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a b s t r a c t

The simplest statistical mechanics model of a Coulomb plasma in two spatial dimensions
admits an exact analytic solution at some special temperature in several (curved)
surfaces. We present in a unifying perspective these solutions for the (non-quantum)
plasma, made of point particles carrying an absolute charge e, in thermal equilibrium at
a temperature T = e2/2kB, with kB Boltzmann’s constant, discussing the importance of
having an exact solution, the role of the curvature of the surface, and the densities of
the plasma.
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Part I

Introduction

The physics of fluids of particles living in (curved) surfaces is a well known chapter of surface physics. It arises in
situations in which particles are adsorbed or confined on a substrate with nonzero curvature, be it the wall of a porous
material, or a membrane, a vesicle, a micelle for example made of amphiphilic surfactant molecules such as lipids, or a
biological membrane, or the surface of a large solid particle, or an interface in an oil–water emulsion [1]. On the other
hand it often occurs that by lowering the number of spatial dimensions, the statistical mechanics problem of a given
fluid in the whole space, greatly simplifies, to the point of becoming, in certain cases, exactly solvable analytically in the
continuum. A relevant feature of such low dimensional exactly solvable fluids is that they often play an important role
as exact standards and guides to test approximate solutions and numerical experiments for (higher dimensional) fluid’s
models. In a more general context, the few exact analytical results have helped form new qualitative insights given by
sum rules and in clarifying the nature of the long distance asymptotic decay of the truncated two (or more) particle
distribution functions [2,3].

In the statistical physics of continuous fluids, those where the particles are allowed to move in a continuous space,
one finds examples of exactly solvable ones especially among the non-quantum in lower dimensions (one and two).

Coulomb systems [4,5] such as plasmas, electrolytes, or generally ionic materials are made of charged particles
interacting through the long-range Coulomb law. They are an important chapter of ionic condensed matter (in systems
like molten salts, transition metal ions in solution, molten alkali halides, . . .) or ionic soft matter (in systems like natural or
synthetic saline environments like aqueous and non aqueous electrolyte solutions, polyelectrolytes, colloidal suspensions,
. . .). The simplest model of a Coulomb system is the one-component plasma (OCP), also called jellium: an assembly of
identical point charges of charge e, embedded in a neutralizing uniform background of the opposite sign. Here we consider
the classical (i.e. non-quantum) equilibrium statistical mechanics of the OCP. According to the proof of Sari and Merlini [6]
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which goes through ‘‘H-stability’’ and the ‘‘cheese theorem’’, the OCP must have a well behaved thermodynamic limit.
Though this model might seem, at first sight, oversimplified as to bear little resemblance to molten salts or liquid metals,
it is nevertheless of great value in clarifying general effects which emerge as a direct consequence of long-range Coulomb’s
interaction. This model constitutes the basic link between the microscopic description and the phenomenology of ionic
condensed and soft matter.

The two-dimensional version (2D OCP) of the OCP has been much studied. Provided that the Coulomb potential due
to a point-charge is defined as the solution of the Poisson equation ‘‘in’’ a two-dimensional world, i.e., is a logarithmic
function − ln r of the distance r to that point-charge, the 2D OCP mimics many generic properties of the three-dimensional
Coulomb systems. In this case the electric field lines are not allowed to leave the surface as it happens in the satirical
novella of Edwin Abbott Abbott [7]. Of course, this toy logarithmic model does not describe real charged particles, such
as electrons, confined on a surface, which nevertheless interact through the three dimensional Coulomb potential 1/r .
One motivation for studying the 2D OCP is that its equilibrium statistical mechanics is analytically exactly solvable at one
special temperature: both the thermodynamical quantities and the correlation functions are available.

The OCP is exactly solvable in one dimension [8,9]. In two dimensions, Jancovici and Alastuey [10–13] proved that the
OCP is exactly solvable analytically at a special value of the coupling constant, Γ = βe2 = 2 where β = 1/kBT with
kB Boltzmann’s constant and T the absolute temperature, on a plane. Since then, a growing interest in two-dimensional
plasmas has lead to study this system on various flat geometries [14–16] and two-dimensional curved surfaces like the
cylinder [17,18], the sphere [19–22], the pseudosphere [23–25], and Flamm paraboloid [26]. Among these surfaces only
the last one is of non-constant curvature.

How the properties of a system are affected by the curvature of the space in which the system lives is a question which
arises in general relativity. This is an incentive for studying simple models.

The two-component plasma (TCP) is a neutral mixture of point-wise particles of charge ±e. The equation of state of
the TCP living in a plane is known since the work of Salzberg and Prager [27]. In the plasma the attraction between
oppositely charged particles competes with the thermal motion and makes the partition function of the finite system
diverge when Γ = βe2 ≥ 2, where β = 1/kBT with kB Boltzmann constant. The system becomes unstable against the
collapse of pairs of oppositely charged particles, and as a consequence all thermodynamic quantities diverge, so that the
point particle model is well behaved only for Γ < 2 [28] when the Boltzmann factor for unlike particles is integrable at
small separations of the charges. In this case rescaling the particles coordinates so as to stay in the unit disk one easily
proves that the grand canonical partition function is a function of

√
ζ−ζ+V (1−Γ /4), where V is the volume occupied by the

plasma and ζ± the fugacities of the two charge species, and as a consequence the equation of state is βp = n(1 − Γ /4)
where n = ρ+ +ρ− is the total particle number density. However, if the collapse is avoided by some short range repulsion
(hard cores for instance), the model remains well defined for lower temperatures. Then, for Γ > 4 the long range Coulomb
attraction binds positive and negative particles in pairs of finite polarizability. Thus, at some critical value Γc ∼ 4 the
system undergoes the Kosterlitz–Thouless transition [29] between a high temperature (Γ < 4) conductive phase and a
low temperature (Γ > 4) dielectric phase. For Γ ≥ 2 it is necessary to regularize the system of point charges allowing
for a short-range strong repulsion between unlike charge which may be modeled as hard (impenetrable) disks, i.e. giving
a physical dimension to the particles to prevent the collapse. The same behavior also occurs in the TCP living in one
dimension [9,30].

The structure of the TCP living in a plane at the special value Γ = 2 of the coupling constant is also exactly solvable
analytically [31,32]. Through the use of an external potential it has also been studied in various confined geometries
[33–36] and in a gravitational field [37,38]. It has been studied in surfaces of constant curvature as the sphere [39,40] and
the pseudosphere [23] and on the Flamm paraboloid of non-constant curvature [41]. Unlike the OCP where the properties
of the Vandermonde determinant allowed the analytical solution a Cauchy identity is used for the solution of the TCP.
Unlike in the one-component case where the solution was possible for the plasma confined in a region of the surface now
this is not possible, anymore, without the use of an external potential. In these cases the external potential is rather given
by −(Γ /e2) ln

√
g where g is the determinant of the metric tensor of the Riemannian surface [42]. On a curved surface,

even though the finite system partition function will still be finite for Γ < 2 since the surface is locally flat, the structure
will change respect to the flat case.

Purpose of this review is to describe the state of the art for the studies on the exactly solvable statistical physics
models of a plasma on a (curved) surface. In Section 2 we will treat the OCP in the various surfaces and in Section 3 the
TCP in the various surfaces. Except for the OCP on the plane we will stop at the solution for the partition function and
the densities of the finite OCP. If the reader wishes he can refer to the original papers for the resulting expressions in the
thermodynamic limit. The solutions for the TCP do not give the results for the finite system but only its thermodynamic
limit. For the OCP we use the canonical ensemble for the plane, the cylinder and the sphere, and the grand canonical
ensemble for the pseudosphere and the Flamm paraboloid on half surface with grounded horizon. For the TCP we only
use the grand canonical ensemble. When appropriate we point out the ensemble inequivalence which arise for the finite
system.

1. The surface

We will generally consider Riemannian surfaces S with a coordinate frame q = (x1, x2) and with a metric

ds2 = gµν(q) dxµdxν, (1.1)
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with gµν the metric tensor and Einstein’s summation convention on repeated index has been adopted. We will denote
with g(q) the Jacobian of the transformation to an orthonormal coordinate reference frame, i.e. the determinant of the
metric tensor gµν . The surface may be embeddable in the three dimensional space or not. It is important to introduce a disk
ΩR of radius R and its boundary ∂ΩR. The torsion-less connection coefficients compatible with the metric, the Christoffel
symbols, in a coordinate frame are

Γµβγ =
1
2
(gµβ,γ + gµγ ,β − gβγ ,µ), (1.2)

where the comma denotes a partial derivative as usual. The Riemann tensor in a coordinate frame reads

Rαβγ δ = Γ α
βδ,γ − Γ α

βγ ,δ + Γ α
µγΓ

µ
βδ − Γ α

µδΓ
µ
βγ , (1.3)

in a two-dimensional space has only 22(22
− 1/12) = 1 independent component. The scalar curvature is then given by

the following indexes contractions (the trace of the Ricci curvature tensor),

R = Rµµ = Rµνµν, (1.4)

and the (intrinsic) Gaussian curvature is K = R/2. In an embeddable surface we may define also a (extrinsic) mean
curvature H = (k1 + k2)/2, where the principal curvatures ki, i = 1, 2 are the eigenvalues of the shape operator
or equivalently the second fundamental form of the surface and 1/ki are the principal radii of curvature. The Euler
characteristic of the disk ΩR is given by

χ =
1
2π

(∫
ΩR

K dS +

∫
∂ΩR

k dl
)
, (1.5)

where k is the geodesic curvature of the boundary ∂ΩR.

2. The Coulomb potential

The Coulomb potential G(q, q0) created at q by a unit charge at q0 is given by the Green function of the Laplacian

∆G(q, q0) = −2πδ(2)(q; q0), (2.1)

with appropriate boundary conditions. Here ∆ is the Laplace–Beltrami operator. This equation can often be solved by
using the decomposition of G as a Fourier series.

3. The background

The Coulomb potential generated by the background, with a constant surface charge density ρb = −enb satisfies the
Poisson equation

∆vb = −2πρb. (3.1)

The Coulomb potential of the background can be obtained by solving Poisson equation with the appropriate boundary
conditions. Also, it can be obtained from the Green function computed in the previous section

vb(q) =

∫
G(q, q′)ρb(q′) dS ′. (3.2)

This integral can be performed easily by using the Fourier series decomposition of Green’s function G.

4. The total potential energy

The total potential energy of the plasma is then

VN = V pp
N + V pb

N + V 0
N =

e2

2

∑
i̸=j

G(|qi − qj|) + e
∑

i

∫
ΩR

vb(|q − qi|) dq +

1
2

∫∫
ΩR

ρbvb(|q − q′
|) dqdq′, (4.1)

where the last term V 0
N is the self energy of the background and the first two terms V pp

N and V pb
N are the interaction

potential energy between the charges at qi, i = 1, . . . ,N and between the charges and the background, respectively.
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5. The densities and distribution functions

Given either the canonical partition function in a fixed region Ω ∈ S of a Riemannian surface S , ZN (Γ ) with Γ = βe2
the coupling constant, or the grand canonical one Ξ [{λp(q)},Γ ], with λp some position dependent fugacities, we can
define the n-body density functions. Denoting with p = (p, q) the species p and the position q of a particle of this species,
we have,

ρ(n)(p1, . . . , pn;N,Γ ) = ρ(p1;N,Γ ) · · · ρ(pn;N,Γ )gp1...pn (q1, . . . , qn;N,Γ )

=

⟨ ∑
i1,...,in

DP
δ(2)(q1; qi1 )δp1,pi1 · · · δ(2)(qn; qin )δpn,pin

⟩
N,Γ

, (5.1)

where δp,q is the Kronecker delta, δ(2) is the Dirac delta function on the curved surface such that
∫
δ(2)(q; q′) dS = 1 with

dS =
√
g(q) dq the elementary surface area on S , ⟨. . .⟩N,Γ =

∑
p1,...,pN

∫
Ω
. . . e−βVN dS1 · · · dSN/ZN is the thermal average in

the canonical ensemble,
∑DP denotes the inclusion in the sum only of addends containing the product of delta functions

relative to different particles, and we omitted the superscript (1) in the one-body densities. The gp1,...,pn are known as the
n-body distribution functions. It is convenient to introduce another set of correlation functions which decay to zero as two
groups of particles are largely separated [2], namely the truncated (Ursell) correlation functions,

ρ(n)T (p1, . . . , pn;N,Γ ) = ρ(n)(p1, . . . , pn;N,Γ ) −

∑∏
m<n

ρ(m)T (pi1 , . . . , pim;N,Γ ), (5.2)

where the sum of products is carried out over all possible partitions of the set (1, . . . , n) into subsets of cardinal number
m < n.

In terms of the grand canonical partition function we will have,

ρ(n)(p1, . . . , pn; {λp},Γ ) =

n∏
i=1

λpi (qi)
1

Ξ [{λp},Γ ]

δ(n)Ξ [{λp},Γ ]

δλp1 (q1) . . . δλpn (qn)
, (5.3)

and

ρ(n)T (p1, . . . , pn; {λp},Γ ) =

n∏
i=1

λpi (qi)
δ(n) lnΞ [{λp},Γ ]

δλp1 (q1) . . . δλpn (qn)
. (5.4)

We may also use the notation ρ(n)(p1, . . . , pn; {λp},Γ ) = ρ
(n)
p1...pn (q1, . . . , qn; {λp},Γ ) where for example in the two-

component mixture each p = ± denotes either a positive or a negative charge. And sometimes we may omit the
dependence from the number of particles, the fugacities, and the coupling constant. From the structure it is possible
to derive the thermodynamic properties of the plasma (but not the contrary).

Part II

The one-component plasma

An one-component plasma is a system of N identical particles of charge e embedded in a uniform neutralizing
background of opposite charge.

6. The plane

The metric tensor in the Cartesian coordinates q = (x, y) of the plane is,

g =

(
1 0
0 1

)
, (6.1)

and the curvature is clearly zero. We will use polar coordinates q = (r, ϕ) with r =

√
x2 + y2 and ϕ = arctan(y/x).

6.1. The Coulomb potential

The Coulomb interaction potential between a particle at q and a particle at q0 a distance r = |q − q0| from one another
is

G(q, q0) = − ln(|q − q0|/L), (6.2)

where L is a length scale.



182 R. Fantoni / Physica A 524 (2019) 177–220

6.2. The background

If one assumes the particles to be confined in a disk ΩR = {q ∈ S| 0 ≤ ϕ ≤ 2π, 0 ≤ r ≤ R} of area AR = πR2 the
background potential is

vb(r) = enb
π

2

(
r2 − R2

+ 2R2 ln
R
L

)
, (6.3)

where r = |q|.

