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I. INTRODUCTION

The aim of this work is to find out what affine
quantization [1,2] does to a classical field-theory for two
real scalar fields, or equivalently a complex scalar field, of
mass m subject to the Mexican-hat, Higgs potential, rather
than canonical quantization [3]. To this aim we will
compare the two-point function of the two fields in the
two frameworks.
In particular in this paper we try to understand in what

ways an affine quantization is similar as well as dissimilar
from a canonical quantization. We add that some nonfree
real scalar fields have already been observed and that
canonical quantization fails for several nonrenormalizable
fields, such as ðϕ12Þ3 [4] and ðϕ4Þ4 [5]. The key to that
result is the introduction of a highly unusual, additional,
nonquadratic, term that is dictated by affine quantization.
While affine quantization employs an additional term, that
particular term formally disappears when the Planck con-
stant ℏ → 0, which makes it a plausible modification of the
quadratic terms of traditional free real scalar fields in order
to extend acceptable quantization of traditional nonrenor-
malizable models. [6–10]
This work should be considered as a follow up of our

previous work [11] where the two-point function of a single
Euclidean free real scalar field subject to affine quantization
was found through Monte Carlo (MC) methods. In par-
ticular in that work we found that the vacuum expectation
value of the field diverges in the continuum limit. This

shortcoming is expected to disappear in the present case of
a complex field φ ¼ ϕ1 þ iϕ2. In fact, in this case, one can
go “slowly” “around” the peak at φ ¼ 0 with no need of
“jumps” [11].
The covariant Euclidean action in canonical quantization

[3] is1
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Z �
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Vðϕ1;ϕ2Þ¼
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2Þ−Φ2�2; ð1:2Þ

with x ¼ ðx0; x1;…; xsÞ ¼ ðx0; x⃗Þ for s spatial dimensions
and n ¼ sþ 1 for the number of space-time dimensions
with x0 ¼ ct, where c is the speed of light constant and t
extends from zero to ℏβ with β ¼ 1=kBT, kB being the
Boltzmann constant and T the absolute temperature. We
will work at s ¼ 3. And V is the self-interaction potential
density corresponding to an interacting Higgs theory with a
bare mass m and a bare coupling g.
The covariant Euclidean action in affine quantization

[1,2] is
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1Note however that Eq. (1.3) can be simplified to
V ¼ g½ðϕ2

1 þ ϕ2
2Þ − A2�2 þ constant, where A involves a combi-

nation of Φ and m: A2 ¼ Φ2 −m2=4g.
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where ϵ > 0 is a parameter used to regularize the “3=8” extra
term stemming from considering the complex field φðxÞ ¼
ϕ1ðxÞ þ iϕ2ðxÞ and the momentum field πðxÞ ¼
−iℏ∂=∂φðxÞ as the two conjugate canonical variables (see
Appendix A in [4]) and δ is a Dirac delta function. In this case
the Hamiltonian density formally contains a divergent
term,2 in the total potential density VðϕÞ ¼ 3

8
δ2sð0Þℏ2=

ðϕ2
1 þ ϕ2

2 þ ϵÞ þ VðϕÞ, in the continuum, but the field theory
can be regularized and treated on a lattice, and the approach
toward the continuum will be taken under exam in this
work. In the following we will use natural units with
c ¼ ℏ ¼ kB ¼ 1.
In our previousworkswe studied the single real scalar field

nonrenormalizable canonical cases with VðϕÞ ¼ 1
2
m2ϕ2 þ

gϕ4 [5] in s ¼ 3 and 1
2
m2ϕ2 þ gϕ12 in s ¼ 2 [4], where g is

the bare coupling constant. And we showed that the
corresponding affine cases are indeed renormalizable.
MC [12,13] is the numerical method of choice to treat

