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We calculate the properties of an acoustic polaron in three dimensions in thermal equilibrium at a

given low temperature using the path integral Monte Carlo method. The specialized numerical method

used is described in full details, thus complementing our previous paper [R. Fantoni, Phys. Rev. B 86

(2012) 144304], and it appears to be the first time it has been used in this context. Our results are in

favor of the presence of a phase transition from a localized state to an extended state for the electron as

the phonon–electron coupling constant decreases. The phase transition manifests itself with a jump

discontinuity in the potential energy as a function of the coupling constant and it affects the properties

of the path of the electron in imaginary time: In the weak coupling regime the electron is in an

extended state whereas in the strong coupling regime it is found in a self-trapped state.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

An electron in a ionic crystal polarizes the lattice in its
neighborhood. An electron moving with its accompanying distor-
tion of the lattice has sometimes been called a ‘‘polaron’’ [1,2].
Since 1933 Landau addresses the possibility whether an electron
can be self-trapped (ST) in a deformable lattice [3–5]. This funda-
mental problem in solid state physics has been intensively studied
for an optical polaron in an ionic crystal [6–11]. Bogoliubov
approached the polaron strong coupling limit with one of his
canonical transformations. Feynman used his path integral formal-
ism and a variational principle to develop an all coupling approx-
imation for the polaron ground state [12]. Its extension to finite
temperatures appeared first by Osaka [13,14], and more recently by
Castrigiano et al. [15–17]. Recently the polaron problem has gained
new interest as it could play a role in explaining the properties of
the high Tc superconductors [18]. The polaron problem has also
been studied to describe an impurity in a Bose–Einstein ultracold
quantum gas condensate of atoms [19]. In this context evidence for
a transition between free and self-trapped optical polarons is found.
For the solid state optical polaron no ST state has been found yet
[8,9,11].

The acoustic modes of lattice vibration are known to be
responsible for the appearance of the ST state [20,21,1]. Contrary
to the optical mode which interacts with the electron through
Coulombic force and is dispersionless, the acoustic phonons have
a linear dispersion coupled to the electron through a short range
potential which is believed to play a crucial role in forming the ST
ll rights reserved.

ts.infn.it
state [22]. Acoustic modes have also been widely studied [1].
Sumi and Toyozawa generalized the optical polaron model by
including a coupling to the acoustic modes [23]. Using Feynman’s
variational approach, they found that the electron is ST with
a very large effective mass as the acoustic coupling exceeds a
critical value. Emin and Holstein also reached a similar conclusion
within a scaling theory [24] in which the Gaussian trial wave
function is essentially identical to the harmonic trial action used
in the Feynman’s variational approach in the adiabatic limit [25].

The ST state distinguishes itself from an extended state
(ES) where the polaron has lower mass and a bigger radius.
A polaronic phase transition separates the two states with a break-
ing of translational symmetry in the ST one [1]. The variational
approach is unable to clearly assess the existence of the phase
transition [1]. In particular Gerlach and Löwen [1] concluded that no
phase transition exists in a large class of polarons. The three-
dimensional acoustic polaron is not included in the class but Fisher
et al. [25] argued that its ground state is delocalized.

In a recent work [26] we employed for the first time a specialized
path integral Monte Carlo (PIMC) method [27,28] to the continuous,
highly non-local, acoustic polaron problem at low temperature
which is valid at all values of the coupling strength and solves the
problem exactly (in a Monte Carlo sense). The method differs from
previously employed methods [29–35] and hinges on the Lévy
construction and the multilevel Metropolis method with correlated
sampling. In such work the potential energy was calculated and
it was shown that like the effective mass it usefully signals the
transition between the ES and the ST state. Properties of ES and ST
states were explicitly shown through the numerical simulation.