6.3. The total potential energy

The total potential energy of the system is then given by Eq. (4.1). Developing all the terms and using nb = n = N/AR
(this is not a necessary condition since we can imagine a situation where nb ̸= n. In this case the system would not be
electrically neutral) we then find

VN/e2 = −

∑
i<j

ln
( rij
L

)
+

nbπ

2

∑
i

r2i + n2
bπ

2R4
(

−
3
8

+
1
2
ln

R
L

)
, (6.4)

where rij = |qi − qj| and ri = |qi|. This can be rewritten as follows

VN/e2 = −

∑
i<j

ln
( rij
R

)
+

N
2

∑
i

( ri
R

)2
+

N2
(

−
3
8

+
1
2
ln

R
L

)
−

N(N − 1)
2

ln
(
R
L

)
. (6.5)

We can then introduce the new variables [12] zi =
√
Nqi/R to find

VN/e2 = f ({zi}) + fc (6.6)

f = −

∑
i<j

ln zij +
1
2

∑
i

z2i , (6.7)

fc =
N(N − 1)

4
ln(nπL2) + N2

(
−

3
8

+
1
2
ln

R
L

)
. (6.8)

We can always choose L = R so that in the thermodynamic limit limN→∞ fc/N = − ln(nπL2)/4 and the excess Helmholtz
free energy per particle

aexc = Fexc/N → −
e2

4
ln(πnL2) + a0(T ), (6.9)

with a0 some function of the temperature T alone. Therefore, the equation of state has the simple form

p = (1/β − e2/4)n, (6.10)

where β = 1/kBT with kB Boltzmann’s constant.

6.4. Partition function and densities at a special temperature

At the special temperature T0 = e2/2kB the partition function can be found exactly analytically using the properties of
the Vandermonde determinant [12,13]. Using polar coordinates zi = (zi, θi), one obtains at T0 a Boltzmann factor

e−βVN = ANe−
∑

i z
2
i

⏐⏐⏐⏐⏐⏐
∏
i<j

(Zi − Zj)

⏐⏐⏐⏐⏐⏐
2

, (6.11)

where AN is a constant and Zi = zi exp(iθi). This expression can be integrated upon variables zi (0 ≤ zi ≤
√
N) by

expanding the Vandermonde determinant
∏

(Zi − Zj). One obtains the partition function

ZN (2) =

∫
e−βVN dz1 · · · dzN = ANπ

NN!

N∏
j=1

γ (j,N), (6.12)

where

γ (j,N) =

∫ √
N

0
e−z2z2(j−1)2z dz =

∫ N

0
e−t t j−1 dt, (6.13)



R. Fantoni / Physica A 524 (2019) 177–220 183

is the incomplete gamma function. Taking the thermodynamic limit of −[ln(ZN (2)/AN
R )]/N → βaexc(2) we obtain the

Helmholtz free energy per particle

aexc(2) = −
e2

4
ln(πnL2) +

e2

2

[
1 −

1
2
ln(2π )

]
. (6.14)

One can also obtain the n-body distribution functions from the truncated densities [2] as follows

g(1, . . . , n;N) = e−
∑n

i=1 z2i det
[
KN (ZiZ̄j)

]
i,j=1,...,n , (6.15)

where Z̄ is the complex conjugate of Z and

KN (x) =

N∑
i=1

xi−1

γ (i,N)
. (6.16)

In the thermodynamic limit N → ∞, γ (i,N) → (i − 1)!, and KN (x) → ex. In this limit, one obtains from Eq. (6.15) the
following explicit distribution functions [12]

g(1) = 1, (6.17)

g(1, 2) = 1 − e−πnr212 , (6.18)
g(1, 2, 3) = . . . . (6.19)

This Gaussian falloff is in agreement with the general result according to which, among all possible long-range pair
potentials, it is only in the Coulomb case that a decay of correlations faster than any inverse power is compatible with
the structure of equilibrium equations like the Born–Green–Yvon hierarchic set (see Ref. [2] section II.B.3). A somewhat
surprising result is that the correlations does not have the typical exponential falloff typical of the high-temperature
Debye–Hückel approximation [43]. One easily checks that the distribution functions obey the perfect screening and other
sum rules.

Expansions around Γ = 2 suggests that the pair correlation function changes from the exponential form to an
oscillating one for a region with Γ > 2. This behavior of the pair correlation function as the coupling is stronger has
been observed in Monte Carlo simulations [44]. For sufficient high values of Γ (low temperatures) the 2D OCP begins to
crystallize and there are several works where the freezing transition is found. For the case of the sphere Caillol et al. [44]
localized the coupling parameter for melting at Γ ≈ 140. In the limit Γ → ∞ the 2D OCP becomes a Wigner crystal. In
particular, the spatial configuration of the charges which minimizes the energy at zero temperature for the 2D OCP on a
plane is the usual hexagonal lattice. Nowadays, the corresponding Wigner crystal of the 2D OCP on sphere or Thomson
problem may be solved numerically [1].

7. The cylinder

The cylinder may be useful to compare an exactly soluble fluid with the results from its Monte Carlo simulation for
example, where one needs to use periodic boundary conditions. The two dimensional system studied in the simulation
would actually live on a torus but the cylinder is already a relevant step forward in this direction.

The metric tensor in the cartesian coordinates q = (x, y) is,

g =

(
1 0
0 1

)
, (7.1)

and again the curvature is zero.

7.1. The Coulomb potential

We now consider [17,18] a rectangular disk ΩL,W = {q ∈ S| −L/2 ≤ x ≤ L/2,−W/2 ≤ y ≤ W/2}. We then solve
Eq. (2.1) imposing periodicity in y with period W expanding G in a Fourier series in y where the coefficients are functions
of x and written as inverse Fourier transforms. The solution is

G(q1, q2) = −
π

W
|x1 − x2|+

sgn(x1 − x2)
2

ln
{
1 − 2e−

2π
W |x1−x2| cos

2π
W

(y1 − y2) + e−
4π
W |x1−x2|

}
, (7.2)

where sgn(x) = |x|/x is the sign of x. The term proportional to |x1 − x2| comes from the constant term in the Fourier
series solution, while the other terms sum to give the logarithmic part.
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7.2. The background

The potential of the background (3.1) is then

vb(x) = enb
π

4
(L2 + 4x2), (7.3)

since the second term on the right hand side of Eq. (7.2) is an odd function of x1 − x2.

7.3. The total potential energy

The total potential energy (4.1) for nb = n = N/WL can then be written as

VN/e2 =

∑
i<j

G(qi, qj) + πn
∑

i

x2i + BN , (7.4)

where BN is a constant irrelevant to the distribution function.

7.4. Partition function and densities at a special temperature

The energy of Eq. (7.4) can be inserted into the formula for the canonical partition function ZN (Γ ) at Γ = βe2 = 2 to
obtain

ZN (2) = AN

∫ L/2

−L/2
dxN

∫ xN

−L/2
dxN−1 · · ·

∫ x2

−L/2
dx1e−2πn

∑
i x

2
i ×∫ W/2

−W/2
dy1 · · ·

∫ W/2

−W/2
dy1

∏
i<j

(
e

2π
W (xi+xj)

⏐⏐⏐e−
2π
W (xi−iyi) − e−

2π
W (xj−iyj)

⏐⏐⏐2) , (7.5)

where AN is a constant. Now we notice that the y-dependent part of the integrand is contained in the square modulus of a
Vandermonde determinant. We use the permutation notation to write the expansion of the determinant and its conjugate
as follows∫ W/2

−W/2
dy1 · · ·

∫ W/2

−W/2
dyN

∏
i<j

⏐⏐⏐e−
2π
W (xi−iyi) − e−

2π
W (xj−iyj)

⏐⏐⏐2 =

∑
P,Q

ϵ(P)ϵ(Q )
N∏
i=1

(
e−

2πxi
W [P(i)+Q (i)−2]

∫ W/2

−W/2
dyi e−

2π iyi
W [P(i)−Q (i)]

)
, (7.6)

where the sums are over the N! permutations, ϵ(P) denotes the sign of permutation P . Only permutations for which
P(i) = Q (i), 1 ≤ i ≤ N contribute. Recalling that n = N/WL we obtain

ZN (2) = ANWN
∑
P

∫ L/2

−L/2
dxN

∫ xN

−L/2
dxN−1 · · ·

∫ x2

−L/2
dx1 ×

N∏
i=1

e−2πn
{
x2i −2xi

L
2

[
1−2 P(i)−1

N

]}
. (7.7)

For permutation P , make the substitution xi = zP(i), 1 ≤ i ≤ N . We then have a sum over ordered integrals over the zi. The
integrand is the same for each permutation and each possible ordering of the zi occurs exactly once. Hence, the sum over
ordered integrals may be written as an unrestricted multiple integral over [−L/2, L/2]N . Renaming zi = xi for 1 ≤ i ≤ N
and using the appropriately defined BN , we obtain

ZN (2) = BNWN
N∏
i=1

∫ L/2

−L/2
dxie

−2πn
[
xi−

L
2

(
1−2 i−1

N

)]2
(7.8)

This equation describes the canonical partition function for an assembly of N independent harmonic oscillators with
mean position evenly spaced on [−L/2, L/2]. Using the correct form of BN we may now take the thermodynamic limit
of −[ln(ZN (2)/AN

R )]/N to obtain for the excess free energy per particle βaexc(2) = βaexc,plane(2) + M where aexc,plane(2)
is expression (6.14) with the choice L = W/2π and M = π/6nW 2 is a Madelung constant for the potential in the
semiperiodic boundary conditions used.

To calculate the one-particle distribution function in the finite system we simply leave out the integrations over x1
and y1. Define x0 = −L/2, xN+1 = L/2, and the ordering of the x variables with x0 ≤ x2 ≤ x3 ≤ · · · ≤ xp ≤ x1 < xp+1 ≤

· · · ≤ xN ≤ xN+1. There are (N − 1)! orderings, each giving the same contribution to g(1;N). We use the Vandermonde
determinant representation of the integrand and carry out the integrations over y2, . . . , yN giving P(i) = Q (i), 2 ≤ i ≤ N ,
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and so P(1) = Q (1) by default. Collect all the integrals with P(1) = q and change variables with xi = zP(i), 2 ≤ i ≤ N;
P(i) ̸= q and x1 = zq. This generates ordered integrals with respect to (N − l) of the zi, all possible orderings occurring
exactly once. An unrestricted integral over

{z1, . . . , zq−1, zq+1, . . . , zN} ∈ [−L/2, L/2]N−1, (7.9)

results. The final form for the one-particle distribution function is then

g(1;N) =
1
Wn

N∑
q=1

e−2πn
[
x1−

L
2

(
1−2 q−1

N

)]2
/I(q, L,N), (7.10)

I(i, L,N) =

∫ L/2

−L/2
dx e−2πn

[
x1−

L
2

(
1−2 i−1

N

)]2
. (7.11)

The higher orders distribution functions are determined in Ref. [18].

8. The sphere

The metric tensor in the polar coordinates q = (θ, ϕ) is now,

g =

(
a2 0
0 a2 sin2 θ

)
, (8.1)

where a is the radius of the sphere. The sphere is embeddable in the three dimensional Euclidean space. The intrinsic
Gaussian curvature of the sphere is a constant K = 1/a2 and the surface area of the sphere is AS = 4πa2. So the sphere
is the surface of constant positive curvature by Liebmann’s theorem. Also by Minding’s theorem we know that surfaces
with the same constant curvature are locally isometric.

8.1. The Coulomb potential

The Coulomb interaction between a particle at ri and a particle at rj is

G(ri, rj) = − ln(rij/L), (8.2)

rij = 2a sin(θij/2), (8.3)

ϕij = arccos(ri · rj/a2), (8.4)

where rk is the three-dimensional vector from the center of the sphere to particle k on the sphere surface and rij is the
length of the chord joining ri and rj.

8.2. The background

The background potential is then a constant

vb = enb2πa2
(

−1 + ln
4a2

L2

)
. (8.5)

8.3. The total potential energy

The total potential energy of the system (4.1) is then

VN/e2 = −
1
2

∑
i<j

ln
[
2a2

L2
(1 − cos θij)

]
−

N2

4

(
1 − ln

4a2

L2

)
. (8.6)

8.4. Partition function and densities at a special temperature

At Γ = βe2 = 2 the excess canonical partition function is

ZN (2) = eN
2/2
(

L
2a

)N ∫ N∏
i=1

dqi

∏
j<k

(
1 − cos θjk

2

)
, (8.7)

where denoting with g = det[gµν] we have dq = dS =
√
g dq1 dq2 = a2 sin θ dθ dϕ. Introducing the Cayley–Klein

parameters defined by

αi = cos
θi

2
eiϕi/2, (8.8)
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βi = −i sin
θi

2
e−iϕi/2, (8.9)

we can write

1 − cos θij = 2|αiβj − αjβi|
2. (8.10)

The integrand of Eq. (8.7) takes the form

∏
i<j

(
1 − cos θjk

2

)
=

⏐⏐⏐⏐⏐⏐
N∏

k=1

βN−1
k

∏
i<j

(
αi

βi
−
αj

βj

)⏐⏐⏐⏐⏐⏐
2

. (8.11)

The second product in the right hand side of this equation is a van der Monde determinant. Expanding it and inserting
in Eq. (8.7) we find

ZN (2) = eN
2/2(2πL)NaNN!

N∏
k=1

(k − 1)!(N − k)!
N!

. (8.12)

This result is similar to the result (6.12) on the plane apart from the fact that now only complete gamma functions are
involved. The excess free energy per particle is identical to the result (6.14) for the plane.

For the distribution functions we find [19]

g(1, 2, . . . , n;N) = det[(αiᾱj + βiβ̄j)N−1
], (8.13)

where ᾱ is the complex conjugate of α. In particular

g(1;N) = 1, (8.14)

g(1, 2;N) = 1 −

(
1 + cos θ12

2

)N−1

. (8.15)

The system appears to be homogeneous for all N and the distribution functions are invariant under a rotation of the
sphere.

The thermodynamic limit is obtained defining ρi = Rθi and taking the limit N → ∞ and R → ∞ at n constant,
keeping ρi and ϕi constant for each particle i. For an infinitely large sphere the particles will be situated in the tangent
plane at the North pole and there positions will be characterized by the polar coordinates (ρi, ϕi). The solution for the
planar geometry of Section 6 is thereby recovered.

9. The pseudosphere

The pseudosphere is non-embeddable in the three dimensional Euclidean space and it is a non-compact Riemannian
surface of constant negative curvature. Unlike the sphere it has an infinite area and this fact makes it interesting from
the point of view of statistical physics because one can take the thermodynamic limit on it.