multidimensional integrals of high dimensions and, there-
fore, is especially useful to compute path integrals. We will
use it to study the two-point function of the Euclidean
action of two real scalar field in affine quantization. Our
estimate of the path integrals will be generally subject to
three sources of numerical uncertainties: The one due to the
statistical errors, the one due to the space-time discretiza-
tion, and the one due to the finite-size effects. Of these, the
statistical errors scale like M−1=2 where M is the computer
time, the discretization of space-time is responsible for the
distance from the continuum limit (which corresponds to a
lattice spacing a → 0), and the finite-size effects stems
from the necessity to approximate the infinite space system
with one in a periodic box of volume Ls with L ¼ Na being
the box side, subject to N discretization points. The finite-
size effects are due to the distance from the thermodynamic
limit (which corresponds to N → ∞). [14]
The work is organized as follows: In Sec. II we derive the

lattice formulation of the field theory needed in the treat-
ment on the computer; in Sec. III we describe our computer
experiment and introduce the observables that will be
measured during our simulations; in Sec. IV we present
our partial results obtained by working with the two scalar
fields ϕ1 and ϕ2 where we encounter ergodicity problems
for the affine case; in Sec. V we are able to overcome the
ergodicity breakdown observed in the previous section and
we present our final results for the affine case obtained by
working with the two scalar fields ρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2
1 þ ϕ2

2

p
and θ ¼

arctanðϕ2=ϕ1Þ such that dϕ1dϕ2 ¼ ρdθdρ. Section VI is
for final remarks.

II. THE LATTICE FORMULATION
OF THE FIELD-THEORY MODEL

We used a lattice formulation of the field theory. The
theory considers a complex scalar field φ ¼ ϕ1 þ iϕ2

taking the value φðxÞ on each site of a periodic, hypercubic,
n-dimensional lattice of lattice spacing a and periodicity
L ¼ Na. The canonical covariant action for the field,
Eq. (1.1), is then approximated by

SðcÞ½ϕ1;ϕ2�
an

≈
1

2a2
X
x;μ

f½ϕ1ðxÞ − ϕ1ðxþ eμÞ�2

þ ½ϕ2ðxÞ − ϕ2ðxþ eμÞ�2g
þ
X
x

Vðϕ1ðxÞ;ϕ2ðxÞÞ; ð2:1Þ

where eμ is a vector of length a in the þμ direction and we
are at a temperature T ¼ 1=Na, in units where Boltzmann
constant kB ¼ 1.
Note that in ourmodel the continuous symmetryφ → eiαφ

breaks down spontaneously and the mass spectrum contains
a Goldstone boson. The accepted signal of a system being in
the symmetry broken phase in a finite volume, in the absence
of a small symmetry breaking term, is not a nonzero order
parameter, but rather the fact that a product of order
parameters, at points x, y, tends to a nonzero limit with
increasing jx − yj. To understand the properties of the system
at finite volume, it is convenient to add a small symmetry
breaking term and to work with the potential

V ¼ gðϕ2
1 þ ϕ2

2 − A2Þ2 þ ðε2=2Þϕ2
2 þ constant; ð2:2Þ

The term proportional to ε2 ensures that the classical action
has a proper minimum at the point ϕ1 ¼ A;ϕ2 ¼ 0. The
expansion of the potential in powers of ψ ¼ ϕ1 − A, and ϕ2

starts with

V ¼ ðM2=2Þψ2 þ ðε2=2Þϕ2
2 þ…; ð2:3Þ

M ¼ A
ffiffiffiffiffi
8g

p
: ð2:4Þ

The first term represents a free particle ofmassM, the second
a free particle of mass ε. The situation is the same as in the
case of the free real scalar field: the perturbative expansion of
the two-point function starts with

hϕ1ðxÞϕ1ðyÞi ¼ A2 þDðx − y;M;LÞ; ð2:5Þ

hϕ2ðxÞϕ2ðyÞi ¼ Dðx − y; ε; LÞ; ð2:6Þ

hϕ1ðxÞϕ2ðyÞi ¼ 0; ð2:7Þ

where h…i is the vacuum expectation value [defined in
Eq. (2.11)] andDðz;m; LÞ is the propagator of a free particle