Aim of the present paper is to give a detailed description of the
PIMC method used in that calculation and some additional numer-
ical results in order to complement the brief paper of Ref. [26].
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The work is organized as follows: in Section 2 we describe the
acoustic polaron model and Hamiltonian, in Section 3 we describe
the observables we are going to compute in the simulation, in
Section 4 we describe the PIMC numerical scheme employed, in
Section 5 we describe the multilevel Metropolis method for
sampling the path, in Section 6 we describe the choice of the
transition probability and the level action, in Section 7 we describe
the correlated sampling. Section 8 is for the results and Section 9 is
for final remarks.
2. The model

The acoustic polaron can be described by the following quasi-
continuous model [7,23]:

Ĥ ¼
p̂

2

2m
þ
X

k

_okâ
y

kâkþ
X

k

iGkâkeikx̂þH:c:
� �

: ð1Þ

Here x̂ and p̂ are the electron coordinate and momentum
operators respectively and âk is the annihilation operator of the
acoustic phonon with wave vector k. The first term in the
Hamiltonian is the kinetic energy of the electron, the second
term the energy of the phonons and the third term the coupling
energy between the electron and the phonons. The electron
coordinate x is a continuous variable, while the phonons wave
vector k is restricted by the Debye cut-off ko. The acoustic phonons
have a dispersion relation ok ¼ uk (u being the sound velocity) and
they interact with the electron of mass m through the interaction
vertex Gk ¼ _ukoðS=NÞ1=2

ðk=koÞ
1=2 according to the deformation

potential analysis of Ref. [36]. S is the coupling constant between
the electron and the phonons and N is the number of unit cells in
the crystal with N=V ¼ ð4p=3Þðko=2pÞ3 by Debye approximation
and V is the crystal volume.

Using the path integral representation (see Ref. [12] Section 8.3),
the phonon part in the Hamiltonian can be exactly integrated owing
to its quadratic form in phonon coordinates, and one can write the
partition function for a polaron in thermal equilibrium at an
absolute temperature T (b¼ 1=kBT, with kB Boltzmann constant)
as follows:

Z ¼

Z
dx

Z �
�

Z x ¼ xð_bÞ

x ¼ xð0Þ
e�ð1=_ÞS½xðtÞ, _xðtÞ,t�DxðtÞ, ð2Þ

where the action S is given by Ref. [37] 1
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Here Sf is the free particle action and U is the inter action and we
denoted with a dot a time derivative as usual. Using dimensionless
units _¼m¼ uko ¼ kB ¼ V ¼ 1 the action becomes

S ¼
Z b

0

_x2
ðtÞ

2
dtþ

Z b

0
dt

Z b

0
ds Veff ð9xðtÞ�xðsÞ9,9t�s9Þ, ð4Þ

with the electron moving subject to an effective retarded potential

Veff ¼�
S
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q�ðxðtÞ�xðsÞÞ�q9t�s9 ð5Þ

Veff ¼�
3S

2

ffiffiffi
g
2

r
1

9xðtÞ�xðsÞ9

Z 1

0
dq q2 sin

ffiffiffi
2

g

s
q9xðtÞ�xðsÞ9

 !
e�q9t�s9,

ð6Þ
1 This is an approximation as e�bok is neglected. The complete form is obtained by

replacing e�ok 9t�s9 by e�ok9t�s9=ð1�e�bok Þþeok9t�s9e�bok =ð1�e�bok Þ. But remember

that b is large.
where q¼ k=ko, ID ¼
R

qr1dq¼ 4p=3, and we have introduced a
non-adiabatic parameter g defined as the ratio of the average
phonon energy, _uko to the electron band-width, ð_koÞ

2=2m. This
parameter is of order of 10�2 in typical ionic crystals with broad
band so that the ST state is well-defined [23]. In our simulation we
took g¼ 0:02. Note that the integral in Eq. (6) can be solved
analytically and the resulting function tabulated.
3. The observables

In particular the internal energy E of the polaron is given by

E¼�
1

Z

@Z
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1
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Z
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, ð7Þ

where the internal energy tends to the ground state energy in the
large b�!1 limit.

Scaling the Euclidean time t¼ bt0 and s¼ bs0 in Eq. (4), deriving
S with respect to b, and undoing the scaling, we get
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where the first term is the kinetic energy contribution to the
internal energy, K, and the last term is the potential energy con-
tribution, P

P ¼� 3S
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So that

E¼/KþPS: ð10Þ

An expression for K not involving the polaron speed, can be
obtained by taking the derivative with respect to b after having
scaled both the time, as before, and the coordinate x¼

ffiffiffi
b

p
x0.

