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Stability of the iterative solutions of integral equations as one phase freezing criterion
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A recently proposed connection between the threshold for the stability of the iterative solution of integral
equations for the pair correlation functions of a classical fluid and the structural instability of the corresponding
real fluid is carefully analyzed. Direct calculation of the Lyapunov exponent of the standard iterative solution
of hypernetted chain and Percus-Yevick integral equations for the one-dimensional~1D! hard rods fluid shows
the same behavior observed in 3D systems. Since no phase transition is allowed in such 1D system, our
analysis shows that the proposed one phase criterion, at least in this case, fails. We argue that the observed
proximity between the numerical and the structural instability in 3D originates from the enhanced structure
present in the fluid but, in view of the arbitrary dependence on the iteration scheme, it seems uneasy to relate
the numerical stability analysis to a robust one-phase criterion for predicting a thermodynamic phase transition.
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I. INTRODUCTION

When studying the structure and thermodynamics of c
sical fluids, one is often faced with the task of solving t
nonlinear integral equation which stems out of the combi
tion of the Ornstein-Zernike equation and an approxim
relation between pair potential and correlation functions~the
closure! @1#. Integral equations can be generally written
the form

g~r !5Ag~r !, ~1!

whereg(r )PS may be the total correlation functionh(r ),
the direct correlation functionc(r ), or a combination of the
two, S is a set of a metric space of functions, andA:S→S is
a nonlinear operator mappingS into itself.

Numerical analysis of integral equations suggests the
of the following combination

g~r !5h~r !2c~r !, ~2!

sinceg is a much smoother function thanh or c, especially in
the core region.

It has been pointed out by Malescio and co-workers@2–4#
that, amongst the different numerical schemes that one
choose to solve~1!, the simple iterative scheme of Picar
plays a special role. Picard’s scheme consists in genera
successive approximations to the solution through the r
tionship

gn115Agn , ~3!

starting from some initial valueg0. If the sequence of suc
cessive approximations$gn% converges toward a valueg!,
theng! is a fixed point for the operatorA, i.e., it is a solution
of Eq. ~1!, g!5Ag!. Banach’ s fixed point theorem~see
chapter 1 in Ref.@5# especially theorem 1.A! states that,
given an operatorA:S→S, whereS is a closed nonempty se
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in a complete metric space, the simple iteration~3! may con-
verge towards the only fixed point inS(A is k contractive! or
it may not converge (A is nonexpansive!. So the simple it-
erative method can be used to signal a fundamental cha
in the properties of the underlying operator.

The operatorA will, in general, depend on the thermody
namic state of the fluid. In order to determine the propert
of the operator at a given state we can proceed as follo
First, we find the fixed pointg! using a numerical schem
~more refined than the Picard’s! capable of converging in the
high density region. Next, we perturb the fixed point with
arbitrary initial perturbationd0(r ) so that

A~g!1d0!.Ag!1
]A

]g U
g!

d05g!1Md0 , ~4!

where we have introduced the Floquet matrixM. Now d1
5Md0 may be considered as the new perturbation. We t
generate the succession$dn% where

dn5Mdn21 . ~5!

If the succession converges to zero then the operatorA is k
contractive, if it diverges the operator is nonexpansi
Malescio and co-workers call$dn% fictitious dynamicsand
associate it to the resulting fate of the initial perturbation
nature of thestructural equilibriumof the fluid. If the suc-
cession converges to zero they say that the fluid isstructur-
ally stableandstructurally unstableotherwise. We will call
r inst the density where the transition between a structura
stable and unstable fluid occurs.

Following Malescio and co-workers it is possible to d
fine a measurefor the structural stability of the system a
follows. We define

Si5
uuMd i~r !uu
uud i~r !uu

, ~6!
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whereuu f (r )uu5A( i 51
N f 2(r i) is the norm of a functionf de-

fined over a mesh ofN points. We assume that the norm
the perturbation depends exponentially on the number o
erations

uudnuu5uud0uu2ln, ~7!

wherel is the Lyapunov exponent related to the fictitio
dynamics. Then one can write the average exponen
stretching of initially nearby points as

l5 lim
n→`

1

n
log2S )

i 50

n21

Si D . ~8!

Malescio and co-workers have calculated the depende
of l on the density for various simple three-dimensional l
uids ~and various closures!: hard spheres@2#, Yukawa, in-
verse power, and Lennard-Jones potentials@3#. For all these
systems they found thatl increases with the density and th
density at whichl becomes positive,r inst , falls close to the
freezing densityr f of the fluid system. This occurrence lea
them to propose this kind of analysis as a one-phase crite
to predict the freezing transition of a dense fluid and to e
mate r f . However, we think that there are some practi
and conceptual difficulties with such one-phase criterion.

First of all, it does not depend only on the closure adop
but also on the kind of algorithm used to solve the integ
equation. Indeed, different algorithms give differentr inst and
Malescio and co-workers choose to use as instability thre
old for their criterion the one obtained using Picard alg
rithm, thus giving it a special status. However, it is hard
understand why the particular algorithm adopted in the so
tion of the integral equation should be directly related to
phase boundary.