2The divergent integral
R
N
−N dϕ=ϕ2, can bemade finite simply by

a regularized integral such as
RP0N

n¼−Nð1=3r2Þ½ðnþ1Þ2cos2ðkÞþ
n2sin2ðkÞcos2ðk0Þþðn−1Þ2sin2ðkÞsin2ðk0Þ�−1dr3dkdk0 where the
prime over the sum indicates that we are considering a periodic
closure −N, N for the three terms in square brackets.
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of mass m on a hypercubic Euclidean box of size Ln. For
ε ¼ 0, the termDðz; ε; LÞ reduces to a sum of free massless
propagators:

Dðz; 0; LÞ
¼ ð1=4π2Þ

X
n0;n1;n2;n3

1=½ðz0 þ n0LÞ2 þ � � � þ ðz3 þ n3LÞ2�;

ð2:8Þ

where z ¼ ðz0; z1;…; zsÞ and nμ ∈ Z for μ ¼ 0; 1;…; s, but
this expression does not make sense because the sum

diverges. As long as ε is different from zero, the limitL → ∞
ensures that a single term in the sum survives, the one with
n0 ¼ … ¼ n3 ¼ 0, which describes the contribution from
the Goldstone boson.
Expression (2.1) needs to be modified for the affine

action of Eq. (1.3). In this case the Dirac delta function is
replaced by δ2sð0Þ → a−2s. Moreover it is convenient the
following scaling: ϕi ¼ a−s=2ϕ̄i, Φi ¼ a−s=2Φ̄i, g ¼ asḡ,
and ϵ ¼ a−sϵ̄ which gives the following discretized
approximation for the affine action

SðaÞ½ϕ̄1; ϕ̄2�
a−san

≈
1

2a2
X
x;μ

f½ϕ̄1ðxÞ − ϕ̄1ðxþ eμÞ�2 þ ½ϕ̄2ðxÞ − ϕ̄2ðxþ eμÞ�2g

þ
X
x

3

8

1

ϕ̄2
1ðxÞ þ ϕ̄2

2ðxÞ þ ϵ̄

þ
X
x

�
1

2
m2 ðϕ̄2

1ðxÞ þ ϕ̄2
2ðxÞÞ þ ḡ ½ðϕ̄2

1ðxÞ þ ϕ̄2
2ðxÞÞ − Φ̄2�2

�
: ð2:9Þ

Note that if g is taken different from zero, the relation
g ¼ asḡ shows that ḡ carries a dimension. Setting ḡ ¼ Ms,
M is of dimension mass (we are using natural units
c ¼ ℏ ¼ 1). If M as well as m are kept fixed when the
cutoff is removed, the model contains the two dimensionful
parameters m and M. The lattice spacing a must be small
compared to 1=m as well as compared to 1=M and the box
must be large compared to 1=M. Since ϕ̄ is of dimension
mass−1=2, the two-point function of ϕ̄ is of the form

hϕ̄iðxÞϕ̄jðyÞi ¼ fijfMðx − yÞ; m=M; aM;LMg=M:

ð2:10Þ

To approach the continuum limit, the last two argument
must be in the range: aM ≪ 1, LM ≪ 1. The only relevant
parameter, apart from the number of lattice points, used to
regularize the system should be the ratio m=M.
We will use the so called “primitive approximation” for

the action [see Eqs. (2.1) or (2.9)] even if it can be improved
in several ways [15] in order to reduce the error due to the
space-time discretization. In reaching to the expression
(2.1) or (2.9) we neglected the term ∝ a2n due to the
commutator of the kinetic and potential parts of the
Hamiltonian, in the BakerCampbellHausdorff formula. In
reaching to the path integral expression this is justified by
the Trotter formula.
The vacuum expectation of a functional observable

