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Stability of the iterative solutions of integral equations as one phase freezing criterion
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A recently proposed connection between the threshold for the stability of the iterative solution of integral
equations for the pair correlation functions of a classical fluid and the structural instability of the corresponding
real fluid is carefully analyzed. Direct calculation of the Lyapunov exponent of the standard iterative solution
of hypernetted chain and Percus-Yevick integral equations for the one-dimendibndlard rods fluid shows
the same behavior observed in 3D systems. Since no phase transition is allowed in such 1D system, our
analysis shows that the proposed one phase criterion, at least in this case, fails. We argue that the observed
proximity between the numerical and the structural instability in 3D originates from the enhanced structure
present in the fluid but, in view of the arbitrary dependence on the iteration scheme, it seems uneasy to relate
the numerical stability analysis to a robust one-phase criterion for predicting a thermodynamic phase transition.
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[. INTRODUCTION in a complete metric space, the simple iteratighmay con-
verge towards the only fixed point Bi(A is k contractive or
When studying the structure and thermodynamics of clasit may not converge A is nonexpansive So the simple it-
sical fluids, one is often faced with the task of solving theerative method can be used to signal a fundamental change
nonlinear integral equation which stems out of the combinain the properties of the underlying operator.
tion of the Ornstein-Zernike equation and an approximate The operato@ will, in general, depend on the thermody-
relation between pair potential and correlation functithe  namic state of the fluid. In order to determine the properties
closure [1]. Integral equations can be generally written in of the operator at a given state we can proceed as follows.
the form First, we find the fixed pointy* using a numerical scheme
(more refined than the Picargl'sapable of converging in the
y(r)=Ay(r), (1) high density region. Next, we perturb the fixed point with an

. . arbitrary initial perturbations,(r) so that
where y(r) e S may be the total correlation functiam(r), y P (1)

the direct correlation function(r), or a combination of the
two, Sis a set of a metric space of functions, ahid5— S is . L OA .
a nonlinear operator mappirsgjinto itself. A(y"+ o) =Ay +5 do="7y"+ M, 4
Numerical analysis of integral equations suggests the use v
of the following combination
where we have introduced the Floquet matkix Now &;
y(r)=h(r)—c(r), (2 —Ms, may be considered as the new perturbation. We then

sincewy is a much smoother function th&ror c, especially in generate the successigf,; where

the core region.
It has been pointed out by Malescio and co-workers4] 5,=M&,_;. (5)

that, amongst the different numerical schemes that one may

choose to solvel), the simple iterative scheme of Picard

plays a special role. Picard’s scheme consists in generatinifjthe succession converges to zero then the operatisrk

successive approximations to the solution through the relacontractive, if it diverges the operator is nonexpansive.

tionship Malescio and co-workers caflé,} fictitious dynamicsand
associate it to the resulting fate of the initial perturbation the

YVns1=AYn, (3 nature of thestructural equilibriumof the fluid. If the suc-

cession converges to zero they say that the fluistrisctur-

starting from some initial valuey,. If the sequence of suc- ally stableandstructurally unstableotherwise. We will call

cessive approximation§y,} converges toward a valug®, . the density where the transition between a structurally

theny™ is a fixed point for the operatd, i.e., it is a solution  stable and unstable fluid occurs.

of Eq. (1), y*=Ay*. Banach’ s fixed point theorertsee Following Malescio and co-workers it is possible to de-

chapter 1 in Ref[5] especially theorem 1)Astates that, fine a measurefor the structural stability of the system as

given an operatof:S— S, whereSis a closed nonempty set follows. We define

*Electronic address: rfantoni@ts.infn.it :”M 5i(|’)||
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(6)
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where|[f(r)||= V=L, f2(r)) is the norm of a functiori de- ~ wherea is a real parameter9a<1. Note that while for a
fined over a mesh dfl points. We assume that the norm of nonexpansive operatoh the Picard iterative method3)
the perturbation depends exponentially on the number of itheeds not converge, one can prove convergence results on an
erations Hilbert space for the modified iterative method with fixed
(see proposition 10.16 in Ref5]). In all the computations
[18.11=1]80l|2*", (7)  we used a uniform grid oN=1024 points with a spacing
or=0.025. Generally, we observed a marginal increase of
where\ is the Lyapunov exponent related to the fictitious p, ., by loweringN.