Undoing the scaling in the end one gets
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In the following we will explain how we calculated the potential
energy P¼/PS.
4. Discrete path integral expressions

Generally we are interested in calculating the density matrix
r̂ ¼ expð�bĤÞ in the electron coordinate basis, namely

rðxa,xb;bÞ ¼
Z �
�

Z x ¼ xb

x ¼ xa

e�SDxðtÞ: ð13Þ

To calculate the path integral, we first choose a subset of all
paths. To do this, we divide the independent variable, Euclidean
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time, into steps of width

t¼ b=M: ð14Þ

This gives us a set of times, tk ¼ kt spaced a distance t apart
between 0 and b with k¼ 0,1,2, . . . ,M.

At each time tk we select the special point xk ¼ xðtkÞ, the k-th
time slice. We construct a path by connecting all points so selected
by straight lines. It is possible to define a sum over all paths
constructed in this manner by taking a multiple integral over all
values of xk for k¼ 1,2, . . . ,M�1 where x0 ¼ xa and xM ¼ xb are the
two fixed ends. The resulting equation is

rðxa,xb;bÞ ¼ lim
t-0

1

A

Z 1
�1

Z 1
�1

� � �

Z 1
�1

e�S
dx1

A
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dxM�1

A
, ð15Þ

where the normalizing factor A¼ ð2ptÞ3=2.
The simplest discretized expression for the action can then be

written as follows:

S ¼
XM
k ¼ 1

ðxk�1�xkÞ
2

2t þt2
XM
i ¼ 1

XM
j ¼ 1

Vðti,tjÞ, ð16Þ

where Vðti,tjÞ ¼ Veff ð9xi�xj9,9i�j9Þ is a symmetric two variables
function, Vðs,tÞ ¼ Vðt,sÞ. In our simulation we tabulated this func-
tion taking 9xi�xj9¼ 0,0:1,0:2, . . . ,10 and 9i�j9¼ 0,1, . . . ,M.

In writing Eq. (16) we used the following approximate expres-
sions:

_xk ¼
xk�xk�1

t
þOðtÞ, ð17Þ

Z tk

tk�1

_x2
ðtÞ dt¼ _x2

ktþOðt2Þ, ð18Þ

Z ti

ti�1

Z tj

tj�1

Vðs,tÞ ds dt¼ Vðti,tjÞt2þOðt3Þ: ð19Þ

If we take V¼0 in Eq. (16) the M�1 Gaussian integrals in Eq. (15)
can be done analytically. The result is the exact free particle
density matrix

rf ðxa,xb;bÞ ¼ ð2pbÞ�3=2eð1=2bÞðxa�xbÞ
2

: ð20Þ

Thus approximations (17) and (18) allow us to rewrite the polaron
density matrix as follows:

rðxa,xb;bÞ ¼
Z
� � �

Z
dx1 � � � dxM�1 rf ðxa,x1; tÞ � � �rf ðxM�1,xM; tÞ

�e
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i

P
j
Vðti ,tjÞ: ð21Þ

In the next section we will see that this expression offers a useful
starting point for the construction of an algorithm for the sampling
of the path: the Lévy construction and the analogy with classical
polymer systems or the classical isomorphism described in Ref. [27].

The partition function is the trace of the density matrix

Z ¼

Z
dx rðx,x;bÞ: ð22Þ

This restrict the path integral to an integral over closed paths
only. In other words the paths we need to consider in calculating
Z (and hence F) are closed by the periodic boundary condition,
xM ¼ x0 ¼ x.