Riemannian surfaces of negative curvature play a special role in the theory of dynamical systems [45]. Hadamard study
of the geodesic flow of a point particle on a such surface [46] has been of great importance for the future development
of ergodic theory and of modern chaos theory. In 1924 the mathematician Emil Artin [47] studied the dynamics of a
free point particle of mass m on a pseudosphere closed at infinity by a reflective boundary (a billiard). Artin’ s billiard
belongs to the class of the so called Anosov systems. All Anosov systems are ergodic and possess the mixing property
[48]. Sinai [49] translated the problem of the Boltzmann–Gibbs gas into a study of the by now famous ‘‘Sinai’ s billiard’’,
which in turn could relate to Hadamard’ s model of 1898. Recently, smooth experimental versions of Sinai’ s billiard have
been fabricated at semiconductor interfaces as arrays of nanometer potential wells and have opened the new field of
mesoscopic physics [50].

The following important theorem holds for Anosov systems [51,52]:

Theorem 9.1. Let M be a connected, compact, orientable analytic surface which serves as the configurational manifold of a
dynamical system whose Hamiltonian is H = K + U. Let the dynamical system be closed and its total energy be h. Consider
the manifold M defined by the Maupertuis Riemannian metric ds2 = 2(h − U)K dt2 on M, where t is time. If the curvature of
M is negative everywhere then the dynamical system is an Anosov system and in particular is ergodic on Mh = {h = H}.

If the dynamical system is composed of N particles, the same conclusions hold, we need only require that the curvature be
negative when we keep the coordinates of all the particles but anyone constant.

The metric tensor of the pseudosphere in the coordinates q = (θ, ϕ) with θ ∈ [0,∞[ is,

g =

(
a2 0
0 a2 sinh2 θ

)
, (9.1)

where a is the ‘‘radius’’ of the pseudosphere.
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Introducing the alternative coordinates q = (r, ϕ) with r/2a = tanh(θ/2) we find

g =

(
[1 − (r/2a)2]−2 0

0 r2[1 − (r/2a)2]−2

)
. (9.2)

These are the polar coordinates ω = (r/2a, ϕ) of a disk of the unitary disk, D = {ω ∈ C | |ω| < 1}, which with such a
metric is called the Poincaré disk.

A third set of coordinates used is q = (x, y) obtained from (r/2a, ϕ) through the Cayley transformation,

z = x + iy =
ω + i
1 + iω

. (9.3)

which establishes a bijective transformation between the unitary disk and the complex half plane,

H = {z = x + iy | x ∈ R, y > 0}. (9.4)

The center of the unitary disk corresponds to the point zo = i, ‘‘the center of the plane’’. The metric becomes,

g =

(
a2/y2 0
0 a2/y2

)
. (9.5)

The complex half plane with such a metric is called the hyperbolic plane, and the metric the Poincaré’ s metric.
Cayley transformation is a particular Möbius transformation. Poincaré metric is invariant under Möbius transforma-

tions. And any transformation that preserves Poincaré metric is a Möbius transformation.
The geodesic distance d01 between any two points q0 = (τ0, ϕ0) and q1 = (τ1, ϕ1) on the pseudosphere S is given by,

cosh(d01/a) = cosh τ1 cosh τ0 − sinh τ1 sinh τ0 cos(ϕ1 − ϕ0). (9.6)

Given the set of points Ωd at a geodesic distance from the origin less or equal to d,

Ωd = {(τ , ϕ) ∈ S | τa ≤ d, ϕ ∈ [0, 2π )}, (9.7)

that we shall call a disk of radius d, we can determine its circumference,

C = L(∂Ωd) = a
∫
τ=d/a

√
τ̇ 2 + sinh2 τ ϕ̇2 dt

= 2π a sinh
(
d
a

)
∼
d → ∞

π a ed/a, (9.8)

and its area,

A = V(Ωd) =

∫ 2π

0
dϕ
∫ d/a

0
dτ a2 sinh τ

= 4π a2 sinh2
(

d
2a

)
∼
d → ∞

π a2 ed/a. (9.9)

The Laplace–Beltrami operator on S is,

∆ =
1

√
g
∂

∂qµ

(
√
g gµν

∂

∂qν

)
=

1
a2

(
1

sinh τ
∂

∂τ
sinh τ

∂

∂τ
+

1
sinh2 τ

∂2

∂ϕ2

)
, (9.10)

where g is the determinant of the metric tensor g = det[gµν].
The characteristic component of the Riemann tensor is,

Rτϕτϕ = − sinh2 τ . (9.11)

The Gaussian curvature is given by

Rτϕτϕ = gϕϕRτ ϕτϕ = −
1
a2
, (9.12)

except at its singular cusp, in agreement with Hilbert’s theorem. Contraction gives the components of the Ricci tensor,

Rτ τ = Rϕϕ = −
1
a2

, Rτ ϕ = 0, (9.13)

and further contraction gives the scalar curvature,

R = −
2
a2
. (9.14)
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The ensemble of N identical point-wise particles of charge e are constrained to move in a connected and compact
domain Ω ⊂ S by an infinite potential barrier on the boundary of the domain ∂Ω with a number density n = N/V(Ω).

9.1. The Coulomb potential

The pair Coulomb potential between two unit charges a geodesic distance d apart, satisfies Poisson equation on S ,

∆G(d) = −2πδ(2)(d), (9.15)

where δ(2)(d01) = δ(q0 − q1)/
√
g is the Dirac delta function on the curved manifold. Poisson equation admits a solution

vanishing at infinity,

G(dij) = − ln
[
tanh

(
dij
2a

)]
. (9.16)

9.2. The background

If we choose Ω = Ωaτ0 , the electrostatic potential of the background inside Ω can be chosen (see Appendix A) to be
just a function of τ ,

vb(τ ) = enb2πa2
{
ln
[
1 − tanh2(τ0/2)
1 − tanh2(τ/2)

]
+ sinh2(τ0/2) ln[tanh2(τ0/2)]

}
. (9.17)

9.3. Ergodicity

Consider a closed one component Coulomb plasma of N charges and total energy h, confined in the domain Ωaτ0 ⊂ S.
Let the coordinates of particle i be qi = q(i)α e⃗α = (q(i)1, q(i)2) ∈ Ωaτ0 , where e⃗α = ∂/∂qα (α = 1, 2) is a coordinate basis
for S. The trajectory of the dynamical system,

Tt0 = {qN (t) ≡ (q1, . . . , qN ) | t ∈ [0, t0]}, (9.18)

is a geodesic on the 2N dimensional manifold M defined by the metric,

Gαβ = (h − VN )gµν(qi) ⊗ · · · ⊗ gµν(qN ), (9.19)

on SN . We now assume nb = n and rewrite V pb
N = v1 + vpb where

v1 = N 2πa2 e2n {ln[1 − tanh2(τ0/2)] + sinh2(τ0/2) ln[tanh2(τ0/2)]}, (9.20)

is a constant. Since the interaction between the particles is repulsive we conclude that, up to an additive constant (V 0
N+v1),

the potential VN is a positive function of the coordinates of the particles. Since vpb and V pp
N are positive on Ωaτ0 we have,

Gαβ < G′

αβ = (h − V 0
N − v1)gµν(qi) ⊗ · · · ⊗ gµν(qN ), (9.21)

where G′ has a negative curvature along the coordinates of any given particle. In the next subsection we will calculate the
curvature of G along the coordinates of one particle. According to the theorem stated in the introduction we will require
the curvature to be negative everywhere on SN . This will determine a condition on the kinetic and potential energy of
the system, sufficient for its ergodicity to hold on Mh.

Let p̃i = p(i)αω̃
α be the momentum of charge i, where ω̃α = d̃qα are the 1-forms of the dual coordinate basis, and

define pN (t) ≡ (p̃1, . . . , p̃N ), qN (t) ≡ (q1, . . . , qN ). The ergodicity of the system tells us that given any dynamical quantity
A(qN , pN ), its time average,

⟨A⟩t = lim
T→∞

1
T

∫ T

0
A(qN , pN ) dt, (9.22)

coincides with its microcanonical phase space average,

⟨A⟩h =

∫
Mps

A(qN , pN ) δ(h − H) d4Nµps∫
Mps
δ(h − H) d4Nµps

, (9.23)

where the phase space of the system is,

Mps = {(qN , pN ) | qi ∈ S i = 1, . . . ,N;

p(i)α ∈ [−∞,∞] i = 1, . . . ,N, α = 1, 2}, (9.24)
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the phase space measure is,

d4Nµps =

2∏
α=1

dq(1)α · · · dq(N)
αdp(1)α · · · dp(N)α, (9.25)

and δ is the Dirac delta function.

9.4. Calculation of the curvature of M

We calculate the curvature of M along particle 1 using Cartan structure equations. Let K = h− U(τ , ϕ) be the kinetic
energy of the N particle system of total energy h, as a function of the coordinates of particle 1 (all the other particles
having fixed coordinates). We choose an orthonormal basis,{

ω̃τ̂ = a
√
Kd̃τ

ω̃ϕ̂ = a sinh(τ )
√
Kd̃ϕ

(9.26)

By Cartan second theorem we know that the connection 1-form satisfies ω̃α̂β̂ + ω̃β̂α̂ = 0. Then we must have,{
ω̃τ̂ τ̂ = ω̃ϕ̂ ϕ̂ = 0
ω̃τ̂ ϕ̂ = −ω̃ϕ̂

τ̂
= −ω̃ϕ̂ τ̂

(9.27)

We use Cartan first theorem to calculate ω̃τ̂ ϕ̂ ,

d̃ω̃τ̂ = −ω̃τ̂ ϕ̂ ∧ ω̃ϕ̂ (9.28)

= d̃(a
√
Kd̃τ )

= a K
1
2 ,ϕ d̃ϕ ∧ d̃τ = 0,

where in the last equality we used the fact that the pair interaction is a function of ϕi − ϕj and that the interaction with
the background is a function of τ only (being the system confined in a domain which is symmetric under translations of
ϕ). We must then conclude that ω̃τ̂ ϕ̂ is either zero or proportional to ω̃ϕ̂ . We proceed then calculating,

d̃ω̃ϕ̂ = −ω̃ϕ̂ τ̂ ∧ ω̃τ̂ (9.29)
= d̃(a sinh(τ )

√
T d̃ϕ)

= a(sinh(τ )K
1
2 ),τ d̃τ ∧ d̃ϕ,

which tells us that indeed,

ω̃ϕ̂ τ̂ =
(sinh(τ )K

1
2 ),τ

a sinh(τ )K
ω̃ϕ̂ . (9.30)

Next we calculate the characteristic component of the curvature 2-form Rα̂
β̂ = d̃ω̃α̂ β̂ + ω̃α̂ γ̂ ∧ ω̃γ̂ β̂ ,

Rτ̂
ϕ̂ = d̃ω̃τ̂ ϕ̂

= d̃[−(sinh(τ )K
1
2 ),τK−

1
2 d̃ϕ]

= −
[(sinh(τ )K

1
2 ),τK−

1
2 ],τ

a2 sinh(τ )K
ω̃τ̂ ∧ ω̃ϕ̂ . (9.31)

and use Cartan third theorem to read off the characteristic component of the Riemann tensor,

Rτ̂ ϕ̂τ̂ ϕ̂ = −
[(sinh(τ )K

1
2 ),τK−

1
2 ],τ

a2 sinh(τ )K
. (9.32)

We find then for the scalar curvature,

R = Rα̂β̂ α̂β̂ = 2Rτ̂ ϕ̂ τ̂ ϕ̂

= −
2
a2

{
[(sinh(τ ) K

1
2 ),τK−

1
2 ],τ

sinh(τ ) K

}
, (9.33)

which can be rewritten in terms of the Laplacian as follows,

R = −
2

a2K

{
1 +

1
2K

[
−a2∆U +

U,ϕϕ
sinh2 τ

−
(U,τ )2

K

]}
. (9.34)
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For finite values of h, the condition for R to be negative on all the accessible region of SN is then,

2πa2 q2n −
U,ϕϕ

sinh2 τ
+

(U,τ )2

K
< 2K . (9.35)

9.5. Ergodicity of the semi-ideal Coulomb plasma

Consider a one component Coulomb plasma where we switch off the mutual interactions between the particles, leaving
unchanged the interaction between the particles and the neutralizing background (U = V 0

N + V pb
N ). We will call it the

‘‘semi-ideal’’ system. Define,

Ω(h, τ0) = {qN |qi ∈ Ωaτ0 ∀i, h − U(qN ) ≥ 0}, (9.36)

and call h′
= h − V 0

N − v1 and

f (N) = −N ln[1 − tanh2(τ0/2)] = N ln[1 + sinh2(τ0/2)]

= N ln
(
1 +

N
4πa2n

)
. (9.37)

We will have (α = 2πa2ne2)

r = inf
qN∈Ω(h,τ0)

2K 2
=

{
2[h′

− αf (N)]2 h′ > αf (N)
0 h′

≤ αf (N) , (9.38)

Notice that for large N , at constant n, we have (see Appendix A),

−V 0
N/α =

α

e2

[
−2

N
4πa2n

+ ln
(
1 +

N
4πa2n

)
+

1
2

]
+ O(1/N), (9.39)

−v1/α = f (N) + N −
α

e2
+ O(1/N). (9.40)

Using the extensive property of the energy we may assume that h = Nh0, where h0 is the total energy per particle. Then
for large N we will have

h′
= Nh0 + αf (N) +

(α
e

)2 [
ln
(
1 +

N
4πa2n

)
−

1
2

]
+ O(1/N) > αf (N), (9.41)

if h0 ≥ 0.
On the other hand for h′ > αf (N) we have

l = sup
qN∈Ω(h,τ0)

[αK + (U,τ )2] ≤ sup
qN∈Ω(h,τ0)

[αK ] + sup
qN∈Ω(h,τ0)

[(U,τ )2]

= l+ = αh′
+ α2 tanh2(τ0/2), (9.42)

Condition (9.35) is always satisfied if l < r . Then the semi-ideal system is ergodic if,

h′ > h′

+
= αf (N) +

α

4

[
1 +

√
1 + 8f (N) + 8 tanh2(τ0/2)

]
, (9.43)

where h′
+

is the largest root of the equation l+ = r . Recalling that tanh2(τ0/2) → 1 at lare N , one can verify that, given
Eqs. (9.41), (9.43) must be satisfied at large N if h0 > 0.

We conclude that the semi ideal system is certainly ergodic if the total energy is extensive and the total energy per
particle is positive.