dynamics. Then one can write the average exponential A method to find a Lyapunov exponent, equivalent but

of A on the density for various simple three-dimensional lig-
uids (and various closurgshard sphere$2], Yukawa, in-
verse power, and Lennard-Jones potenfidlsFor all these o106 is theith eigenvalue. In our numerical computa-
systems they.found that|ncrea§gs with the density and the tions we always used Eq10) to calculate the Lyapunov
density at whichh becomes positiveyiys,, falls close to the oy nonents since it is explicitly independent from the choice
freezing density; of the fluid system. This occurrence leads ¢ 4, initial perturbation.

them to propose th|_s kind of_e}naIyS|s asa one-phase criterion \we constructed the Floquet matrix in the following way
to predict the freezing transition of a dense fluid and to estiyg;

) : ]. In a Picard iteration we start frony(r), we calculate
mate p¢. However, we think that there are some practicalc ) from the closure approximation, we calculate its Fourier
and conceptual difficulties with such one-phase criterion.

First of all, it does not depend only on the closure adoptedransform c(k), W_e calcula~tey(k) fr?m the OZ equation,
but also on the kind of algorithm used to solve the integral@nd finally we antitransforny to gety'(r). For example for
equation. Indeed, different algorithms give differegts; and @ three-dimensional system a PY iteration in discrete form
Malescio and co-workers choose to use as instability thresH:an be written as follows:
old for their criterion the one obtained using Picard algo-

stretching of initially nearby points as more accurate than the one of Malescio co-workeysgoes
I through the diagonalization of the Floquet matrix. Note that
1 in general this matrix is nonsymmetric, thus yielding com-
A:r!'rrlﬁ Iogz( iHo Si) : ®  plex eigenvalues. A Lyapunov exponent can then be defined
- as[8]
Malescio and co-workers have calculated the dependence X’ = log[ max —Re(ei)br ime)d)], (10)
I

rithm, thus giving it a special status. However, it is hard to ci=(1+y)(e Phi-1), 1D
understand why the particular algorithm adopted in the solu- N_1

tion of the integral equation should be directly related to a ~ Awor ]

phase boundary. S/ 2, risinkire;, (12)

j o i=1
Moreover, one would expect that the estimate pfs; :
would improve in connection with improved closures. This is

~  ~ ~

not the case, at least in the one-component hard-sphere fluid. Y= pCj/(1=pCy), (13
Even a more serious doubt about the validity of the pro- No1

posed criterion comes from its behavior in one-dimensional . ok , ~

systems. In this paper we present the same Lyapunov expo- Yi :szri 121 kj sin(kjri)y;, (14)

nent analysis on a system of hard rods in one dimension
treated using either the Percus-YevigkY) or the hypernet- wherer;=idr are theN mesh points ir spacek; = j sk are
ted chain(HNC) approximations. What we find is that the 1o N mesh points ink space, with sk= w/éN5r) c:
Lyapunov exponent as a function of density has the same B T3k S T~ K ddb— o
bevavior a6 hat of he ree-dimensionsl sysiemrd <) 20000, 87, 22000, s Ce
spheres it becomes positive beyond a certaifs;. Since it Floquet r%atrix wFi)II then be grd p '

is known[6] that a one-dimensional fluid of hard rods does q

not have a phase transition, our result sheds some doubts on

’ N—-1 [ ~ -~
the validity of the proposed criterion. M. :gl: gl % ’90_”‘ ﬁ
Y (9‘)’1 m=1 &ym acm &CJ 5’}/J
Il. TECHNICAL DETAILS srokir
. . . T U a8 D ..
As numerical scheme to calculate the fixed point we used T (ri)(e 1= 1)(Di-j=Disj), (19

Zerah' s algorithn 7] for the three-dimensional systems and
a modified iterative method for the hard rods in one dimen+here
sion. In the modified iterative method input and output are

mixed at each iteration N1 2pC Co |2
D= cogk )| —2om +( Pem ) . (16
Yn+1=Anix¥n= Ayt (1—a) vy, 9 m=1 1-pcCpn 1-pcp
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The HNC case can be obtained replacing in EtH) 1.0
[exp(~Bey)—1] with [exp(~ Bebj+)—1]. . o5
To derive the expression for the Floquet matrix valid for 5

the one-dimensional system and consistent with a trapezoidal S 00
discretization of the integrals, we need to replace Eff. g 0.5
and(13) with % 10
N—1 L = s
= T+ = 20

© 25r( ; costkyri)ei+ 5], A7 00 01 02 03 04 05 06 07 08

#

p

FIG. 1. For a fluid of hard rods in one dimension, we show the
Lyapunov exponent as a function of the reduced dengity=po
whereg is the rods widthas calculated using the PY and the HNC
closures.