To calculate the internal energy we need then to perform the
following M-dimensional integral:

E¼
1

Z

Z 1
�1

Z 1
�1

� � �

Z 1
�1

dx0 dx1 � � � dxM�1 e�SðPþKÞ
����
xM ¼ x0

: ð23Þ

To do this integral we use the Monte Carlo simulation technique
described next.
5. Sampling the path

The total configuration space to be integrated over is made of
elements s¼ ½x0,x1, . . . ,xM� where xk are the path time slices
subject to the periodic boundary condition xM ¼ x0. In the simulation
we wish to sample these elements from the probability distribution

pðsÞ ¼ e�S

Z
, ð24Þ

where the partition function Z normalizes the function p in this space.
The idea is to find an efficient way to move the path in a

random walk sampled by p, through configuration space.
In order to be able to make the random walk diffuse fast

through configuration space, as t decreases, is necessary to use
multislices moves [27].

In our simulation we chose to use the bisection method (a
particular multilevel Monte Carlo sampling method [27]). That is
how an l levels move is constructed. Clip out of the path m¼ 2l

subsequent time slices xi,xiþ1, . . . ,xiþm (choosing i randomly).
In the first level we keep xi and xiþm fixed and, following Lévy
construction for a Brownian bridge [38], we move the bisecting
point at iþm=2 to:

xiþm=2 ¼
xiþxiþm

2
þg, ð25Þ

where g is a normally distributed random vector with mean zero
and standard deviation

ffiffiffiffiffiffiffiffiffiffiffiffi
tm=4

p
. As shown in next section this kind

of transition rule samples the path using a transition probability
distribution Tpexpð�Sf Þ. Thus we will refer to it as free particle

sampling.
Having sampled xiþm=2, we proceed to the second level bisect-

ing the two new intervals ð0,iþm=2Þ and ðiþm=2,iþmÞ generating
points xiþm=4 and xiþ3m=4 with the same algorithm. We continue
recursively, doubling the number of sampled points at each level,
stopping only when the time difference of the intervals is t.

In this way we are able to partition the full configuration s into l

levels, s¼ ðs0,s1, . . . ,slÞ where s0 ¼ ½x0, . . . ,xi,xiþm, . . . ,xM�1�, un-
changed; s1 ¼ ½xiþm=2�, changed in level 1; s2 ¼ ½xiþm=4,xiþ3m=4�,
changed in level 2; y; sl ¼ ½xiþ1,xiþ2, . . . ,xiþm�1� changed in
level l.

To construct the random walk we use the multilevel Metro-
polis method [39,40,27]. Call ðs01, . . . ,s0lÞ the new trial positions in
the sense of a Metropolis rejection method, the unprimed ones
are the corresponding old positions with s0 ¼ s00.

In order to decide if the sampling of the path should continue
beyond level k, we need to construct the probability distribution
pk for level k. This, usually called the level action, is a function
of s0,s1 . . . ,sk proportional to the reduced distribution function
of sk conditional on s0,s1 . . . ,sk�1. The optimal choice for the level
action would thus be

p%

k ðs0,s1 . . . ,skÞ ¼

Z
dskþ1 . . . dsl pðsÞ: ð26Þ

This is only a guideline. Non-optimal choices will lead to slower
movement through configuration space. One needs to require
only that feasible paths (closed ones) have non-zero level action,
and that the action at the last level be exact

plðs0,s1, . . . ,slÞ ¼ pðsÞ: ð27Þ

Given the level action pkðsÞ the optimal choice for the transi-
tion probability TkðskÞ, for sk contingent on the levels already
sampled, is given by

T%

k ðskÞ ¼
pkðsÞ

pk�1ðsÞ
: ð28Þ

One can show that T%

k will be a normalized probability if and only
if pk is chosen as in Eq. (26). In general one need to require only
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that Tk be a probability distribution non-zero for feasible paths. In
our simulation we used the free particle transition probability of
the Lévy construction as a starting point for a more efficient
correlated sampling that will be described in a later section.

Once the partitioning and the sampling rule are chosen, the
sampling proceeds past level k with probability

Akðs
0Þ ¼min 1,

TkðskÞpkðs
0Þpk�1ðsÞ

Tkðs
0
kÞpkðsÞpk�1ðs0Þ

" #
: ð29Þ

That is we compare Ak with a uniformly distributed random
number in ð0,1Þ, and if Ak is larger, we go on to sample the next
level. If Ak is smaller, we make a new partitioning of the initial
path, and start again from level 1. Here p0 needed in the first level
can be set equal to 1, since it will cancel out of the ratio.