9.6. Partition function and densities at a special temperature

Working with the set of coordinates (r, ϕ) on the pseudosphere (the Poincaré disk representation), the particle
i-particle j interaction term in the Hamiltonian can be written as [23]

G(dij) = − ln tanh(dij/2a) = − ln
⏐⏐⏐⏐ (zi − zj)/2a
1 − (ziz̄j/4a2)

⏐⏐⏐⏐ , (9.44)

where zj = rjeiϕj and z̄j is the complex conjugate of zj. This interaction (9.44) happens to be the Coulomb interaction
in a flat disc of radius 2a with ideal conductor walls. Therefore, it is possible to use the techniques which have been
developed [16,34] for dealing with ideal conductor walls, in the grand canonical ensemble.
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The grand canonical partition function of the OCP at fugacity ζ with a fixed background density nb, when Γ = βe2 = 2,
is

Ξ (2) = C0

⎡⎣1 +

∞∑
N=1

1
N!

∫ N∏
i=1

ridridϕi
[1 − (r2i /4a2)]

∏
i<j

⏐⏐⏐⏐ (zi − zj)/2a
1 − (ziz̄j/4a2)

⏐⏐⏐⏐2 N∏
i=1

ζ (ri)

⎤⎦ (9.45)

where for N = 1 the product
∏

i<j must be replaced by 1. We have defined a position-dependent fugacity ζ (r) =

ζ [1 − r2/4a2]4πnba
2
−1eC which includes the particle–background interaction (9.17) and only one factor [1 − r2/4a2]−1

from the integration measure dS = [1 − r2/4a2]−2 dr. This should prove to be convenient later. The eC factor is

eC = exp
[
4πnba2

(
ln cosh2 τ0

2
− sinh2 τ0

2
ln tanh2 τ0

2

)]
(9.46)

which is a constant term coming from the particle–background interaction term (9.17) and

ln C0 =
(4πnba2)2

2

[
ln cosh2 τ0

2
+ sinh2 τ0

2

(
sinh2 τ0

2
ln tanh2 τ0

2
− 1

)]
(9.47)

which comes from the background–background interaction. Notice that for large domains, when τ0 → ∞, we have

eC ∼

[
eτ0+1

4

]4πnba2
(9.48)

and

ln C0 ∼ −
(4πnba2)2eτ0

4
(9.49)

Let us define a set of reduced complex coordinates ui = (zi/2a) inside the Poincaré disk and its corresponding images
u∗

i = (2a/z̄i) outside the disk. By using the following Cauchy identity [53]

det

(
1

ui − u∗

j

)
(i,j)∈{1,...,N}2

= (−1)N(N−1)/2

∏
i<j(ui − uj)(u∗

i − u∗

j )∏
i,j(ui − u∗

j )
(9.50)

the particle–particle interaction term together with the [1− (r2i /4a
2)]−1 other term from the integration measure can be

cast into the form∏
i<j

⏐⏐⏐⏐ (zi − zj)/2a
1 − (ziz̄j/4a2)

⏐⏐⏐⏐2 N∏
i=1

[1 − (r2i /4a
2)]−1

= det
(

1
1 − uiūj

)
(i,j)∈{1,...,N}2

(9.51)

The grand canonical partition function then is

Ξ (2) =

[
1 +

∞∑
N=1

1
N!

∫ N∏
i=1

d2ri
N∏
i=1

ζ (ri)det
(

1
1 − uiūj

)]
C0 (9.52)

We shall now show that this expression can be reduced to an infinite continuous determinant, by using a functional
integral representation similar to the one which has been developed for the two-component Coulomb gas [54]. Let us
consider the Gaussian partition function

Z0 =

∫
DψDψ̄ exp

[∫
ψ̄(r)M−1(z, z̄ ′)ψ(r′) d2r d2r′

]
(9.53)

The fields ψ and ψ̄ are anticommuting Grassmann variables. The Gaussian measure in (9.53) is chosen such that its
covariance is equal to1⟨

ψ̄(ri)ψ(rj)
⟩
= M(zi, z̄j) =

1
1 − uiūj

(9.54)

where ⟨. . .⟩ denotes an average taken with the Gaussian weight of (9.53). By construction we have

Z0 = det(M−1) (9.55)

Let us now consider the following partition function

Z =

∫
DψDψ̄ exp

[∫
ψ̄(r)M−1(z, z̄ ′)ψ(r′)d2rd2r′ +

∫
ζ (r)ψ̄(r)ψ(r) d2r

]
(9.56)

1 Actually the operator M should be restricted to act only on analytical functions for its inverse M−1 to exist.
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which is equal to

Z = det(M−1
+ ζ ) (9.57)

and then
Z
Z0

= det[M(M−1
+ ζ )] = det[1 + K ] (9.58)

where

K (r, r′) = M(z, z̄ ′) ζ (r ′) =
ζ (r ′)

1 − uū′
(9.59)

The results which follow can also be obtained by exchanging the order of the factors M and M−1
+ ζ in (9.58), i.e. by

replacing ζ (r ′) by ζ (r) in (9.59), however using the definition (9.59) of K is more convenient. Expanding the ratio Z/Z0 in
powers of ζ we have

Z
Z0

= 1 +

∞∑
N=1

1
N!

∫ N∏
i=1

d2ri
N∏
i=1

ζ (ri)
⟨
ψ̄(r1)ψ(r1) · · · ψ̄(rN )ψ(rN )

⟩
(9.60)

Now, using Wick theorem for anticommuting variables [54], we find that⟨
ψ̄(r1)ψ(r1) · · · ψ̄(rN )ψ(rN )

⟩
= detM(zi, z̄j) = det

(
1

1 − uiūj

)
(9.61)

Comparing Eqs. (9.60) and (9.52) with the help of Eq. (9.61) we conclude that

Ξ (2) = C0
Z
Z0

= C0det(1 + K ) (9.62)

The problem of computing the grand canonical partition function has been reduced to finding the eigenvalues of the
operator K . The eigenvalue problem for K reads

∫
ζ eC

(
1 −

r ′2

4a2

)4πnba2−1

1 −
zz̄′
4a2

Φ(r′) r ′ dr ′dϕ′
= λΦ(r) (9.63)

For λ ̸= 0 we notice from Eq. (9.63) that Φ(r) = Φ(z) is an analytical function of z. Because of the circular symmetry it
is natural to try Φ(z) = Φℓ(z) = zℓ = rℓeiℓϕ with ℓ a positive integer. Expanding

1

1 −
zz̄′
4a2

=

∞∑
n=0

(
zz̄ ′

4a2

)n

(9.64)

and replacing Φℓ(z) = zℓ in Eq. (9.63) one can show that Φℓ is actually an eigenfunction of K with eigenvalue

λℓ = 4πa2ζ eCBt0 (ℓ+ 1, 4πnba2) (9.65)

with t0 = r20/4a
2

= tanh2(τ0/2) and

Bt0 (ℓ+ 1, 4πnba2) =

∫ t0

0
(1 − t)4πnba

2
−1tℓ dt (9.66)

the incomplete beta function. So we finally arrive to the result for the grand potential

βΩ = − lnΞ (2) = − ln C0 −

∞∑
ℓ=0

ln
(
1 + 4πa2ζ eCBt0 (ℓ+ 1, 4πnba2)

)
(9.67)

with eC and ln C0 given by Eqs. (9.46) and (9.47). This result is valid for any disk domain of radius aτ0. A more explicit
expression of the grand potential for large domains τ0 → ∞ can also be obtained [24].

As usual one can compute the density by doing a functional derivative of the grand potential with respect to the
position-dependent fugacity:

n(1)(r) =

(
1 −

r2

4a2

)2

ζ (r)
δ lnΞ (2)
δζ (r)

(9.68)

The factor [1 − (r2/4a2)]2 is due to the curvature [23], so that n(1)(r) dS is the average number of particles in the surface
element dS = [1 − (r2/4a2)]−2 dr. Using a Dirac-like notation, one can formally write

lnΞ (2) = tr ln(1 + K ) + ln C0 =

∫
⟨r |ln(1 + ζ (r)M)| r⟩ dr + ln C0 (9.69)
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Then, doing the functional derivative (9.68), one obtains

n(1)(r) =

(
1 −

r2

4a2

)2

ζ (r)
⟨
r
⏐⏐(1 + K )−1M

⏐⏐ r⟩ = 4πa
(
1 −

r2

4a2

)2

ζ (r)G̃(r, r) (9.70)

where we have defined G̃(r, r′) by2 G̃ = (1+K )−1M/4πa. More explicitly, G̃ is the solution of (1+K )G̃ = M/4πa, that is

G̃(r, r′) + ζ eC
∫

G̃(r′′, r′)

(
1 −

r ′′2

4a2

)4πnba2−1

1 −
zz̄′′
4a2

dr′′ =
1

4πa
[
1 −

zz̄′
4a2

] (9.71)

and the density is given by

n(1)(r) = 4πaζ eC
(
1 −

r2

4a2

)4πnba2+1

G̃(r, r) (9.72)

From the integral equation (9.71) one can see that G̃(r, r′) is an analytical function of z. Trying a solution of the form

G̃(r, r′) =

∞∑
ℓ=0

aℓ(r′)zℓ (9.73)

into Eq. (9.71) yields

G̃(r, r′) =
1

4πa

∞∑
ℓ=0

(
zz̄ ′

4a2

)ℓ 1
1 + 4πa2ζ eCBt0 (ℓ+ 1, 4πnba2)

(9.74)

Then the density is given by

n(1)(r) = ζ eC
(
1 −

r2

4a2

)4πnba2+1 ∞∑
ℓ=0

(
r2

4a2

)ℓ 1
1 + 4πa2ζ eCBt0 (ℓ+ 1, 4πnba2)

(9.75)

After some calculation (see Appendix B), it can be shown that, in the limit a → ∞, the result for the flat disk in the
canonical ensemble [55]

n(1)(r)
nb

= exp(−πnbr2)
Nb−1∑
ℓ=0

(πnbr2)ℓ

γ (ℓ+ 1, Nb)
(9.76)

is recovered. up to a correction due to the non-equivalence of ensembles in finite systems. In (9.76), γ is the incomplete
gamma function

γ (ℓ+ 1, x) =

∫ x

0
tℓe−tdt (9.77)

In that flat-disk case, in the thermodynamic limit (half-space), n(1)(r0) = ncontact → nb ln 2.
In a flat space, the neighborhood of the boundary of a large domain has a volume which is a negligible fraction of the

whole volume. This is why, for the statistical mechanics of ordinary fluids, usually there is a thermodynamic limit: when
the volume becomes infinite, quantities such as the free energy per unit volume or the pressure have a unique limit,
independent of the domain shape and of the boundary conditions. However, even in a flat space, the one-component
plasma is special. For the OCP, it is possible to define several non-equivalent pressures, some of which, for instance the
kinetic pressure [24], obviously are surface-dependent even in the infinite-system limit.

Even for ordinary fluids, statistical mechanics on a pseudosphere is expected to have special features, which are
essentially related to the property that, for a large domain, the area of the neighborhood of the boundary is of the same
order of magnitude as the whole area. Although some bulk properties, such as correlation functions far away from the
boundary, will exist, extensive quantities such as the free energy or the grand potential are strongly dependent on the
boundary neighborhood and surface effects. For instance, in the large-domain limit, no unique limit is expected for the
free energy per unit area F/A or the pressure −(∂F/∂A)β,N .

In the present section, we have studied the 2D OCP on a pseudosphere, for which surface effects are expected to
be important for both reasons: because we are dealing with a one-component plasma and because the space is a
pseudosphere. Therefore, although the correlation functions far away from the boundary have unique thermodynamic
limits [23], many other properties are expected to depend on the domain shape and on the boundary conditions. This is
why we have considered a special well-defined geometry: the domain is a disk bounded by a plain hard wall, and we
have studied the corresponding large-disk limit. Our results have been derived only for that geometry.

2 The factor 4πa is there just to keep the same notations as in Ref. [23].
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Fig. 1. The Riemannian surface S of Eq. (10.2).

10. The Flamm paraboloid

The metric tensor of Flamm’s paraboloid in the coordinates q = (r, ϕ) is now,

g =

(
(1 − 2M/r)−1 0

0 r2

)
, (10.1)

where M is a constant. This is an embeddable surface in the three-dimensional Euclidean space with cylindrical
coordinates (r, ϕ, Z) with ds2 = dZ2

+ dr2 + r2dϕ2, whose equation is

Z(r) = ±2
√
2M(r − 2M). (10.2)

This surface is illustrated in Fig. 1. It has a hole of radius 2M . As the hole shrinks to a point (limit M → 0) the surface
becomes flat. We will from now on call the r = 2M region of the surface its ‘‘horizon’’. The Schwarzschild geometry
in general relativity is a vacuum solution to the Einstein field equation which is spherically symmetric and in a two
dimensional world its spatial part is a Flamm paraboloid S. In general relativity, M (in appropriate units) is the mass of
the source of the gravitational field.

The ‘‘Schwarzschild wormhole’’ provides a path from the upper ‘‘universe’’ S+ (Z > 0) to the lower one S− (Z < 0).
These are both multiply connected surfaces. We will study the OCP on a single universe, on the whole surface, and on a
single universe with the ‘‘horizon’’ (the region r = 2M) grounded.

Since the curvature of the surface is not a constant but varies from point to point, the plasma will not be uniform even
in the thermodynamic limit.

The system of coordinates (r, ϕ) with the metric (10.1) has the disadvantage that it requires two charts to cover the
whole surface S. It can be more convenient to use the variable

u =
Z
4M

= ±

√
r

2M
− 1 (10.3)

instead of r . Replacing r as a function of Z using Eq. (10.2) gives the following metric when using the system of coordinates
q = (u, ϕ),

g =

(
(4M)2(1 + u2) 0

0 4M2(1 + u2)2

)
, (10.4)

The region u > 0 corresponds to S+ and the region u < 0 to S−.
Let us consider that the OCP is confined in a disk defined as

Ω+

R = {q = (r, ϕ) ∈ S+|0 ≤ ϕ ≤ 2π, 2M ≤ r ≤ R} . (10.5)

The area of this disk is given by

AR =

∫
ΩR

dS = π

[√
R(R − 2M)(3M + R) + 6M2 ln

(√
R +

√
R − 2M

√
2M

)]
, (10.6)
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where dS =
√
g dr dϕ and g = det[gµν]. The perimeter is CR = 2πR.

The Riemann tensor characteristic component is

Rr
ϕrϕ = −

M
r
. (10.7)

The scalar curvature is then given by the following indexes contractions

R = Rµµ = Rµνµν = 2Rrϕ
rϕ = 2gϕϕRr

ϕrϕ = −
2M
r3

, (10.8)

and the (intrinsic) Gaussian curvature is K = R/2 = −M/r3. The (extrinsic) mean curvature of the manifold turns out to
be H = −

√
M/8r3.