Moreover, one would expect that the estimate ofr inst
would improve in connection with improved closures. This
not the case, at least in the one-component hard-sphere

Even a more serious doubt about the validity of the p
posed criterion comes from its behavior in one-dimensio
systems. In this paper we present the same Lyapunov e
nent analysis on a system of hard rods in one dimens
treated using either the Percus-Yevick~PY! or the hypernet-
ted chain~HNC! approximations. What we find is that th
Lyapunov exponent as a function of density has the sa
behavior as that of the three-dimensional system~hard
spheres!: it becomes positive beyond a certainr inst . Since it
is known @6# that a one-dimensional fluid of hard rods do
not have a phase transition, our result sheds some doub
the validity of the proposed criterion.

II. TECHNICAL DETAILS

As numerical scheme to calculate the fixed point we u
Zerah’ s algorithm@7# for the three-dimensional systems a
a modified iterative method for the hard rods in one dim
sion. In the modified iterative method input and output a
mixed at each iteration

gn115Amixgn5aAgn1~12a!gn , ~9!
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wherea is a real parameter 0,a,1. Note that while for a
nonexpansive operatorA the Picard iterative method~3!
needs not converge, one can prove convergence results o
Hilbert space for the modified iterative method with fixeda
~see proposition 10.16 in Ref.@5#!. In all the computations
we used a uniform grid ofN51024 points with a spacing
dr 50.025. Generally, we observed a marginal increase
r inst by loweringN.

A method to find a Lyapunov exponent, equivalent b
more accurate than the one of Malescio co-workers~8!, goes
through the diagonalization of the Floquet matrix. Note th
in general this matrix is nonsymmetric, thus yielding com
plex eigenvalues. A Lyapunov exponent can then be defi
as @8#

l85 log@max
i

~ARe~ei !
21Im~ei !

2!#, ~10!

where ei is the i th eigenvalue. In our numerical computa
tions we always used Eq.~10! to calculate the Lyapunov
exponents since it is explicitly independent from the cho
of an initial perturbation.

We constructed the Floquet matrix in the following wa
@9#. In a Picard iteration we start fromg(r ), we calculate
c(r ) from the closure approximation, we calculate its Four
transform c̃(k), we calculateg̃(k) from the OZ equation,
and finally we antitransformg̃ to getg8(r ). For example for
a three-dimensional system a PY iteration in discrete fo
can be written as follows:

ci5~11g i !~e2bf i21!, ~11!

c̃ j5
4pdr

kj
(
i 51

N21

r i sin~kj r i !ci , ~12!

g̃ j5r c̃ j
2/~12r c̃ j !, ~13!

g i85
dk

2p2r i
(
j 51

N21

kj sin~kj r i !g̃ j , ~14!

wherer i5 idr are theN mesh points inr space,kj5 j dk are
the N mesh points ink space, with dk5p/(Ndr ), ci

5c(r i), g i5g(r i), c̃ j5 c̃(kj ), g̃ j5g̃(kj ), andf i5f(r i) is
the interparticle potential calculated on the grid points. T
Floquet matrix will then be

Mi j 5
]g i8

]g j
5 (

m51

N21 ]g i8

]g̃m

]g̃m

] c̃m

] c̃m

]cj

]cj

]g j

5
drdk

p S r j

r i
D ~e2bf j21!~Di 2 j2Di 1 j !, ~15!

where

Dl5 (
m51

N21

cos~kmr l !F 2r c̃m

12r c̃m

1S r c̃m

12r c̃m
D 2G . ~16!
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The HNC case can be obtained replacing in Eq.~15!
@exp(2bfj)21# with @exp(2bfj1gj)21#.

To derive the expression for the Floquet matrix valid f
the one-dimensional system and consistent with a trapezo
discretization of the integrals, we need to replace Eqs.~11!
and ~13! with

c̃ j52dr S (
i 51

N21

cos~kj r i !ci1
1

2
c0D , ~17!

g i85
dk

p S (
i 51

N21

cos~kj r i !g̃ j1
1

2
g̃0D . ~18!

III. NUMERICAL RESULTS

We checked our procedure for a three-dimensional ha
spheres fluid and a Lennard-Jones fluid at a reduced temp
ture T* 52.74. Our results, obtained using Eq.~10!, were in
good agreement with those of Malescioet al. @2,3# which
used recipe~8! instead ~another difference between ou
analysis and theirs is that we used forg the indirect correla-
tion function ~2! while they were using the total correlatio
function h). For the Lennard-Jones fluid our results we
indistinguishable from those of Malescioet al. @3#. We found
a reduced instability densityr inst* around 1.09 in the PY ap
proximation and around 1.06 in the HNC approximation. F
the three-dimensional hard-sphere fluid we found sligh
larger (4%)values forr inst . We found ah inst5r instpd3/6
of about 0.445 in the PY approximation and around 0.461
the HNC approximation. We also checked the value co
sponding to the Martynov-Sarkisov@10# closure and we
found h inst50.543.

We feel that the differences are within what we can exp
on the basis of small numerical differences in differe
implementations. We think that it is more worthy of notic
that closures providing better structural and thermodyna
properties, like PY or MS do not provide a better value
h inst .