This acceptance probability has been constructed so that it
satisfies a form of ‘‘detailed balance’’ for each level k

pkðsÞ

pk�1ðsÞ
Tkðs

0
kÞAkðs

0Þ ¼
pkðs

0Þ

pk�1ðs0Þ
TkðskÞAkðsÞ: ð30Þ

The moves will always be accepted if the transition probabilities
and level actions are set to their optimal values.

The total transition probability for a trial move making it
through all l levels is

Pðs-s0Þ ¼
Yl

k ¼ 1

Tkðs
0ÞAkðs

0Þ: ð31Þ

By multiplying Eq. (30) from k¼1 to k¼ l and using Eq. (27), one
can verify that the total move satisfy the detailed balance condition

pðsÞPðs-s0Þ ¼ pðs0ÞPðs0-sÞ: ð32Þ

Thus if there are no barriers or conserved quantities that restrict
the walk to a subset of the full configuration space (i.e. assuming
the random walk to be ergodic) the algorithm will asymptotically
converge to p, independent of the particular form chosen for
the transition probabilities, Tk, and the level actions, pk [41]. We
will call equilibration time the number of moves needed in the
simulation to reach convergence.

Whenever the last level is reached, one calculates the proper-
ties (K and P) on the new path s0, resets the initial path to the new
path, and start a new move. We will call Monte Carlo step (MCS)
any attempted move.
2 When iþmZM there is a minor problem with the periodic boundary

conditions and Eq. (40) will change.
6. Choice of Tk and pk

In our simulation we started moving the path with the Lévy
construction described in the preceding section. We will now
show that this means that we are sampling an approximate T%

with free particle sampling.
For the free particle case ðU ¼ 0Þ one can find analytic expres-

sions for the optimal level action p%

k and the optimal transition
rule T%

k . For examples for the first level, Eq. (26) gives

p%

1ðxiþm=2Þprf ðxi,xiþm=2; tm=2Þrf ðxiþm=2,xiþm; tm=2Þ, ð33Þ

p%

1ðxiþm=2Þpeð1=mtÞðxi�xiþm=2Þ
2

eð1=mtÞðxiþm=2�xiþmÞ
2

, ð34Þ

p%

1ðxiþm=2Þpeð2=mtÞ½xiþm=2�ððxiþxiþmÞ=2Þ�2 : ð35Þ

This justify the Lévy construction and shows that it exactly
samples the free particle action (i.e. Ak¼1 for all k’s). This also
imply that for the interacting system we can introduce a level

inter action, ~pk such that

~pk ¼

Z
dskþ1 . . . dsl ~pðsÞ, ð36Þ
with

~pðsÞ ¼ e�U

Z
: ð37Þ

So that the acceptance probability will have the simplified
expression

Akðs
0Þ ¼min 1,

~pkðs
0Þ ~pk�1ðsÞ

~pkðsÞ ~pk�1ðs0Þ

� 	
: ð38Þ

For the k-th level inter action we chose the following expression:

~pkp exp �ðt‘kÞ
2
X½M=‘k �

i ¼ 1

X½M=‘k �

j ¼ 1

Vði‘kt,j‘ktÞ

2
4

3
5, ð39Þ

where ‘k ¼m=2k. In the last level ‘l ¼ 1 and the level inter action ~p l

reduces to the exact inter action ~p thus satisfying Eq. (27).
It is important to notice that during the simulation we never

need to calculate the complete level inter action since in the
acceptance probabilities enter only ratios of level inter actions
calculated on the old and on the new path. For example if for the
move we clipped out the interval ti, . . . ,tiþm with iþmoM,2 we
have

ln
~pkðs

0Þ

~pkðsÞ
¼�ðt‘kÞ

2
X2k

m ¼ 0

X2k

n ¼ 0

Vðtiþm‘kt,tiþn‘ktÞ

8<
:

þ
Xi�1

m ¼ 1

X2k

n ¼ 0

Vðm‘kt,tiþn‘ktÞþ
XM

m ¼ iþmþ1

X2k

n ¼ 0

Vðm‘kt,tiþn‘ktÞ

9=
;,

ð40Þ

which is computationally much cheaper than Eq. (39).
7. Correlated sampling

When the path reaches equilibrium (i.e. Pðs-s0Þ � pðs0Þ) if we
calculate

sðt0=tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðtÞ�

xðtþt0Þþxðt�t0Þ

2


 �� 	2
* +vuut , ð41Þ

we see that these deviations are generally smaller than the free
particle standard deviations used in the Lévy construction (see
Fig. 1)

sf ð‘kÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
‘kt=2

q
: ð42Þ

As Fig. 1 shows, the discrepancy gets bigger as ‘k increases.
We thus corrected the sampling rule for the correct deviations.

For example for the first level we used

T1ðxiþm=2Þpe�ððxiþm=2�xÞ2Þ=2s2ðm=2Þ, ð43Þ

where x ¼ ðxiþxiþmÞ=2. Since the level action is given by

p1ðxiþm=2Þpe�ððxiþm=2�xÞ2Þ=2s2
f
ðm=2Þ ~p1ðxiþm=2Þ, ð44Þ

we can define a function

P1pe�ðxiþm=2�xÞ2=2½1=s2ðm=2Þ�1=s2
f
ðm=2Þ�

ð45Þ

and write the acceptance probability

A1ðs
0Þ ¼min 1,

P1ðsÞ

P1ðs0Þ

~p1ðs
0Þ ~p0ðsÞ

~p1ðsÞ ~p0ðs0Þ

� 	
, ð46Þ

which is a generalization of Eq. (38).
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Fig. 1. Shows the deviations (41) for a simulation with S¼60 and S¼52.5,

t¼ 0:025, l¼9. The free particle standard deviations (42) are plotted for compar-

ison. For S¼60 the path is localized while for S¼52.5 is unlocalized i.e. closer to

the free particle path.
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Fig. 2. Shows the time step, t, extrapolation for the potential energy, P¼/PS. We

run at b¼ 15, g¼ 0:02, and S¼60. The extrapolated value to the continuum limit is

in this case P¼�16:1ð5Þ which is in good agreement with the result of Ref. [33].

Table 1

MC results for P as a function of S at b¼ 15 and g¼ 0:02 displayed in Fig. 5. The

runs where made of 5� 105 MCS (with 5� 104 MCS for the equilibration) for the

ES states and 5� 106 MCS (with 5� 105 MCS for the equilibration) for the ST

states.
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We maintain the acceptance ratios in [0.15, 0.65] by decreas-
ing (or increasing) the number of levels in the multilevel algo-
rithm as the acceptance ratios becomes too low (or too high).

In the Appendix we report some remarks on the error analysis
in our MC simulations.
S P

10 �0.573(8)

20 �1.17(2)

30 �1.804(3)

40 �2.53(3)

50 �3.31(4)

53.5 �3.61(1)

55 �11.4(3)

60 �16.1(5)

70 �23.3(3)

80 �30.0(3)
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Fig. 3. At S¼60 the results for the potential energy P at each MC block (5� 103

MCS) starting from an initial unlocalized path obtained by a previous simulation at

S¼52.5. We can see that after about 30 blocks there is a transition from the ES

state to the ST state. In the inset is shown the autocorrelation function, defined in

Eq. (A.8), for the potential energy, for the two states. The correlation time, in MC

blocks, is shorter in the unlocalized phase than in the localized one. The computer

time necessary to carry on a given number of Monte Carlo steps is longer for the

unlocalized phase.
8. Numerical results

We simulated the acoustic polaron fixing the adiabatic coupling
constant g¼ 0:02 and the inverse temperature b¼ 15. Such tem-
perature is found to be well suited to extract close to ground state
properties of the polaron. The path was M time slices long and the
time step was t¼ b=M. For a given coupling constant S we
computed the potential energy P extrapolating (with a linear w
square fit) to the continuum time limit, t-0, three points corre-
sponding to time-steps chosen in the interval tA ½1=100,1=30�. An
example of extrapolation is shown in Fig. 2 for the particular case
b¼ 15, g¼ 0:02, and S¼60.