. (19

sk (& 1
')’i,:?( 21 Coikjri)%'"'i)’o

III. NUMERICAL RESULTS

We checked our procedure for a three-dimensional hard- IV. CONCLUSIONS

spheres fluid and a Lennard-Jones fluid at a reduced tempera- The fictitious dynamics associated to the iterative solution
ture T*=2.74. Our results, obtained using E@0), were in  of an integral equation can signal the transition of the map of
good agreement with those of Males@oal. [2,3] which  the integral equation frork contractive to nonexpansive. If
used recipe(8) instead (another difference between our ihe Lyapunov exponent is negative the majx ontractive,
analysis and theirs is that we used fothe indirect correla- i jt js positive the map is nonexpansive.
tion function (2) while they were using the total correlation  gjnce it is possible to modify, in an arbitrary way, the
function h). For the Lennard-Jones fluid our results werefictitious dynamics keeping the same fixed point, it is diffi-
indistinguishable from those of Malesaét al.[3]. We found ¢yt to understand a deep direct connection between the sta-
a reduced instability density],s; around 1.09 in the PY ap- pility properties of the map and a one-phase criterion for a
proximation and around 1.06 in the HNC approximation. Forthermodynamic transition.
the three-dimensional hard-sphere fluid we found slightly ~Admittedly, the correlations shown by Malesabal. are
larger (4%)values forpins;. We found anins=pinsemd®6  striking. We calculated the Lyapunov exponent as a function
of about 0.445 in the PY approximation and around 0.461 irof the density for various fluid¢hard spheres in one and
the HNC approximation. We also checked the value correthree-dimensions and three-dimensional Lennard-Jones
sponding to the Martynov-Sarkisop.0] closure and we fluid) both in the HNC and PY approximations. For the
found 7;,s;=0.543. three-dimensional fluids the instability density falls close to
We feel that the differences are within what we can expecthe freezing densityp;. For example, the Lennard-Jones
on the basis of small numerical differences in differentfluid studied with HNC should undergo a freezing transition
implementations. We think that it is more worthy of notice at p* =1.06 or atp* =1.09, if studied with PY , rather close
that closures providing better structural and thermodynamigg the freezing densitp} =1.113. For hard sphergs., is
properties, like PY or MS do not provide a better value of gpout 10% smaller tharp* ~0.948. The Hansen-Verlet
Ninst- . “rule” states that a simple fluid freezes when the maximum
We looked at the structure of the Floquet matrix t00 butyf the structure factor is about 2.§%1]. According to this
from direct inspection we can conclude that it is not diago-yle the three-dimensional hard-spheres fluid studied with
nally dominated. HNC should undergo a freezing transition@t 1.01 while

Then, we have calculated the Lyapunov expori@fi as  \yhen studied with PY the transition should bepat0.936.
a function of the density for a fluid of hard rods in one

dimension using both PY and HNC closures. The results of

0.15

the calculation are shown in Fig. 1 and Fig. 2. The curves PY —o—
show the same qualitative behavior as the ones for the three- o010 [HNC —*
dimensional fluid. From Fig. 1 we can see how the slope of

the curves starts high at low densities and decreases rapidly 0.05
with p. At high densities the Lyapunov exponent becomes
zero atpi,st- As expected, to find the fixed point fgr

0.00
-0.05 M
tive schemd9). Before reaching the instability threshold the

Lyapunov exponent

=pinst It IS Necessary to choose<1 in the modified itera-

curves show a rapid change in their slopgat pins:. Fig- O o 062 o6a o066 oes o070

ure 2 shows a magnification of the region aroyndfrom *

which we are led to conclude that, within the numerical ac- P

curacy of the calculations, the slope of the curdas/dp FIG. 2. We show a magnification of Fig. 1 in a neighborhood of
undergoes a jump at; . the instability threshold.
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The corresponding estimates obtained thropdh,, 0.879  mate level of the theorythere is no direct relation between

(HNC) and 0.85Q(PY) are poorer and, more importantly, are the contractiveness propertiesdand the thermodynamigs

not consistent with the well known better performance of PYIt looks more reasonable that the increase of the correlations

in the case of hard spheres. would be the common origin of the numerical instability of
In one dimension, a fluid of hard spherésard rods, the Picard iteration and, whenever it is possible, of thermo-

cannot undergo a phase transiti@]. From Fig. 1 we see dynamic phase transitions.

that the system still becomes structurally unstable. This can

be explained by_observjng that the structural stability as de- ACKNOWLEDGMENTS
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