O½ϕ1;ϕ2� is

hOi ≈
R
O½ϕ1;ϕ2� expð−S½ϕ1;ϕ2�Þ

Q
xdϕ1ðxÞdϕ2ðxÞR

expð−S½ϕ1;ϕ2�Þ
Q

xdϕ1ðxÞdϕ2ðxÞ
;

ð2:11Þ

for a given action S.
We will approach the continuum limit by choosing a

fixed L and increasing the number of discretizations N of
each component of the space-time. So that the lattice
spacing a ¼ L=N → 0. To make contact with the con-
tinuum limit, two conditions must be met a ≪ 1=m ≪ L
where 1=m is the Compton wavelength.

III. SIMULATION DETAILS AND RELEVANT
OBSERVABLES

We want to determine the two-point function

Kijðx; yÞ ¼ hϕiðxÞϕjðyÞi; ð3:1Þ

where in the affine casewe need to replace the fieldsϕi by the
scaled fields ϕ̄i. Replacing x by xþ k with k ¼ awn with
wn ¼ ðn0; n1;…; nsÞ and nμ ∈ Z amounts to a mere relab-
eling of the lattice points. Hence, due to translational
invariance, Kðx; yÞ can only depend on the difference
between the coordinates of the two points andwe can define,

DijðzÞ ¼
1

Ln

X
x

Kijðx; xþ zÞan: ð3:2Þ

Moreover due to the symmetry 1 ↔ 2 we will have D11 ¼
D22 ≡Dlike andD12 ¼ D21 ≡Dunlike. In our simulations we
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work in periodic space-time (at a temperature T ¼ 1=Na) so
that ϕiðxμ þ NÞ ¼ ϕiðxμÞ for any x, μ ¼ 0; 1;…; s, and
i ¼ 1, 2.
Our MC simulations use the Metropolis algorithm

[12,13] to calculate the ensemble average of Eq. (2.11)
which is a 2Nn multidimensional integral. The simulation is
started from the initial condition ϕi ¼ 0 for i ¼ 1, 2. One
MC step consisted in a random displacement of each one of
the 2Nn variables ϕiðxÞ for i ¼ 1, 2, as follows

ϕi → ϕi þ ð2η − 1Þδ; ð3:3Þ

where η is a uniform pseudo randomnumber in [0, 1] and δ is
the amplitude of the displacement. The fieldsϕi ∈ ð−∞;∞Þ
for i ¼ 1, 2 and xμ ∈ ½0; L� for μ ¼ 0; 1;…; s. Each one of
these 2Nn moves is accepted if expð−ΔSÞ > η where ΔS is
the change in the action due to the move (it can be efficiently
calculated considering how the kinetic part and the potential
part change by the displacement of a single ϕiðxÞ) and
rejected otherwise. The amplitude δ is chosen in such a way
to have acceptance ratios as close as possible to 1=2 and is
kept constant during the evolution of the simulation. One
simulation consisted ofMMC steps each of which consisted
in a sweep of 2Nn displacement moves of all the fields
variables. The statistical error on the average hOi will then
depend on the correlation time necessary to decorrelate the

propertyO, τO, and will be determined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τOσ

2
O=ðM2NnÞ

q
,

where σ2O is the intrinsic variance for O.

IV. SIMULATION RESULTS

We worked in units where c ¼ ℏ ¼ kB ¼ 1. We chose
the regularization parameter of the affine quantization term
to be ϵ ¼ 10−10.3

In Fig. 1 we show DlikeðzÞ and DunlikeðzÞ as obtained for
m ¼ 1; g ¼ 1;Φ ¼ 1; L ¼ 3 and three choices of N, in the
canonical scenario. One can then see the approach to the
continuum of the two-point functions of the canonical
model. From the figure we can see that the unlike two-point
function is zero over the whole space-time volume. This
can be explained observing that during the random-walk
the field will be localized around the minima of the
potential density so that ϕ2

1 þ ϕ2
2 ≈ Π2

c with Πc the radius
of the minima ring, the circle of vacua, around the origin
φ ¼ 0, which is a function of m, g, and Φ:

Π2
c ¼

4gΦ2 −m2

4g
: ð4:1Þ

So that the Higgs potential density in the action does not
actually contribute to correlate the two fields ϕi for i ¼ 1, 2.