The Euler characteristic (1.5) of the disk Ω+

R turns out to be χ = 0, in agreement with the Gauss–Bonnet theorem
χ = 2 − 2h − b where h = 0 is the number of handles and b = 2 the number of boundaries.

We can also consider the case where the system is confined in a ‘‘double’’ disk

ΩR = Ω+

R ∪Ω−

R , (10.9)

with Ω−

R = {q = (r, ϕ) ∈ S−|0 ≤ ϕ ≤ 2π, 2M ≤ r ≤ R}, the disk image of Ω+

R on the lower universe S− portion of S.
The Euler characteristic of ΩR is also χ = 0.

The fact that the Euler characteristic is zero implies that the asymptotic expansion in the thermodynamic limit of the
free energy does not exhibit the logarithmic corrections predicted by Ref. [15].

The Laplacian for a function f is

∆f =
1

√
g
∂

∂qµ

(
√
g gµν

∂

∂qν

)
f

=

[(
1 −

2M
r

)
∂2

∂r2
+

1
r2
∂2

∂ϕ2 +

(
1
r

−
M
r2

)
∂

∂r

]
f , (10.10)

where q ≡ (r, ϕ). In Appendix C, we show how, finding the Green function of the Laplacian, naturally leads to consider
the system of coordinates (x, ϕ), with

x = (
√
u2 + 1 + u)2 . (10.11)

The range for the variable x is ]0,+∞[. The lower paraboloid S− corresponds to the region 0 < x < 1 and the upper one
S+ to the region x > 1. A point in the upper paraboloid with coordinate (x, ϕ) has a mirror image by reflection (u → −u)
in the lower paraboloid, with coordinates (1/x, ϕ), since if

x = (
√
u2 + 1 + u)2 (10.12)

then
1
x

= (
√
u2 + 1 − u)2 . (10.13)

In the upper paraboloid S+, the new coordinate x can be expressed in terms of the original one, r , as

x =
(
√
r +

√
r − 2M)2

2M
. (10.14)

Using this system of coordinates, the metric takes the form of a flat metric multiplied by a conformal factor

g =

(
(M/2)2(1 + 1/x)4 0

0 (M/2)2(1 + 1/x)4x2

)
, (10.15)

The Laplacian also takes a simple form

∆f =
4

M2
(
1 +

1
x

)4 ∆flatf (10.16)

where

∆flatf =
∂2f
∂x2

+
1
x
∂ f
∂x

+
1
x2
∂2f
∂ϕ2 (10.17)

is the Laplacian of the flat Euclidean space R2. The determinant of the metric is now given by g = [M2x(1 + x−1)4/4]2.
With this system of coordinates (x, ϕ), the area of a disk Ω+

R of radius R, in the original system (r, ϕ), is given by

AR =
πM2

4
p(xm) (10.18)
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with

p(x) = x2 + 8x −
8
x

−
1
x2

+ 12 ln x (10.19)

and xm = (
√
R +

√
R − 2M)2/(2M).

The Coulomb potential G(x, ϕ; x0, ϕ0) created at (x, ϕ) by a unit charge at (x0, ϕ0) is given by the Green function of the
Laplacian

∆G(x, ϕ; x0, ϕ0) = −2πδ(2)(x, ϕ; x0, ϕ0) (10.20)

with appropriate boundary conditions. The Dirac distribution on S is given by

δ(2)(x, ϕ; x0, ϕ0) =
4

M2x(1 + x−1)4
δ(x − x0)δ(ϕ − ϕ0) (10.21)

Notice that using the system of coordinates (x, ϕ) the Laplacian Green function equation takes the simple form

∆flatG(x, ϕ; x0, ϕ0) = −2π
1
x
δ(x − x0)δ(ϕ − ϕ0) (10.22)

which is formally the same Laplacian Green function equation for flat space.
We shall consider three different situations: when the particles can be in the whole surface S , or when the particles

are confined to the upper paraboloid universe S+, confined by a hard wall or by a grounded perfect conductor.
The geodesic distance on the Flamm paraboloid is determined in Appendix D.

10.1. Coulomb potential in the whole surface (ws)

To complement the Laplacian Green function equation (10.20), we impose the usual boundary condition that the
electric field −∇G vanishes at infinity (x → ∞ or x → 0). Also, we require the usual interchange symmetry
G(x, ϕ; x0, ϕ0) = G(x0, ϕ0; x, ϕ) to be satisfied. Additionally, due to the symmetry between each universe S+ and S−,
we require that the Green function satisfies the symmetry relation

Gws(x, ϕ; x0, ϕ0) = Gws(1/x, ϕ; 1/x0, ϕ0) (10.23)

The Laplacian Green function equation (10.20) can be solved, as usual, by using the decomposition as a Fourier series,
as shown in Appendix C. Since Eq. (10.20) reduces to the flat Laplacian Green function equation (10.22), the solution is
the standard one

G(x, ϕ; x0, ϕ0) =

∞∑
n=1

1
n

(
x<
x>

)n

cos [n(ϕ − ϕ0)] + g0(x, x0) (10.24)

where x> = max(x, x0) and x< = min(x, x0). The Fourier coefficient for n = 0, has the form

g0(x, x0) =

{
a+

0 ln x + b+

0 , x > x0
a−

0 ln x + b−

0 , x < x0 .
(10.25)

The coefficients a±

0 , b
±

0 are determined by the boundary conditions that g0 should be continuous at x = x0, its derivative
discontinuous ∂xg0|x=x+0

−∂xg0|x=x−0
= −1/x0, and the boundary condition at infinity ∇g0|x→∞= 0 and ∇g0|x→0= 0.

Unfortunately, the boundary condition at infinity is trivially satisfied for g0, therefore g0 cannot be determined only with
this condition. In flat space, this is the reason why the Coulomb potential can have an arbitrary additive constant added
to it. However, in our present case, we have the additional symmetry relation (10.23) which should be satisfied. This fixes
the Coulomb potential up to an additive constant b0. We find

g0(x, x0) = −
1
2
ln

x>
x<

+ b0 , (10.26)

and summing explicitly the Fourier series (10.24), we obtain

Gws(x, ϕ; x0, ϕ0) = − ln
|z − z0|
√

|zz0|
+ b0 , (10.27)

where we defined z = xeiϕ and z0 = x0eiϕ0 . Notice that this potential does not reduce exactly to the flat one when M = 0.
This is due to the fact that the whole surface S in the limit M → 0 is not exactly a flat plane R2, but rather it is two flat
planes connected by a hole at the origin, this hole modifies the Coulomb potential.
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10.2. Coulomb potential in the half surface (hs) confined by hard walls

We consider now the case when the particles are restricted to live in the half surface S+, x > 1, and they are confined
by a hard wall located at the ‘‘horizon’’ x = 1. The region x < 1 (S−) is empty and has the same dielectric constant as
the upper region occupied by the particles. Since there are no image charges, the Coulomb potential is the same Gws as
above. However, we would like to consider here a new model with a slightly different interaction potential between the
particles. Since we are dealing only with half surface, we can relax the symmetry condition (10.23). Instead, we would like
to consider a model where the interaction potential reduces to the flat Coulomb potential in the limit M → 0. The solution
of the Laplacian Green function equation is given in Fourier series by Eq. (10.24). The zeroth order Fourier component g0
can be determined by the requirement that, in the limit M → 0, the solution reduces to the flat Coulomb potential

Gflat(r, r′) = − ln
|r − r′|

L
(10.28)

where L is an arbitrary constant length. Recalling that x ∼ 2r/M , when M → 0, we find

g0(x, x0) = − ln x> − ln
M
2L

(10.29)

and

Ghs(x, ϕ; x0, ϕ0) = − ln |z − z0| − ln
M
2L
. (10.30)

10.3. Coulomb potential on half surface with a grounded horizon (gh)

Let us consider now that the particles are confined to S+ by a grounded perfect conductor at x = 1 which imposes
Dirichlet boundary condition to the electric potential. The Coulomb potential can easily (see Appendix C) be found from
the Coulomb potential Gws (10.27) using the method of images

Ggh(x, ϕ; x0, ϕ0) = − ln
|z − z0|
√

|zz0|
+ ln

|z − z̄−1
0 |√

|zz̄−1
0 |

= − ln
⏐⏐⏐⏐ z − z0
1 − zz̄0

⏐⏐⏐⏐ (10.31)

where the bar over a complex number indicates its complex conjugate. We will call this the grounded horizon Green
function. Notice how its shape is the same of the Coulomb potential on the pseudosphere [24] or in a flat disk confined
by perfect conductor boundaries [16].

This potential can also be found using the Fourier decomposition. Since it will be useful in the following, we note that
the zeroth order Fourier component of Ggh is

g0(x, x0) = ln x< . (10.32)

10.4. The background

The Coulomb potential generated by the background, with a constant surface charge density ρb satisfies the Poisson
equation, for r > 2M ,

∆vb = −2πρb , (10.33)

Assuming that the system occupies an area AR, the background density can be written as ρb = −qNb/AR = −qnb, where
we have defined here nb = Nb/AR the number density associated to the background. For a neutral system Nb = N .
The Coulomb potential of the background can be obtained by solving Poisson equation with the appropriate boundary
conditions for each case. Also, it can be obtained from the Green function computed in the previous section

vb(x, ϕ) =

∫
G(x, ϕ; x′, ϕ′)ρb dS ′ (10.34)

This integral can be performed easily by using the Fourier series decomposition (10.24) of the Green function G. Recalling
that dS =

1
4M

2x(1 + x−1)4 dx dϕ, after the angular integration is done, only the zeroth order term in the Fourier series
survives

vb(x, ϕ) =
πρbM2

2

∫ xm

1
g0(x, x′) x′

(
1 +

1
x′

)4

dx′ . (10.35)

The previous expression is for the half surface case and the grounded horizon case. For the whole surface case, the lower
limit of integration should be replaced by 1/xm, or, equivalently, the integral multiplied by a factor two.

Using the explicit expressions for g0, (10.26), (10.29), and (10.32) for each case, we find, for the whole surface,

vws
b (x, ϕ) = −

πρbM2

8
[h(x) − h(xm) + 2p(xm) ln xm − 4b0p(xm)] (10.36)
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where p(x) was defined in Eq. (10.19), and

h(x) = x2 + 16x +
16
x

+
1
x2

+ 12(ln x)2 − 34 . (10.37)

Notice the following properties satisfied by the functions p and h

p(x) = −p(1/x) , h(x) = h(1/x) (10.38)

and

p(x) = xh′(x)/2 , p′(x) = 2x
(
1 +

1
x

)4

(10.39)

where the prime stands for the derivative.
The background potential for the half surface case, with the pair potential − ln(|z − z ′

|M/2L) is

vhsb (x, ϕ) = −
πρbM2

8

[
h(x) − h(xm) + 2p(xm) ln

xmM
2L

]
. (10.40)

Also, the background potential in the half surface case, but with the pair potential − ln(|z − z ′
|/

√
|zz ′|) + b0 is

vhsb (x, ϕ) = −
πρbM2

8

[
h(x) −

h(xm)
2

+ p(xm)
(
ln

xm
x

− 2b0
)]

. (10.41)

Finally, for the grounded horizon case,

v
gh
b (x, ϕ) = −

πρbM2

8
[h(x) − 2p(xm) ln x] . (10.42)

10.5. Partition function and densities at a special temperature

We will now show how at the special value of the coupling constant Γ = βe2 = 2 the partition function and n-body
correlation functions can be calculated exactly.

10.5.1. The 2D OCP on half surface with potential − ln |z − z ′
| − lnM/(2L)

For this case, we work in the canonical ensemble with N particles and the background neutralizes the charges: Nb = N ,
and n = N/AR = nb. The potential energy of the system takes the explicit form

V hs
= −e2

∑
1≤i<j≤N

ln |zi − zj| +
e2

2
α

N∑
i=1

h(xi) +
e2

2
N ln

M
2L

−
e2

4
Nαh(xm)

+
e2

2
N2 ln xm −

e2

4
α2
∫ xm

1
h(x)p′(x) dx (10.43)

where we have used the fact that dS = πM2x(1 + x−1)4 dx/2 = πM2p′(x) dx/4, and we have defined

α =
πnbM2

4
. (10.44)

Integrating by parts the last term of (10.43) and using (10.39), we find

V hs
= −e2

∑
1≤i<j≤N

ln |zi − zj| +
e2

2
α

N∑
i=1

h(xi) +
e2

2
N ln

M
2L

+
e2

2
N2 ln xm

+
e2

2
α2
∫ xm

1

[p(x)]2

x
dx −

e2

2
Nαh(xm) . (10.45)

When βe2 = 2, the canonical partition function can be written as

Zhs
=

1
Λ2N Zhs

0 exp(−βFhs
0 ) (10.46)

with

− βFhs
0 = −N ln

M
2L

− N2 ln xm − α2
∫ xm

1

[p(x)]2

x
dx + Nαh(xm) (10.47)

and

Zhs
0 (2) =

1
N!

∫ N∏
i=1

dSi e−αh(xi)
∏

1≤i<j≤N

|zi − zj|2 . (10.48)
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Fig. 2. The one body density nhs(r)/n of Eq. (10.56), for the 2D OCP on just one universe of the surface S, obtained with N = 300. On the left at
fixed M = 1 and on the right at fixed n = 1.

where Λ =

√
2πβh̄2/m is the de Broglie thermal wavelength. Z0(2) can be computed using the original method for the

OCP in flat space [12,13], which was originally introduced in the context of random matrices [10,56], and which was
presented in Section 6. By expanding the Vandermonde determinant

∏
i<j(zi − zj) and performing the integration over the

angles, the partition function can be written as

Zhs
0 (2) =

N−1∏
k=0

BN (k) , (10.49)

where

BN (k) =

∫
x2ke−αh(x) dS (10.50)

=
α

nb

∫ xm

1
x2ke−αh(x)p′(x) dx . (10.51)

In the flat limit M → 0, we have x ∼ 2r/M , with r the radial coordinate of flat space R2, and h(x) ∼ p(x) ∼ x2. Then,
BN reduces to

BN (k) ∼
1

nbαk γ (k + 1,N) (10.52)

where γ (k + 1,N) =
∫ N
0 tke−t dt is the incomplete Gamma function. Replacing into (10.49), we recover the partition

function (6.14) for the OCP in a flat disk of radius R [13]

ln Zhs(2) =
N
2

ln
πL2

nbΛ
4 +

3N2

4
−

N2

2
lnN +

N∑
k=1

ln γ (k,N) . (10.53)