We looked at the structure of the Floquet matrix too b
from direct inspection we can conclude that it is not diag
nally dominated.

Then, we have calculated the Lyapunov exponent~10! as
a function of the density for a fluid of hard rods in on
dimension using both PY and HNC closures. The results
the calculation are shown in Fig. 1 and Fig. 2. The curv
show the same qualitative behavior as the ones for the th
dimensional fluid. From Fig. 1 we can see how the slope
the curves starts high at low densities and decreases ra
with r. At high densities the Lyapunov exponent becom
zero at r inst . As expected, to find the fixed point forr
*r inst it is necessary to choosea,1 in the modified itera-
tive scheme~9!. Before reaching the instability threshold th
curves show a rapid change in their slope atrc,r inst . Fig-
ure 2 shows a magnification of the region aroundrc from
which we are led to conclude that, within the numerical a
curacy of the calculations, the slope of the curvesdl8/dr
undergoes a jump atrc .
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IV. CONCLUSIONS

The fictitious dynamics associated to the iterative solut
of an integral equation can signal the transition of the map
the integral equation fromk contractive to nonexpansive. I
the Lyapunov exponent is negative the map isk contractive,
if it is positive the map is nonexpansive.

Since it is possible to modify, in an arbitrary way, th
fictitious dynamics keeping the same fixed point, it is dif
cult to understand a deep direct connection between the
bility properties of the map and a one-phase criterion fo
thermodynamic transition.

Admittedly, the correlations shown by Malescioet al. are
striking. We calculated the Lyapunov exponent as a funct
of the density for various fluids~hard spheres in one an
three-dimensions and three-dimensional Lennard-Jo
fluid! both in the HNC and PY approximations. For th
three-dimensional fluids the instability density falls close
the freezing densityr f . For example, the Lennard-Jone
fluid studied with HNC should undergo a freezing transiti
at r* .1.06 or atr* .1.09, if studied with PY , rather close
to the freezing densityr f* .1.113. For hard spheresr inst* is
about 10% smaller thanr f* ;0.948. The Hansen-Verle
‘‘rule’’ states that a simple fluid freezes when the maximu
of the structure factor is about 2.85@11#. According to this
rule the three-dimensional hard-spheres fluid studied w
HNC should undergo a freezing transition atr.1.01 while
when studied with PY the transition should be atr.0.936.

FIG. 1. For a fluid of hard rods in one dimension, we show t
Lyapunov exponent as a function of the reduced density (r* 5rs
wheres is the rods width! as calculated using the PY and the HN
closures.

FIG. 2. We show a magnification of Fig. 1 in a neighborhood
the instability threshold.
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The corresponding estimates obtained throughr inst* , 0.879
~HNC! and 0.850~PY! are poorer and, more importantly, a
not consistent with the well known better performance of
in the case of hard spheres.

In one dimension, a fluid of hard spheres~hard rods!,
cannot undergo a phase transition@6#. From Fig. 1 we see
that the system still becomes structurally unstable. This
be explained by observing that the structural stability as
fined by Malescioet al. is a property of the mapA and in
particular of the algorithm used to get the solution of t
integral equation under study. As such, it is not directly
lated to the thermodynamic properties even at the appr
. E

. E

s
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mate level of the theory~there is no direct relation betwee
the contractiveness properties ofA and the thermodynamics!.
It looks more reasonable that the increase of the correlat
would be the common origin of the numerical instability
the Picard iteration and, whenever it is possible, of therm
dynamic phase transitions.

ACKNOWLEDGMENTS

G.P. would like to acknowledge preliminary explorato
work on this subject carried on in collaboration with Matte
Mosangini and Waheed Adeniyi Adeagbo.
@1# J.P. Hansen and I.R. McDonald,Theory of Simple Liquids, 2nd
ed. ~Academic Press, London, 1986!.

@2# G. Malescio, P.V. Giaquinta, and Y. Rosenfeld, Phys. Rev
57, R3723~1998!.

@3# G. Malescio, P.V. Giaquinta, and Y. Rosenfeld, Phys. Rev
61, 4090~2000!.

@4# G. Malescio and P.V. Giaquinta, Phys. Rev. E62, 4439~2000!.
@5# E. Zeidler,Nonlinear Functional Analysis and its Application

~Springer-Verlag, New York, 1986!, Vol. 1.
@6# L.V. Hove, Physica~Amsterdam! 16, 137 ~1950!.
@7# G. Zerah, J. Comput. Phys.61, 280 ~1985!.
@8# R.Z. Sagdeev, D.A. Usikov, and G.M. Zaslavsky,Nonlinear

Physics: From The Pendulum To Turbulence and Chaos~Chur:
Harwood Academic Publishers, London, 1988!.

@9# M.J. Gillan, Mol. Phys.38, 1781~1979!.
@10# G.A. Martynov and G.N. Sarkisov, Mol. Phys.49, 1495

~1983!.
@11# J.P. Hansen and L. Verlet, Phys. Rev.184, 151 ~1969!.
4-4