Moreover, the expectation values hϕii ¼ 0 for i ¼ 1, 2
because the complex field φ tends to rotate around the
origin on the minima ring. The approach to the continuum
is manifested through increasing values of Dlikeð0Þ with
increasing N. For our choice of the parameters m2 < 4gΦ2

and we must have symmetry breaking [8–10], with the
circle of vacua having a radius different from zero. The
renormalized coupling constant [5] was found to be: gR ¼
−0.0069ð6Þ forN ¼ 8, gR ¼ −0.0006ð4Þ forN ¼ 10, gR ¼
þ0.0000ð5Þ for N ¼ 13. Since gR must be non-negative, by

FIG. 1. Two-point functions, DlikeðzÞ (top panel) and DunlikeðzÞ
(bottom panel), of Eq. (3.2) for the complex scalar Higgs field
φ ¼ ϕ1 þ iϕ2 subject to canonical quantization with a self-
interaction potential density of the form V ¼ 1

2
m2ðϕ2

1 þ ϕ2
2Þ þ

gðϕ2
1 þ ϕ2

2 −Φ2Þ2 in Eq. (1.3) with m ¼ 1; g ¼ 1;Φ ¼ 1; L ¼ 3

(Π2
c ¼ 3=4) and increasing N ¼ 8, 10, 13. On the abscissa axis

we have jzj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z20 þ z21 þ � � � þ z2s

p
which is a length.

3Note that we could as well choose a regularization putting
hard walls at ϕi ¼ �ε therefore rejecting MC moves whenever
ϕi ∈ ½−ε; ε�, for i ¼ 1, 2.
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Lebowitz inequality, our results signal a free trivial system
in the continuum limit.
For the affine quantization case the circle of vacua has a

radius Π̄a, which is now a function of m, ḡ, and Φ̄:

Π̄2
a ¼

4ḡΦ̄2 −m2

12ḡ

þ ð4ḡΦ̄2 −m2Þ2
12ḡ½162ḡ2 þ Ξþ 18ḡ2=3ð81ḡ2 þ ΞÞ1=3�

þ 162ḡ2 þ Ξþ 18ḡ2=3½81ḡ2 þ Ξ�1=3
12ḡ

; ð4:2Þ

Ξ ¼ −m6 þ 12ḡm4Φ̄2 − 48ḡ2m2Φ̄4 þ 64ḡ3Φ̄6; ð4:3Þ

where without loss of generality we assumed ϵ ¼ 0. It is
different from zero irrespectively from the values of the
parameters, so symmetry is always broken. In Fig. 2 we
show DlikeðzÞ and DunlikeðzÞ as obtained for m ¼ 1; ḡ ¼
1; Φ̄ ¼ 1; L ¼ 3 (so that m=M ¼ 1), ϵ ¼ 10−10 (the sim-
ulation results are not affected by ϵ as long as it is chosen
sufficiently small), and three choices of N, in the affine
scenario, for the ϕ̄i fields introduced in Eq. (2.9). One can
then see the approach to the continuum of the two-point
functions of the affine model. Note, however, that now the
region around ϕ̄i ¼ 0 for i ¼ 1, 2 is forbidden due to the
affine 3=8 diverging term in the potential density [see
Eq. (2.9)], therefore the complex field in its “winding”
around the origin, in proximity of the potential minima
ring, cannot take a “shortcut” through the “mountain” at the
origin (the forbidden region) and this, in turn, is responsible
for a loss of ergodicity and the appearance of systematic
errors in addition to the usual statistical ones. It is then
necessary an extremely long simulation (much longer than
the average time for a “round trip” of the field), much
longer than in the canonical case. Notice, moreover, that the
action is penalized by the additional a−s factor which grows
as we approach the continuum a → 0. A possible solution
would be to choose the field displacement δ larger than the
diameter of the potential minima ring 2Π̄a. But unfortu-
nately this will not work because the kinetic energy term in
the action doesn’t allow the field to undergo big “jumps.” In
addition this would generate low acceptance ratios thereby
slowing down the simulation. An alternative solution will
be given in the next section. In our simulations, that were
M ¼ 107 MC steps long, the expectation value of the field
hϕ̄1i ¼ hϕ̄2i was equal to −0.23ð4Þ for N ¼ 8, to −0.24ð4Þ
for N ¼ 10, and to −0.784ð9Þ for N ¼ 13. A nonzero value
for the vacuum expectation of the field is due to the
systematic errors described above and will eventually
disappear in an extremely long simulation. From the figure
we see how the two-point like function seems to be
increasing with N, while the unlike one has a constant
behavior fluctuating around the expected zero value. These
results are still affected by the ergodicity systematic errors

stemming from the “winding” random walk. In order to
show this behavior, we calculated the histograms of the
values for hϕ̄1i obtained by averaging over blocks of 100
MC steps during the simulation, that we call Hϕ̄, of
Dlikeð0Þ that we call HDlike, and of Dunlikeð0Þ, that we call
HDunlike. The behavior of these histograms is shown in
Figs. 3–5 respectively. From the histogram of Fig. 3 we see
how for N ¼ 13 the field did not have the chance of
rotating around the origin and this explains the lack of the
first peak in the histogram of Fig. 4. We then conclude that

FIG. 2. Two-point functions, DlikeðzÞ (top panel) and DunlikeðzÞ
(bottom panel), of Eq. (3.2) for the complex scalar Higgs field
φ̄ ¼ ϕ̄1 þ iϕ̄2 subject to affine quantization with a self-interac-
tion potential density of the form V ¼ 1

2
m2ðϕ2

1 þ ϕ2
2Þ þ gðϕ2

1 þ
ϕ2
2 −Φ2Þ2 in Eq. (1.3) with m ¼ 1; ḡ ¼ 1; Φ̄ ¼ 1; L ¼ 3; ϵ ¼

10−10 (Π̄2
a ≈ 0.955410) in Eq. (2.9) and increasing N ¼ 8, 10, 13.

The simulation usedM ¼ 107 MC steps. On the abscissa axis we
have jzj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z20 þ z21 þ � � � þ z2s

p
which is a length.
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the simulation for N ¼ 13 was not long enough. And this is
responsible for the high value of the two-point like function
observed for N ¼ 13, as shown in Fig. 2. In order to obtain
a fully symmetric rotation of the field random walk around
the origin we would clearly need an extremely long
simulation. Nonetheless from the partial results of our
long simulation we can gather a flavor of the convergence
of the two-point functions in the affine case in the
continuum limit at finite volume.
These results, albeit partial in their nature, give to affine

quantization a role as a method producing meaningful
quantum field theories even when, as we have already seen
in our previous works [4,5,11], the more common canonical
quantization fails. Moreover with the scaling used in
Eq. (2.9) the field theory does not suffer from the unpleasant
feature of a diverging vacuumexpectationvalue of the field in
the continuum limit, which was observed in Ref. [11].