In Fig. 5 and Table 1 we show that the results for the potential
energy as a function of the coupling strength. With the coupling
constant S¼52.5 we generated the equilibrium path which turns
out to be unlocalized (see Fig. 4). Changing the coupling constant
to S¼60 and taking the unlocalized path as the initial path we
sow the phase transition described in Fig. 3. The path after the
phase transition is localized (see Fig. 4).

Note that since S and t appear in the combination St2 in U (and
St in F) the same phase transition from an ES to a ST state will be
observed increasing the temperature. With the same Hamiltonian
we are able to describe two very different behavior of the acoustic
polaron as the temperature changes.

In Fig. 5 we show that the behavior of the potential energy as a
function of the coupling strength. The numerical results suggest
the existence of a phase transition between two different regimes
which corresponds to the so-called ES and ST states for the weak
and strong coupling region respectively. We found that paths
related to ES and ST are characteristically distinguishable. Two
typical paths for the ES and ST regimes involved in Fig. 5 are
illustrated in Fig. 4. The path in ES state changes smoothly in a
large time scale, whereas the path in ST state do so abruptly in a
small time scale with a much smaller amplitude which is an
indication that the polaron hardly moves. The local fluctuations
in the results for the potential energy have an autocorrelation
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function (defined in Eq. (A.8)) which decay much more slowly in
the ES state than in the ST state as shown in the inset of Fig. 3.
Concerning the critical property of the transition between the ES
and ST states our numerical results are in favor of the presence
of a discontinuity in the potential energy. In the large b limit at
b¼ 15 and fixing the adiabatic coupling constant to g¼ 0:02, the
ST state appears at a value of the coupling constant between
S¼52.5 and S¼55. With the increase of b, the values for
the potential energy P¼/PS increase in the weak coupling
regime but decrease in the strong coupling region.
From second order perturbation theory (see Ref. [12] Section 8.2)
follows that the energy shift Eðg,SÞ is given by �3Sg½1=2� gþg2

lnð1þ1=gÞ� from which one extracts the potential energy shift by
taking Pðg,SÞ ¼ gdEðg,SÞ=dg. From the Feynman variational approach
of Ref. [23] follows that in the weak regime the energy shift is
�3Sg½1=2�gþg lnð1þ1=gÞ� and in the strong coupling regime
�Sþ3

ffiffiffiffiffiffiffiffiffiffiffi
S=5g

p
.

9. Conclusions

We used for the first time a specialized path integral Monte
Carlo method to study the low temperature behavior of an acoustic
polaron. At an inverse temperature b¼ 15 (close to the ground
state of the polaron) and at a non-adiabatic parameter g¼ 0:02
typical of ionic crystals we found numerical evidence for a phase
transition between an extended state in the weak coupling regime
and a self-trapped one in the strong coupling regime at a value of
the phonons–electron coupling constant S¼54.3(7). The transition
also appears looking at the potential energy as a function of the
coupling constant where a jump discontinuity is observed. Com-
parison with the perturbation theory and the variational calcula-
tion of Ref. [23] is also presented.

The specialized path integral Monte Carlo simulation method
used as an unbiased way to study the properties of the acoustic
polaron has been presented in full detail. It is based on the Lévy
construction and the multilevel Metropolis method with corre-
lated sampling. Some remarks on the estimation of the errors in
the Monte Carlo calculation are also given in the Appendix. This
complement our previous paper [26] where fewer details on the
Monte Carlo method had been given.

Our method differs from previously adopted methods [29–34,
28,35]. Unlike the method of Ref. [29] our path integral is in real
space rather than in Fourier space, Refs. [34,35] put the polaron
on a lattice and not on the continuum as we did, while Refs. [33]
use PIMC single slice move whereas the multilevel PIMC we used
instead is a general sampling method which can efficiently make
multislice moves. The efficiency x (see the Appendix) for the
potential energy increases respect to the single slice sampling
because the coarsest movements are sampled and rejected before
the finer movements are even constructed. In Ref. [28] the Lévy
construction was used as in our case but the Metropolis test was
performed after the entire path had been reconstructed, using an
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effective action, and not at each intermediate level of the recon-
struction. In Ref. [28] the simpler Levy reconstruction scheme was
also found to be satisfactory for the efficient sampling of the
polaron configuration space even at strong coupling. Even if we
have not implemented the method of Ref. [28] we expect our
method to be of comparable efficiency to the one of these authors.
Infact it is true that the Levy construction is computationally cheap
but guiding the path as it is been reconstructed starting already
from the first levels as we did should have the advantage of refining
the sampling since the path is guided through configuration space
starting from the small displacements.