Following [12], we can also find the k-body distribution functions

n(k)hs(q1, . . . , qk) = det[Khs
N (qi, qj)](i,j)∈{1,...,k}2 , (10.54)

where qi = (xi, ϕi) is the position of the particle i, and

Khs
N (qi, qj) =

N−1∑
k=0

zki z̄
k
j e

−α[h(|zi|)+h(|zj|)]/2

BN (k)
. (10.55)

where zk = xkeiϕk . In particular, the one-body density is given by

nhs(x) = KN (q, q) =

N−1∑
k=0

x2ke−αh(x)

BN (k)
. (10.56)

The density shows a peak in the neighborhoods of each boundary, tends to a finite value at the boundary and to the
background density far from it, in the bulk. This is shown in Fig. 2
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10.5.2. Internal screening
Internal screening means that at equilibrium, a particle of the system is surrounded by a polarization cloud of opposite

charge. It is usually expressed in terms of the simplest of the multipolar sum rules [2]: the charge or electroneutrality
sum rule, which for the OCP reduces to the relation∫

n(2)hs(q1, q2) dS2 = (N − 1)n(1)hs(q1) , (10.57)

This relation is trivially satisfied because of the particular structure (10.54) of the correlation function expressed as a
determinant of the kernel Khs

N , and the fact that Khs
N is a projector∫

dS3 Khs
N (q1, q3)Khs

N (q3, q2) = Khs
N (q1, q2) . (10.58)

Indeed,∫
n(2)hs(q1, q2) dS2 =

∫
[Khs

N (q1, q1)Khs
N (q2, q2) − Khs

N (q1, q2)Khs
N (q2, q1)] dS2

=

∫
n(1)hs(q1)n(1)hs(q2) dS2 − Khs

N (q1, q1)

= (N − 1)n(1)hs(q1) . (10.59)

10.5.3. External screening
External screening means that, at equilibrium, an external charge introduced into the system is surrounded by a

polarization cloud of opposite charge. When an external infinitesimal point charge Q is added to the system, it induces a
charge density ρQ (q). External screening means that∫

ρQ (q) dS = −Q . (10.60)

Using linear response theory we can calculate ρQ to first order in Q as follows. Imagine that the charge Q is at q. Its
interaction energy with the system is Ĥint = Q φ̂(q) where φ̂(q) is the microscopic electric potential created at q by the
system. Then, the induced charge density at q′ is

ρQ (q′) = −β⟨ρ̂(q′)Ĥint⟩T = −βQ ⟨ρ̂(q′)φ̂(q)⟩T , (10.61)

where ρ̂(q′) is the microscopic charge density at q′, ⟨AB⟩T = ⟨AB⟩ − ⟨A⟩⟨B⟩, and ⟨. . .⟩ is the thermal average. Assuming
external screening (10.60) is satisfied, one obtains the Carnie–Chan sum rule [2]

β

∫
⟨ρ̂(q′)φ̂(q)⟩T dS ′

= 1 . (10.62)

Now in a uniform system starting from this sum rule one can derive the second moment Stillinger–Lovett sum rule [2].
This is not possible here because our system is not homogeneous since the curvature is not constant throughout the
surface but varies from point to point. If we apply the Laplacian respect to q to this expression and use Poisson equation

∆q⟨ρ̂(q′)φ̂(q)⟩T = −2π⟨ρ̂(q′)ρ̂(q)⟩T , (10.63)

we find∫
ρ(2)
e (q′, q) dS ′

= 0 , (10.64)

where ρ(2)
e (q′, q) = ⟨ρ̂(q′)ρ̂(q)⟩T is the excess pair charge density function. Eq. (10.64) is another way of writing the charge

sum rule Eq. (10.57) in the thermodynamic limit.

10.5.4. The 2D OCP on the whole surface with potential − ln(|z − z ′
|/

√
|zz ′|)

Until now we studied the 2D OCP on just one universe. Let us find the thermodynamic properties of the 2D OCP on
the whole surface S. In this case, we also work in the canonical ensemble with a global neutral system. The position
zk = xkeiϕk of each particle can be in the range 1/xm < xk < xm. The total number particles N is now expressed in terms
of the function p as N = 2αp(xm). Similar calculations to the ones of the previous section lead to the following expression
for the partition function, when βe2 = 2,

Zws
=

1
Λ2N Zws

0 exp(−βFws
0 ) (10.65)

now, with

−βFws
0 = Nb0 + Nαh(xm) −

N2

2
ln xm − α2

∫ xm

1/xm

[p(x)]2

x
dx (10.66)
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Fig. 3. The one body density n(1)(s)/n, where s = 2Mx, for the 2D OCP on the whole manifold, obtained using Eq. (10.70) with N = 300. On the left
at fixed M = 1 and on the right at fixed n = 1.

and

Zws
0 (2) =

1
N!

∫ N∏
i=1

dSi e−αh(xi)x−N+1
i

∏
1≤i<j≤N

|zi − zj|2 . (10.67)

Expanding the Vandermonde determinant and performing the angular integrals we find

Zws
0 (2) =

N−1∏
k=0

B̃N (k) (10.68)

with

B̃N (k) =

∫
x2k−N+1e−αh(x) dS (10.69)

=
α

n

∫ xm

1/xm
x2k−N+1e−αh(x)p′(x) dx . (10.70)

The function B̃N (k) is very similar to BN , and its asymptotic behavior for large values of N can be obtained by Laplace
method as explained in Ref. [26].

The one body density for the 2D OCP on the whole manifold is drawn in Fig. 3. From the figure we can see how the
peaks in the neighborhood of the horizon are now disappeared. The density approaches the horizon with zero slope.

10.5.5. The 2D OCP on the half surface with potential − ln(|z − z ′
|/

√
|zz ′|)

In this case, we have N = αp(xm). In this case the partition function at βe2 = 2 is

Zhs
= Zhs

0 e−βFhs0 (10.71)

with

−βFhs
0 = α2p(xm)h(xm) − p(xm)2 ln xm +

∫ xm

1

[p(x)]2

x
dx − Nb0 (10.72)

and

Zhs
0 (2) =

N−1∏
k=0

B̂N (k) (10.73)

with

B̂N (k) =
α

nb

∫ xm

1
x2k+1e−αh(x) dx (10.74)

In Fig. 4 we compare the one body density obtained in this case with the one of the previous section.
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Fig. 4. The one body density n(1)(r)/n, for the 2D OCP on just one universe of the surface S, obtained using both the pair potential − ln |z − z ′
| and

− ln(|z − z ′
|/

√
|zz ′|) at fixed M = n = 1.

10.5.6. The grounded horizon case
In order to find the partition function for the system in the half space, with a metallic grounded boundary at x = 1,

when the charges interact through the pair potential of Eq. (10.31) it is convenient to work in the grand canonical
ensemble instead, and use the techniques developed in Refs. [16,57]. We consider a system with a fixed background
density ρb. The fugacity ζ = eβµ/Λ2, where µ is the chemical potential, controls the average number of particles ⟨N⟩,
and in general the system is non-neutral ⟨N⟩ ̸= Nb, where Nb = αp(xm). The excess charge is expected to be found near
the boundaries at x = 1 and x = xm, while in the bulk the system is expected to be locally neutral. In order to avoid the
collapse of a particle into the metallic boundary, due to its attraction to the image charges, we confine the particles to be
in a disk domain Ω̃R, where x ∈ [1+w, xm]. We introduced a small gap w between the metallic boundary and the domain
containing the particles, the geodesic width of this gap is W =

√
αp′(1)/(2πnb)w. On the other hand, for simplicity, we

consider that the fixed background extends up to the metallic boundary.
In the potential energy of the system (4.1) we should add the self energy of each particle, that is due to the fact that each

particle polarizes the metallic boundary, creating an induced surface charge density. This self energy is e2
2 ln[|x2 − 1|M/2L],

where the constant ln(M/2L) has been added to recover, in the limit M → 0, the self energy of a charged particle near a
plane grounded wall in flat space.

The grand partition function, when βe2 = 2, is

Ξ (2) = e−βFgh0

⎡⎣1 +

∞∑
N=1

ζN

N!

∫ N∏
i=1

dSi
∏
i<j

⏐⏐⏐⏐ zi − zj
1 − ziz̄j

⏐⏐⏐⏐2 N∏
i=1

⏐⏐|zi|2 − 1
⏐⏐−1

N∏
i=1

e−α[h(xi)−2Nb ln xi]

⎤⎦ (10.75)

where for N = 1 the product
∏

i<j must be replaced by 1. The domain of integration for each particle is Ω̃R. We have
defined a rescaled fugacity ζ = 2Lζ/M and

−βF gh
0 = αNbh(xm) − N2

b ln xm − α2
∫ xm

1

[p(x)]2

x
dx (10.76)

which is very similar to Fhs
0 , except that here Nb = αp(xm) is not equal to N the number of particles.

Let us define a set of reduced complex coordinates ui = zi and its corresponding images u∗

i = 1/z̄i. By using Cauchy
identity (9.50),

det

(
1

ui − u∗

j

)
(i,j)∈{1,...,N}2

= (−1)N(N−1)/2

∏
i<j(ui − uj)(u∗

i − u∗

j )∏
i,j(ui − u∗

j )
, (10.77)

the particle–particle interaction and self energy terms can be cast into the form

∏
i<j

⏐⏐⏐⏐ zi − zj
1 − ziz̄j

⏐⏐⏐⏐2 N∏
i=1

(
|zi|2 − 1

)−1
= (−1)Ndet

(
1

1 − ziz̄j

)
(i,j)∈{1,...,N}2

. (10.78)
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The grand canonical partition function is then

Ξ (2) = e−βFgh0

[
1 +

∞∑
N=1

1
N!

∫ N∏
i=1

dSi
N∏
i=1

[−ζ (xi)] det
(

1
1 − ziz̄j

)]
, (10.79)

with ζ (x) = ζ e−α[h(x)−2Nb ln x]. We now notice that we already found an analogous expression (9.52) when studying the
pseudosphere. We therefore proceed as we did for that case. For ease of reading we repeat here the relevant steps reducing
this expression to a Fredholm determinant [57]. Then let us consider the Gaussian partition function

Z0 =

∫
DψDψ̄ exp

[∫
ψ̄(q)A−1(z, z̄ ′)ψ(q′) dS dS ′

]
(10.80)

The fields ψ and ψ̄ are anticommuting Grassmann variables. The Gaussian measure in (10.80) is chosen such that its
covariance is equal to⟨

ψ̄(qi)ψ(qj)
⟩
= A(zi, z̄j) =

1
1 − ziz̄j

(10.81)

where ⟨. . .⟩ denotes an average taken with the Gaussian weight of (10.80). By construction we have

Z0 = det(A−1) (10.82)

Let us now consider the following partition function

Z =

∫
DψDψ̄ exp

[∫
ψ̄(q)A−1(z, z̄ ′)ψ(q′)dSdS ′

−

∫
ζ (x)ψ̄(q)ψ(q) dS

]
(10.83)

which is equal to

Z = det(A−1
− ζ ) (10.84)

and then
Z
Z0

= det[A(A−1
− ζ )] = det(1 + K ) (10.85)

where K is an integral operator (with integration measure dS) with kernel

K (q, q′) = −ζ (x′) A(z, z̄ ′) = −
ζ (x′)

1 − zz̄ ′
. (10.86)

Expanding the ratio Z/Z0 in powers of ζ we have

Z
Z0

= 1 +

∞∑
N=1

1
N!

∫ N∏
i=1

dSi(−1)N
N∏
i=1

ζ (xi)
⟨
ψ̄(q1)ψ(q1) · · · ψ̄(qN )ψ(qN )

⟩
(10.87)

Now, using Wick theorem for anticommuting variables [54], we find that⟨
ψ̄(q1)ψ(q1) · · · ψ̄(qN )ψ(qN )

⟩
= detA(zi, z̄j) = det

(
1

1 − ziz̄j

)
(10.88)

Comparing Eqs. (10.87) and (10.79) with the help of Eq. (10.88) we conclude that

Ξ (2) = e−βFgh0
Z(2)
Z0(2)

= e−βFgh0 det(1 + K ) (10.89)

The problem of computing the grand canonical partition function has been reduced to finding the eigenvalues λ of the
operator K . The eigenvalue problem for K reads

−

∫
Ω̃R

ζ (x′)
1 − zz̄ ′

Φ(x′, ϕ′)dS ′
= λΦ(x, ϕ) (10.90)

For λ ̸= 0 we notice from Eq. (10.90) that Φ(x, ϕ) = Φ(z) is an analytical function of z = xeiϕ in the region |z| > 1.
Because of the circular symmetry, it is natural to try Φ(z) = Φℓ(z) = z−ℓ with ℓ ≥ 1 a positive integer. Expanding

1
1 − zz̄ ′

= −

∞∑
n=1

(
zz̄ ′
)−n (10.91)

and replacing Φℓ(z) = z−ℓ in Eq. (10.90) we show that Φℓ is indeed an eigenfunction of K with eigenvalue

λℓ = ζBgh
Nb
(Nb − ℓ) (10.92)
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where

Bgh
Nb
(k) =

α

nb

∫ xm

1+w
x2ke−αh(x) p′(x) dx (10.93)

which is very similar to BN defined in Eq. (10.51), except for the small gap w in the lower limit of integration. So, we
arrive to the result for the grand potential

βΩ = − lnΞ (2) = βF0 −

∞∑
ℓ=1

ln
[
1 + ζBgh

Nb
(Nb − ℓ)

]
. (10.94)

As usual one can compute the density by doing a functional derivative of the grand potential with respect to a
position-dependent fugacity ζ (q)

ngh(q) = ζ (q)
δ lnΞ (2)
δζ (q)

. (10.95)

For the present case of a curved space, we shall understand the functional derivative with the rule δζ (q′)/δζ (q) =

δ(2)(q; q′) where δ(2)(q; q′) = δ(x − x′)δ(ϕ − ϕ′)/
√
g is the Dirac distribution on the curved surface.