V. EXPONENTIAL REPRESENTATION OF THE
COMPLEX FIELD

In order to solve the ergodicity breakdown problem
encountered in the previous section for the affine case we
decided to rewrite our path integral in terms of the
fields ρðxÞ and θðxÞ such that φ̄ðxÞ ¼ ρðxÞ exp½iθðxÞ�.
Equation (2.9) may be rewritten as follows

SðaÞ½ρ; θ�
a−san

≈
1

2a2
X
x;μ

f½ρðxÞ − ρðxþ eμÞ�2 þ ρ2ðxÞ½θðxÞ − θðxþ eμÞ�2g

þ
X
x

�
3

8

1

ρ2ðxÞ þ ϵ̄
þ 1

2
m2ρ2ðxÞ þ ḡ½ρ2ðxÞ − Φ̄2�2

�
; ð5:1Þ

FIG. 5. Histogram of Dunlikeð0Þ block values during the
simulation shown in Fig. 2. The N ¼ 13 data presents a high
asymmetry during the evolution of the simulation, which again
signals that the simulation was not long enough.

FIG. 3. Histogram of hϕ̄1i block values during the simulation
shown in Fig. 2. The figure shows the “rotation” of the field
around the origin in proximity of the potential minima ring of
radius Π̄a ≈ 0.977451, for N ¼ 8 and 10, but not for N ¼ 13.
Even for N ¼ 8 and 10 the rotation was not symmetric (this
would only be obtained in an extremely long simulation), which
explains the not exactly zero value of the expectation value
of field.

FIG. 4. Histogram of Dlikeð0Þ block values during the simu-
lation shown in Fig. 2. The missing first peak in the N ¼ 13 data
is due to the fact that the field did not perform a full rotation
around the origin as is shown by Fig. 3.
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and the path integral over ρ ∈ ½0;∞� and θ ∈ ½−∞;∞� will
not suffer anymore from the ergodicity problem. In the
Metropolis algorithm we will now have acceptance when
exp½−ðS0 − SÞ�Qx ρ

0ðxÞ=ρðxÞ > η where the primed quan-
tities are the newly generated ones and as usual η is a
pseudo random number in [0, 1]. The modulus displace-
ment move, ρ → ρ0 ¼ ρþ ð2η − 1Þδρ, is rejected whenever
ρ0 < 0. And the argument displacement move is chosen
purposely asymmetric, θ → θ0 ¼ θ þ ηδθ, in order to allow
for the required rotation and break the symmetry. This

transition rule for the argument will not violate the detailed
balance, required by the Metropolis algorithm, as long as
the maximum displacement is chosen δθ ≥ 2π so that the
probability to go from an angle θA to θB will be equal to the
one to return to θA from θB always using counterclockwise
rotations.
In Fig. 6 we show DlikeðzÞ and DunlikeðzÞ as obtained for

m ¼ 1; ḡ ¼ 1; Φ̄ ¼ 1; L ¼ 3; ϵ ¼ 10−10, and four choices
of increasing N, in the affine scenario, for the fields ϕ̄1 ¼
ρ cos θ and ϕ̄2 ¼ ρ sin θ. The simulations, an order of
magnitude shorter than the one of Fig. 2, rapidly converged
and we had vanishing hϕii as required. From the figure we
can see how the symmetry z → L − z appears to be broken
in both two-point functions. In particular the unlike one
appears to be oscillating close to the value of zero. This can
be seen as an artifact due to the chosen asymmetric
expression for the kinetic part of the primitive approxima-
tion. The two-point functions, that are now well converged,
seem to have a well defined continuum limit N → ∞. In
fact the difference between Dlikeðjzj ¼ L=2Þ from N ¼ 10
andN ¼ 8 is 0.043 but the one from N ¼ 15 and N ¼ 13 is
0.036. This supports the conclusion that affine quantization
leads to a well-defined field theory. This is also supported
by looking at the renormalized mass and coupling constant
[5]: mR ¼ 0.101748ð8Þ; ḡR ¼ 1.50000ð1Þ for N ¼ 8,
mR ¼ 0.097307ð8Þ; ḡR ¼ 1.50000ð2Þ for N ¼ 10, mR ¼
0.08949ð4Þ; ḡR ¼ 1.50000ð3Þ for N ¼ 13, mR ¼
0.08398ð6Þ; ḡR ¼ 1.49997ð4Þ for N ¼ 15. We can see
how the renormalized coupling constant remains constant
upon the increase of N.