Although our results are of a numerical nature and we only
probed the acoustic polaron for one value of the non-adiabatic
parameter g we think that the analysis supports the existence of a
localization phase transition as the phonons–electron coupling
constant S is increased at constant temperature or as the tem-
perature is decreased at constant S. More so considering the fact
that the introduction of a cut-off parameter has shown to work
successfully in renormalization treatments.
Appendix A. Estimating errors

Since asymptotic convergence is guaranteed, the main issue is
whether configuration space is explored thoroughly in a reason-
able amount of computer time. Let us define a measure of the
convergence rate and of the efficiency of a given random walk.
This is needed to compare the efficiency of different transition
rules, to estimate how long the runs should be, and to calculate
statistical errors.

The rate of convergence is a function of the property being
calculated. Let OðsÞ be a given property, and let its value at step k

of the random walk be Ok. Let the estimator for the mean and
variance of a random walk with N MCS be

O¼/OkS¼
1

N

XN�1

k ¼ 0

Ok, ðA:1Þ

s2ðOÞ ¼/ðOk�OÞ2S: ðA:2Þ

Then the estimator for the variance of the mean will be

s2ðOÞ ¼
1

N

X
k

Ok�
1

N

X
k

O

 !2* +
, ðA:3Þ

s2ðOÞ ¼
1

N2

X
k

ðOk�OÞ

" #2* +
, ðA:4Þ

s2ðOÞ ¼
1

N2

X
k

/ðOk�OÞ2Sþ2
X
io j

/ðOi�OÞðOj�OÞS

8<
:

9=
;, ðA:5Þ

s2ðOÞ ¼
s2ðOÞ

N
1þ

2

Ns2ðOÞ
X
io j

/ðOi�OÞðOj�OÞS

8<
:

9=
;, ðA:6Þ

s2ðOÞ ¼
s2ðOÞkO

N
: ðA:7Þ

The quantity kO is called the correlation time and can be calculated
given the autocorrelation function for Ak ¼Ok�O. The estimator
for the autocorrelation function, ck, can be constructed observing
that in the infinite random walk, /AiAjS has to be a function of
9i�j9 only. Thus the estimator can be written

ck ¼
/A0AkS
s2ðOÞ ¼

1

ðN�kÞs2ðOÞ
XN�k

n ¼ 1

AnAnþk: ðA:8Þ
So that the estimator for the correlation time will be

kO ¼ 1þ
2

N

XN

k ¼ 1

ðN�kÞck: ðA:9Þ

To determine the true statistical error in a random walk, one needs
to estimate this correlation time. To do this, it is very important
that the total length of the random walk be much greater than kO.
Otherwise the result and the error will be unreliable. Runs in which
the number of steps NbkO are called well converged.

The correlation time gives the average number of steps needed
to decorrelate the property O. It will depend crucially on the
transition rule and has a minimum value of 1 for the optimal rule
(while sðOÞ is independent of the sampling algorithm).

Normally the equilibration time will be at least as long as the
equilibrium correlation time, but can be longer. Generally the
equilibration time depends on the choice for the initial path.
To lower this time is important to choose a physical initial
path. Since the polaron system is isotropic, we chose the initial
path with all time slices set to 0

!
.

The efficiency of a random walk procedure (for the property O)
is defined as how quickly the error bars decrease as a function
of the computer time, xO ¼ 1=s2ðOÞNT ¼ 1=s2ðOÞkOT where T is
the computer time per step. The efficiency depends not only on
the algorithm but also on the computer and the implementation.
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