Using a Dirac-like notation, one can formally write

lnΞ (2) = tr ln(1 + K ) − βF gh
0 =

∫
⟨q |ln(1 − ζ (q)A)| q⟩ dS − βF gh

0 (10.96)

Then, doing the functional derivative (10.95), one obtains

ngh(q) = ζ
⟨
q
⏐⏐(1 + K )−1(−A)

⏐⏐ q⟩ = ζ G̃(q, q) (10.97)

where we have defined G̃(q, q′) by G̃ = (1 + K )−1(−A). More explicitly, G is the solution of (1 + K )G̃ = −A, that is

G̃(q, q′) −

∫
Ω̃R

ζ (x′′)
G̃(q′′, q′)
1 − zz̄ ′′

dS ′′
= −

1
1 − zz̄ ′

. (10.98)

From this integral equation, one can see that G̃(q, q′) is an analytical function of z in the region |z| > 1. Then, we look
for a solution in the form of a Laurent series

G̃(q, q′) =

∞∑
ℓ=1

aℓ(r′)z−ℓ (10.99)

into Eq. (10.98) yields

G̃(q, q′) =

∞∑
ℓ=1

(
zz̄ ′
)−ℓ

1 + λℓ
. (10.100)

Recalling that λℓ = ζBgh
N (Nb − ℓ), the density is given by

ngh(x) = ζ

Nb−1∑
k=−∞

x2ke−αh(x)

1 + ζBgh
N (k)

(10.101)

The density reaches the background density far from the boundaries. In this case, the fugacity and the background density
control the density profile close to the metallic boundary (horizon). In the bulk and close to the outer hard wall boundary,
the density profile is independent of the fugacity. In Fig. 5 we show the density for various choices of the parameters M, n,
and ζ . The figure shows how the density tends to the background density far from the horizon. The value of the density
at the horizon depends on n and ζ .

Part III

The two-component plasma

A two-component plasma is a neutral mixture of two species of 2N point charges of opposite charge ±e.

11. The plane

We represent the Cartesian components of the position q = (x, y) of a particle by the complex number z = x + iy.
For a system of N positive charges with complex coordinates ui and N negative charges with complex coordinates vi the
Boltzmann factor at Γ = βe2 = 2 is,

e
2
∑

i<j

[
ln

|ui−uj |
L +ln

|vi−vj |
L

]
−2

∑
i,j ln

|ui−vj |
L

= L2N
⏐⏐⏐⏐⏐
∏

i<j(ui − uj)(vi − vj)∏
i,j(ui − vj)

⏐⏐⏐⏐⏐
2
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Fig. 5. The one body density ngh(r)/n obtained truncating the sum of Eq. (10.101) after the first 300 terms and choosing (
√
R+

√
R − 2M)2/2M = 10.

On top on the left at fixed M = ζ = 1 and on the right at fixed n = ζ = 1. On the bottom at fixed M = n = 1.

= L2N
⏐⏐⏐⏐⏐det

(
1

ui − vj

)
(i,j)∈{1,...,N}2

⏐⏐⏐⏐⏐
2

, (11.1)

where the last equality stems from the Cauchy identity (9.50). Following Ref. [32], it is convenient to start with a
discretized model for which there are no divergencies. Two interwoven sublattices U and V are introduced. The positive
(negative) particles sit on the sublattice U(V ). Each lattice site is occupied no or one particle. A possible external potential
is described by position dependent fugacities ζ+(ui) and ζ−(vi). The grand partition function reorganized as a sum including
only neutral systems is

Ξ (2) = 1 +

∞∑
N=1

L2N
N∏
i=1

ζ+(ui)ζ−(vi)
∑

u1,...,uN∈U
v1,...,vN∈V

⏐⏐⏐⏐⏐det
(

1
ui − vj

)
(i,j)∈{1,...,N}2

⏐⏐⏐⏐⏐
2

, (11.2)

where the sums are defined with the prescription that configurations which differ only by a permutation of identical
particles are counted only once. This grand partition function is the determinant of an anti-Hermitian matrix M explicitly
shown in Ref. [33].

When passing to the continuum limit in the element Mij one should replace ui or vi by z and uj or vj by z ′, i.e. i → z

and j → z ′. Each lattice site is characterized by its complex coordinate z and an isospinor which is
(
1
0

)
if the site belongs

to the positive sublattice U and
(
0
1

)
if it belongs to the negative sublattice V . We then define a matrix M by

⟨z|M|z ′
⟩ =

σx + iσy

2
L

z − z ′
+

σx − iσy

2
L

z − z ′
, (11.3)

where the σ are the 2 × 2 Pauli matrices operating in the isospinor space.
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The matrix M can be expressed in terms of a simple Dirac operator /∂ = σx∂x + σy∂y as follows,

⟨z|M|z ′
⟩ = L(σx∂x + σy∂y) ln|z − z ′

| , (11.4)

and the grand partition function can be rewritten as

Ξ (2) = det
{
1δ(2)(z; z ′) +

[
ζ+(z)

1 + σz

2
+ ζ−(z)

1 − σz

2

]
⟨z|M|z ′

⟩

}
= det[1 + K−1

] , (11.5)

where 1 is the 2 × 2 identity matrix and

λ = ζ+
1 + σz

2
+ ζ−

1 − σz

2
, (11.6)

K−1
= λM . (11.7)

Then, since ∆ ln |z| = 2πδ(r)δ(ϕ)/r = 2πδ(z), where (r = |z|, ϕ = arg z) are the polar coordinates in the plane, the
inverse operator is K = Om−1, where

m(z) = m+(z)
1 + σz

2
+ m−(z)

1 − σz

2
, (11.8)

O = σx∂x + σy∂y = /∂ . (11.9)

Here m±(z) = 2πLζ±(z)/S are rescaled position dependent fugacities and S is the area per lattice site which appears when
the discrete sums are replaced by integrals.

We then find

lnΞ (2) = tr
{
ln
[
1 + K−1]} ,

which expresses the well known equivalence between the 2D OCP at Γ = 2 and a free Fermi field [58].
The one-body densities and n-body truncated densities [2] can be obtained in the usual way by taking functional

derivatives of the logarithm of the grand partition function with respect to the fugacities ζ±. Marking the sign of the
particle charge at zi by an index pi = ±, and defining the matrix

Rp1p2 (z1, z2) = ⟨z1p1|K−1(1 + K−1)−1
|z2p2⟩ , (11.10)

it can then be shown [32,33] that they are given by

ρ(1)
p1 (z1) = Rp1p1 (z1, z1) , (11.11)

ρ(2)T
p1p2 (z1, z2) = −Rp1p2 (z1, z2)Rp2p1 (z2, z1) , (11.12)

ρ(n)T
p1p2,...,pn (z1, z2, . . . , zn) = (−)n+1

∑
(i1,i2,...,in)

Rpi1 pi2
(zi1 , zi2 ) · · · Rpin pi1

(zin , zi1 ) , (11.13)

where the summation runs over all cycles (i1, i2, . . . , in) built with {1, 2, . . . , n}.

11.1. Symmetries of Green’s function R

Since m†
= m and O†

= −O we find

Rp1p2 (z1, z2) = ⟨z2p2|m(z)(m(z) − O)−1
|z1p1⟩ . (11.14)

Expanding in O and comparing with the definition Rp1p2 (z1, z2) = ⟨z1p1|m(z)(m(z) + O)−1
|z2p2⟩ we find

Rpp(z1, z2) = Rpp(z2, z1) , (11.15)

Rp−p(z1, z2) = −R−pp(z2, z1) . (11.16)

From which also follows that Rpp(z1, z1) has to be real. If ζ+ = ζ− then we additionally must have

Rpp(z1, z2) = R−p−p(z1, z2) . (11.17)

11.2. Two-body truncated correlation functions and perfect screening sum rule

For the two-body truncated correlation functions of Eq. (11.12) we then find

ρ
(2)T
++ (z1, z2) = −|R++(z1, z2)|2 , (11.18)

ρ
(2)T
+− (z1, z2) = |R+−(z1, z2)|2 . (11.19)
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Notice that the total correlation function for the like particles h++(z1, z2) = ρ(2)T
++ (z1, z2) /ρ

(1)
+ (z1)ρ

(1)
+ (z2) goes to −1

when the particles coincide z1 → z2 as follows from the structure of Eqs. (11.11) and (11.12). Moreover the truncated
densities of any order has to decay to zero as two groups of particles are infinitely separated. In particular |R++(z1, z2)| =

|R++(r1, r2, ϕ2 − ϕ1)| has to decay to zero as |q1 − q2| → ∞.
The perfect screening sum rule has to be satisfied for the symmetric mixture∫

[ρ
(2)T
+− (z1, z2) − ρ

(2)T
++ (z1, z2)]

√
g1dr1dϕ1 = ρ±(z2) , (11.20)

where g1 is g calculated on particle 1.

11.3. Determination of Green’s function R

The Green function matrix R is the solution of a system of four coupled partial differential equations, namely

(1 + K−1)KR(z1, z2) = (1 + K)R(z1, z2) = 1δ(2)(z1; z2) (11.21)

where δ(2)(z1; z2) = (
√
g)−1δ(r − r0)δ(ϕ − ϕ0), with

√
g = r is the Dirac delta function on the plane which we will call

δ(z1 − z2) the flat Dirac delta and 1 is the 2 × 2 identity matrix. These coupled equations can be rewritten as follows

[O + m(z1)]R(z1, z2) = m(z1)δ(2)(z1; z2) .

If instead of R one uses R = Gm, G satisfies the equation

[O + m(z1)]G(z1, z2) = 1δ(2)(z1; z2) . (11.22)

By combining the components of this equation one obtains decoupled equations for G++ and G−− as follows{
m+(z1) + A†

[m−(z1)]−1A
}
G++(z1, z2) = δ(2)(r1, ϕ1; r2, ϕ2) , (11.23){

m−(z1) + A[m+(z1)]−1A†}G−−(z1, z2) = δ(2)(r1, ϕ1; r2, ϕ2) , (11.24)

where A = ∂x + i∂y, while

G−+(z1, z2) = − [m−(z1)]−1 AG++(z1, z2) , (11.25)
G+−(z1, z2) = + [m+(z1)]−1 A†G−−(z1, z2) , (11.26)

Then Eq. (14.6) can be rewritten in Cartesian coordinates as[
m+m− −

1
r1
∂r1 (r1∂r1 ) −

1
r21
∂2ϕ1

]
G++(z1, z2) =

m−

r1
δ(r1 − r2)δ(ϕ1 − ϕ2) . (11.27)

which, when m+(z) = m−(z) = m, has the following solution [32,33]

G++(z1, z2) =
m
2π

K0(m|q1 − q2|) , (11.28)

G−+(z1, z2) =
m
2π

(x1 − x2) + i(y1 − y2)
|q1 − q2|

K1(m|q1 − q2|) , (11.29)

where K0 and K1 are modified Bessel functions. These functions decay at large distances on a characteristic length scale
m−1. The n-body truncated densities (11.13) are well defined quantities for the point particle system. The two-body
truncated densities, for example, have the simple forms

ρ
(2)T
++ (r) = −

(
m2

2π

)2

K 2
0 (mr), (11.30)

ρ
(2)T
+− (r) = −

(
m2

2π

)2

K 2
1 (mr). (11.31)

The one-body densities, however, as given by Eq. (11.11), are infinite since K0(mr) diverges logarithmically as r → 0. This
divergence can be suppressed by a short distance cutoff R. We replace the point particles by small hard discs of diameter
R and use a regularized form of Eq. (11.11),

ρ± =
m2

2π
K0(mR) ∼

m2

2π

[
ln

2
mR

− γ

]
, (11.32)

where γ = 0.5772 is Euler’s constant. Keeping the point charge expression for the correlation functions for separations
larger than R the perfect screening rule (11.20) is satisfied.

Integrating ρ+ + ρ− = m∂(βp)/∂m, from Eq. (11.32) one obtains for the pressure p,

βp =
1
2
(ρ+ + ρ−) +

m2

4π
. (11.33)
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The same result can be obtained by using the regularized form of Eq. (11.5). In the limit mR → 0 one finds the expected
result for an ideal gas of collapsed neutral pairs.

12. The sphere

We consider the stereographic projection [39] of the sphere of radius a on the plane tangent to its south pole. The
coordinates of the point p = (x, y) stereographic projection of a point q = (θ, ϕ) of the sphere from the north pole is
given in terms of the complex coordinate z = x+ iy by z = 2aeiϕcotan(θ/2). This projection is a conformal transformation.
The conformal metric in the new coordinates (x, y) is then

g =

(
eω 0
0 eω

)
, (12.1)

with the conformal factor given by

eω = sin2 θ

2
=

1
1 + (|z|/2a)2

. (12.2)

The length rij (8.3) of the chord joining two particles i and j has a simple relation with its projection |zi − zj|,

rij = eωi/2|zi − zj|eωj/2 = sin
θi

2
|zi − zj|sin

θj

2
. (12.3)

We can then follow the same steps as in Section 11 with z − z ′ replaced by eω/2(z − z ′)eω
′/2. In particular the matrix

M will now become,

⟨z|M|z ′
⟩ =

σx + iσy

2
L

eω/2(z − z ′)eω′/2
+

σx − iσy

2
L

eω/2(z − z ′)eω′/2
, (12.4)

In the inverse operator K we now have

O = e−3ω/2 /∂eω/2 = /D, (12.5)

since the Dirac delta function on the sphere δ(2)(z; z ′) = e−2ωδ(z − z ′) where δ is the flat Dirac delta function.
Thus, the Dirac operator /∂ in the plane has to be replaced by /D defined by (12.5). It turns out that /D is the Dirac

operator on the sphere. The Dirac operators in curved spaces have been investigated by many authors.

12.1. Thermodynamic properties

If we define m = 2πLζ/S in terms of the fugacity ζ and the area per lattice site S (a local property of the surface), we
have

lnΞ (2) = tr ln[1 + m/D−1
]. (12.6)

The eigenvalues of /D are [59] ±in/a where n is any positive integer, with multiplicity 2n. Thus the pressure is given by

βp =
lnΞ (2)
4πa2

=
1

8πa2
tr ln[1 − m2 /D−2

] =
1

2πa2

∞∑
n=1

n ln
[
1 +

m2a2

n2

]
, (12.7)

and the densities are

ρ+ + ρ− = m
∂

∂m
(βp) =

m2

4πa2
tr

1

m2 − /D2 =
m2

π

∞∑
n=1

n
m2a2 + n2 . (12.8)

These pressure and densities are divergent quantities, unless they are regularized by a short distance cutoff, as in the
planar case. In the limit a → ∞, setting k = n/a, one retrieves the non-regularized planar results.

12.2. Determination of Green’s function G

Eq. (11.22) now becomes

(/D + m)G(p, p′) = e−2ω1δ(p − p′), (12.9)

which in terms of

G̃(p, p′) = eω/2G(p, p′)eω
′/2, (12.10)

can be rewritten as

(/∂ + meω )̃G(p, p′) = 1δ(p − p′). (12.11)

This equation has a remarkably simple interpretation. G̃(p, p′) is the Green function of the planar problem with a position
dependent fugacity meω = m/[1 + (r/2a)2]. This equation correctly reduces to the flat analogue (11.22) in the a → ∞

limit. Moreover, it admits solutions in term of some hypergeometric functions [39].
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13. The pseudosphere

The pseudosphere has already been discussed in Section 9.
We then observe that the curved system can be mapped onto a flat system in the Poincaré disk. The Boltzmann factor

gain a multiplicative contribution [1− (ri/2a)2] for each particle and in the computation of the partition function the area
element dSi = [1 − (ri/2a)2]−2 dri. Thus, the original system with a constant fugacity ζ maps onto a flat system with a
position dependent fugacity ζ [1 − (ri/2a)2]−1.