VI. CONCLUSIONS

Summarizing, in this work we studied, through
Monte Carlo simulations, the two-point function of a
classical Euclidean covariant complex scalar field of mass
m subject to the Higgs Mexican-hat potential in four space-
time dimensions, treated either with canonical quantization
and with affine quantization. And we analyzed the con-
tinuum limit at finite fixed volume. The finite volume
constraint rules out the formation of the massless Goldstone
boson due to the spontaneous symmetry breaking of the
continuous phase symmetry φðxÞ → eiθðxÞφðxÞ that we
continue to observe in the simulations even if only as a
smooth transition (free energies in finite volume systems
are always analytic).
We first studied the path integral in the two real fields ϕ1

and ϕ2 with φ ¼ ϕ1 þ iϕ2 through standard Metropolis
[13] simulations. In the canonical case we found rapidly
converging simulations: the unlike two-point function is
zero everywhere and the like one shows the approach to the
continuum through a diverging value at the origin. It is
periodic of periodicity L and satisfies the symmetry z →
L − z as it should. It has a minimum at half simulation box
jzj ¼ L=2 close to zero, indicating that the scalar field

FIG. 6. Two-point functions, DlikeðzÞ (top panel) and DunlikeðzÞ
(bottom panel), of Eq. (3.2) for the complex scalar Higgs field
φ̄ ¼ ϕ̄1 þ iϕ̄2 ¼ ρ expðiθÞ subject to affine quantization with a
self-interaction potential density of the form V ¼ 1

2
m2ρ2 þ

gðρ2 −Φ2Þ2 in Eq. (1.3) with m ¼ 1; ḡ ¼ 1; Φ̄ ¼ 1; L ¼ 3; ϵ ¼
10−10 in Eq. (5.1) and increasing N ¼ 8, 10, 13, 15. The
simulation used M ¼ 106 MC steps. On the abscissa axis we
have jzj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z20 þ z21 þ � � � þ z2s

p
which is a length.
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theory is in the unbroken phase under canonical quantiza-
tion, at the chosen couplings and dimension.
In the affine case we found that due to the appearance of

the forbidden region around the origin φ ≈ 0, the ergodicity
of the random walk is broken. Once the field spontaneously
breaks the symmetry falling in the circle of vacua, it can
only rotate around the peak in the potential at the origin.
Therefore very long simulations are necessary in order to
find reliable results for the expectation values—more so
approaching the continuum. This suggested to change
variables from ϕ1 and ϕ2 to the modulus ρ and the
argument θ of the complex field, with φ ¼ ρ expðiθÞ and
choose an asymmetric transition rule for the argument
move in the Metropolis algorithm in order to allow only for
counterclockwise rotations around the origin. This proved
an effective way to overcome the ergodicity problem
encountered previously, and the simulations converged
quickly.

The approach to the continuum appears to be well
behaved also for the affine case where the unlike two-
point function continues to be everywhere close to zero and
the like one develops a minimum at half simulation box
higher than the one observed in the canonical case
indicating that the system under affine quantization is in
the broken phase. Therefore we can say that affine
quantization produces a meaningful quantum field theory.
It would be interesting to carry on a detailed and systematic
study of the approach to the continuum of the renormalized
coupling constant in order to understand whether the affine
approach is able to produce a nontrivial [6,8–10,16]
interacting field theory in the continuum limit also for
the present case of a scalar complex field subject to the
Higgs potential, as was done in our previous works for
scalar real fields [4,5]. This would solve the problem of the
believed triviality of the canonical Higgs particle in four
space-time dimensions.
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