let 〈· · ·〉 be the average of the distribution function of

Eq. (C1),

〈· · ·〉 =
∫ ∞

−∞
· · ·
∫ ∞

−∞

∏
n

dxn · · ·�(x1,x2, . . . ,xN ), (C2)

then it can be proved [50] that

〈xnxm〉 = [A−1]nm. (C3)

In general we have the following formula (Wick’s theorem):〈
xn1xn2 · · · xn2p

〉
=
∑

all pairing

〈
xm1xm2

〉〈
xm3xm4

〉 · · · 〈xm2p−1xm2p

〉
. (C4)
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If the subscript n of xn is regarded as a continuous variable,
the set of points (x1,x2, . . . ,xN ) represents a continuous
function, and the integral over the set (x1,x2, . . . ,xN ) reduces
to the integration over all the function, and it is called the
functional integral. It is denoted by the symbol [dx], that is,∫ ∏

n dxn · · · → ∫ [dx] · · ·.
Consider now the following Gaussian distribution func-

tional:

�[φ] = C exp

[
−1

2

∫ ∞

−∞
dxφ2(x)

]
, (C5)

where φ is a real function, then using the continuous limit of
Eq. (C3) we find

〈φ(x)φ(x ′)〉 = δ(x − x ′), (C6)

where δ is the Dirac δ function.
If now φ = φ1 + iφ2 is a complex function we consider the

Gaussian distribution functional

�[φ,φ�] = C exp

[
−
∫ ∞

−∞
dxφ(x)φ�(x)

]
. (C7)

Now we find from Eq. (C6)

〈φ(x)φ�(x ′)〉 = 〈φ1(x)φ1(x ′) + φ2(x)φ2(x ′)〉
= 1

2δ(x − x ′) + 1
2δ(x − x ′) = δ(x − x ′) (C8)

and

〈φ(x)φ(x ′)〉 = 〈φ1(x)φ1(x ′) − φ2(x)φ2(x ′)
+ iφ1(x)φ2(x ′) + iφ2(x)φ1(x ′)〉

= 1
2δ(x − x ′) − 1

2δ(x − x ′) = 0. (C9)

APPENDIX D: FIELD THEORY WITHOUT 1 CLUSTERS

An alternative way to formulate the clustering, without the
use of clusters of size 1 is presented below. We shall show that
a simple mapping reduces again to a special case of Eq. (6).

Consider a system in which we have only clusters of sizes
a and b but no “inert” clusters of size 1. As explained in
Sec. II the functional integration over the fields ϕ and ϕ�

requires matching each ϕ of a clustering center with a ϕ� on
the polymer, permitting no unmatched ϕ and ϕ� pairs. Since
size a and b clusters do not necessarily attach to each potential
site on the polymer, all possible attachment sites have to be
generated. The product

N∏
i=1

[1 + ϕ�(Ri)]

produces all equally weighted possibilities of the attaching
to the the sites {Ri},∀i ∈ {1, . . . ,N} of a given polymer
configuration.

The analog to Eq. (5) then becomes

Z ′
Na,Nb

= N
∫

dR1 · · · dRNe−v
∑N

n,m=1 δ(Rn−Rm)
∫

[dϕ][dϕ�] e− ∫ dr ϕ(r)ϕ�(r)

× [1 + ϕ�(R1)]G(R1,R2)[1 + ϕ�(R2)]G(R2,R3) · · · G(RN−1,RN )[1 + ϕ�(RN )]

× 1

Na!

[∫
dr zaϕ

a(r)

]Na 1

Nb!

[∫
dr zbϕ

b(r)

]Nb

, (D1)

leading by the same procedure as described in Sec. II to analog of Eq. (6),

Z′
N = N

∫
[dϕ][dϕ�]

{∏
dR
} {∏

G
}

dN exp

[
−
∫

dr ϕ(r)ϕ�(r)

+
∫

dr ρ(r) ln(1 + ϕ�(r)/d) + za

∫
dr ϕa(r) + zb

∫
dr ϕb(r)

]
. (D2)

We see that the trivial transformation ϕ� → ϕ� − 1 in Eq. (D2) above leads to the original field-theoretic equation in the main
text Eq. (6) with z1 → 1. For this reason we treat the marginally more general case in this paper.
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