The Dirac operator on the pseudosphere is then,

/D =

(
1 −

r2

4a2

)3/2

/∂

(
1 −

r2

4a2

)−1/2

. (13.1)

13.1. Determination of Green’s function G

Eq. (12.10) now becomes,

G̃(z1, z2) =

(
1 −

r21
4a2

)−1/2

G(z1, z2)
(
1 −

r22
4a2

)−1/2

, (13.2)

and Eq. (12.11) becomes,[
/∂ +

m
1 − (r/2a)2

]
G̃(z, z ′) = 1δ(z − z ′). (13.3)

where δ is the flat Dirac delta.
Thus G is the Green function of /D+m on the pseudosphere. The solution of these coupled partial differential equations

can be found in terms of hypergeometric functions [38]. Again the flat limit results by taking a → ∞ at a fixed value of
m.

13.2. Thermodynamic properties

If we define m = 4πaζ/S in terms of the fugacity ζ and the area per lattice site S (a local property of the surface), we
have,

Ξ (2) = det[1 + m/D−1
]. (13.4)

Then the equation of state can be obtained integrating n = m∂(βp)/∂m where n = 2ρ+. The one-body density ρ+ can
be obtained from Eq. (11.11) where R = Gm. However, the integration cannot be performed in terms of known functions
for arbitrary m.

14. The Flamm paraboloid

Flamm’s paraboloid has already been discussed in Section 10.

14.1. Half surface with an insulating horizon

When the TCP lives in the half surface with an insulating horizon the Coulomb potential is given by Eq. (10.30). We
will use ui = sieiϕi and vj = sjeiϕj to denote the complex coordinates of the positively and negatively charged particles
respectively, where, according to (10.14), we set s = (

√
r+

√
r − 2M)2/2M > 1. Note that the following small M behaviors

holds: s = 2r/M − 2 − M/2r + O(M2) and
√
g = rM/2 + O(M2).

The Boltzmann factor at Γ = βe2 = 2 now becomes(
2L
M

)2N
⏐⏐⏐⏐⏐det

(
1

ui − vj

)
(i,j)∈{1,...,N}2

⏐⏐⏐⏐⏐
2

, (14.1)

where L is a length scale.
We can then repeat the analysis of Eqs. (11.1)–(11.20) noticing that now δ(2)(z1; z2) = (

√
g)−1δ(s − s0)δ(ϕ − ϕ0) is the

Dirac delta function on the curved surface and δ(s − s0)δ(ϕ − ϕ0)/s = δ(z − z0) is the flat Dirac delta. Which gives the
following,

m±(z) = (2πLζ±
√
g/sS)(2/M)2, (14.2)

rescaled position dependent fugacities which tends to m̃± = 2πLζ±/S, the ones of the flat system, in the M → 0 limit.
Here S is a local property of the surface independent of its curvature. Moreover Eqs. (11.4) and (11.9) read

⟨z|Mhs|z ′
⟩ =

2L
M

(σx∂x + σy∂y) ln|z − z ′
| , (14.3)
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Ohs =
2
M

(σx∂x + σy∂y) =
2
M
/∂ . (14.4)

14.2. Determination of Green’s function R

Upon defining R = Gm̃, G satisfies the equation

[O + m(z1)]G(z1, z2) = 1(4/M2)δ(z1; z2) . (14.5)

which in the flat limit M → 0 reduces to Eq. (11.22). Unfortunately this equation does not admit an analytical solution
for G. By combining the components of this equation one obtains decoupled equations for G++ and G−− as follows{

m+(z1) + A†
[m−(z1)]−1A

}
G++(z1, z2) =

4
M2 δ(s1, ϕ1; s2, ϕ2) , (14.6){

m−(z1) + A[m+(z1)]−1A†}G−−(z1, z2) =
4
M2 δ(s1, ϕ1; s2, ϕ2) , (14.7)

while

G−+(z1, z2) = − [m−(z1)]−1 AG++(z1, z2) , (14.8)
G+−(z1, z2) = + [m+(z1)]−1 A†G−−(z1, z2) , (14.9)

Then Eq. (14.6) can be rewritten in Cartesian coordinates as{
m+(z1)m−(z1) −

(
2
M

)2 [
(∂2x1 + ∂2y1 ) −

4(−x1 + iy1)
s21(1 + s1)

(∂x1 + i∂y1 )
]}

G++(z1, z2) =(
2
M

)4 m̃−

√
g1

s21
δ(s1 − s2)δ(ϕ1 − ϕ2) =(

2
M

)4 m̃−

√
g1√

x21 + y21
δ(x1 − x2)δ(y1 − y2) , (14.10)

where s =

√
x2 + y2. From the expression of the gradient in polar coordinates follows⎧⎪⎪⎨⎪⎪⎩

∂x = cosϕ∂s −
sinϕ
s
∂ϕ ,

∂y = sinϕ∂s +
cosϕ
s
∂ϕ .

(14.11)

Which allows us to rewrite Eq. (14.10) in polar coordinates as[
m̃+m̃−

(
1 +

1
s1

)8

−

(
2
M

)2 ( 1
s1
∂s1 (s1∂s1 ) +

1
s21
∂2ϕ1+

4
s1(1 + s1)

∂s1 +
4i

s21(1 + s1)
∂ϕ1

)]
G++(z1, z2) =(

2
M

)4 m̃−

√
g1

s21
δ(s1 − s2)δ(ϕ1 − ϕ2) . (14.12)

From this equation we immediately see that G++(z1, z2) cannot be real. Notice that in the flat limit M → 0 we have
s ∼ 2r/M and Eq. (14.12) reduces to[

m̃+m̃− −
1
r1
∂r1 (r1∂r1 ) −

1
r21
∂2ϕ1

]
G++(z1, z2) =

m̃−

r1
δ(r1 − r2)δ(ϕ1 − ϕ2) . (14.13)

which, when m̃+ = m̃− = m̃, has the following well known solution [32,33]

G++(z1, z2) =
m̃
2π

K0(m̃|r1 − r2|) , (14.14)
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where K0 is a modified Bessel function.
Let us from now on restrict to the case of equal fugacities of the two species. Then ζ− = ζ+ = ζ with

m̃ =
2πL
S
ζ =

2πLeβµ

Λ2 =

(
2πL

me2

4π h̄2

)
e2µ/e

2
, (14.15)

where h̄ is Planck’s constant, m is the mass of the particles, and µ the chemical potential. So m̃ has the dimensions of an
inverse length. From the symmetry of the problem we can say that G++ = G++(s1, s2;ϕ1 − ϕ2). We can then express the
Green function as the following Fourier series expansion

G++(s1, s2;ϕ) =
1
2π

∞∑
k=−∞

g++(s1, s2; k)eikϕ . (14.16)

Then, using the expansion of the Dirac delta function,
∑

k e
ikϕ

= 2πδ(ϕ), we find that g++, a continuous real function
symmetric under exchange of s1 and s2, has to satisfy the following equation[

Q0 (k, s1)+ Q1 (s1) ∂s1 + Q2 (s1) ∂2s1
]
g++ (s1, s2; k) =(

2
M

)2

m̃s31(1 + s1)5δ (s1 − s2) , (14.17)

where

Q0 (k, s) = m̃2 (1 + s)9 +

(
2
M

)2

ks6 (4 + k (1 + s)) ,

Q1 (s) = −

(
2
M

)2

s7 (5 + s) ,

Q2 (s) = −

(
2
M

)2

s8 (1 + s) .

And the coefficients Qi are polynomials of up to degree 9.

14.3. Method of solution

We start from the homogeneous form of Eq. (14.17). We note that, for a given k, the two linearly independent
solutions fα(s; k) and fβ (s; k) of this linear homogeneous second order ordinary differential equation are not available
in the mathematical literature to the best of our knowledge. Assuming we knew those solutions we would then find the
Green function, g++(s1, s2; k), writing [60]

f (t1, t2; k) = ckfα(s<; k)fβ (s>; k) , (14.18)

where s< = min(s1, s2), s> = max(s1, s2), and fβ has the correct behavior at large s. Then we determine ck by imposing
the kink in f due to the Dirac delta function at s1 = s2 as follows

∂s1 f (s1, s2; k)|s1=s2+ϵ−∂s1 f (s1, s2; k)|s1=s2−ϵ= −m̃
(1 + s2)4

s52
, (14.19)

where ϵ is small and positive.
The Green function, symmetric under exchange of s1 and s2, is reconstructed as follows

G++(z1, z2) = G++(s1, s2;ϕ) =
1
2π

∞∑
k=−∞

ckfα(s<; k)fβ (s>; k)eikϕ (14.20)

14.4. Whole surface

On the whole surface, using Eq. (10.27) with b0 = − ln(L0/L), we can now write the Boltzmann factor at a coupling
constant Γ = βe2 = 2 as follows,⏐⏐⏐⏐⏐det

(
L
L0

√
|ujvj|

ui − vj

)
(i,j)∈{1,...,N}2

⏐⏐⏐⏐⏐
2

, (14.21)

where L0 is another length scale.
The grand partition function will then be,

Ξ (2) = det
[
1 + K−1

ws

]
, (14.22)
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where now Eqs. (11.4) and the ones following read,

⟨z|Mws|z ′
⟩ =

L
L0

(σx∂x + σy∂y) ln|z − z ′
| , (14.23)

K−1
ws = λwsMws , (14.24)

λws = ζ+|z|
1 + σz

2
+ ζ−|z|

1 − σz

2
, (14.25)

Kws = M−1
wsλ

−1
ws , (14.26)

λ−1
ws =

1
ζ+|z|

1 + σz

2
+

1
ζ−|z|

1 − σz

2
. (14.27)

Introducing position dependent fugacities

m±(z) =
2π (L/L0)ζ±

√
g

Ss
= m̃±

√
g
s
, (14.28)

where now m̃±/L0 → m̃±, we can rewrite

Kws =
σx + iσy

2
a− +

σx − iσy

2
a+ , (14.29)

with the operators

a− = −
z

m−(z)|z|3
+

1
m−(z)|z|

(∂x − i∂y) , (14.30)

a+ = −
z

m+(z)|z|3
+

1
m+(z)|z|

(∂x + i∂y) . (14.31)

Then the equation for the Green functions are

(1 − a−a+)R++(z1, z2) = δ(2)(z1; z2) , (14.32)
(1 − a+a−)R−−(z1, z2) = δ(2)(z1; z2) , (14.33)
R+− = −a−R−− , (14.34)
R−+ = −a+R++ . (14.35)

The equation for R++ in the symmetric mixture case is[
m2(z1) −

2
s41

+
2∂s1
s31

−
∂2s1

s21
−

−i∂ϕ1 + ∂2ϕ1

s41

]
R++(z1, z2) =

m2(z1)
√
g1

δ(s1 − s2)δ(ϕ1 − ϕ2) =
m̃2√g1

s21
δ(s1 − s2)δ(ϕ1 − ϕ2) , (14.36)

From this equation we see that R++(z1, z2) will now be real.
By expanding Eq. (14.36) in a Fourier series in the azimuthal angle we now find[

Q0 (k, s1)+ Q1(s1)∂s1 + Q2 (s1) ∂2s1
]
g++ (s1, s2; k) =(

M
2

)2

m̃s31(1 + s1)4δ (s1 − s2) , (14.37)

where

Q0 (k, s) =

(
M
2

)4

m̃2 (1 + s)8 + s4(k2 − k − 2) ,

Q1(s) = 2s5 ,
Q2 (s) = −s6 .

And the coefficients Qi are now polynomials of up to degree 8.
In the flat limit we find, for G++ = R++/m̃, the following equation[

m̃2
−

2
r41

+
2∂r1
r31

−
∂2r1

r21
−

−i∂ϕ1 + ∂2ϕ1

r41

]
G++(z1, z2) =

m̃
r1
δ(r1 − r2)δ(ϕ1 − ϕ2) . (14.38)



R. Fantoni / Physica A 524 (2019) 177–220 213

We then see that we now do not recover the TCP in the plane [32,33]. This has to be expected because in the flat limit,
Flamm’s paraboloid reduces to two planes connected by the origin.

After the Fourier expansion of Eq. (14.16) we now get

[P0(k, r1) + P1(r1)∂r1 + P2(r1)∂2r1 ]g++(r1, r2; k) = m̃δ(r1 − r2) , (14.39)

where

P0(k, r) = m̃2r +
k2 − k − 2

r3
,

P1(r) =
2
r2
,

P2(r) = −
1
r
.

The homogeneous form of this equation admits the following two linearly independent solutions

f1(r; −1) = [D−1/2(i
√
2m̃r) + D−1/2(i

√
2m̃r)]/2

f2(r; −1) = D−1/2(
√
2m̃r)

}
k = −1 ,

f1(r; 2) = [D−1/2((−2)1/4
√
m̃r)+

D−1/2((−2)1/4
√
m̃r)]/2

f2(r; 2) = [D−1/2(i(−2)1/4
√
m̃r)+

D−1/2(i(−2)1/4
√
m̃r)]/2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ k = 2 ,

f1(t; k) =
√
rI

−

√
7−4k+4k2/4

(m̃r2/2)

f2(t; k) =
√
rI√

7−4k+4k2/4
(m̃r2/2)

}
else ,

where Dν(x) are parabolic cylinder functions and Iµ(x) are the modified Bessel functions of the first kind which diverge
as ex/

√
2πx for large x ≫ |µ2

− 1/4|.
Again we write g++(r1, r2; k) = ckfα(r<; k)fβ (r>; k) and impose the kink condition,

∂r1g++(r1, r2; k)|r1=r2+ϵ−∂r1g++(r1, r2; k)|r1=r2−ϵ= −m̃r2 , (14.40)

to find the ck. The Green function is then reconstructed using Eq. (14.20). But we immediately see that curiously |G++|

diverges. Even the structure of the plasma is not well defined in this situation. The collapse of opposite charges at the
horizon shrinking to the origin makes the structure of the plasma physically meaningless.

Part IV

Conclusions

We presented a review of the analytical exact solutions of the one-component and two-component plasma at the
special value of the coupling constant Γ = 2 in various Riemannian surfaces. Starting from the pioneering work [12] of
Bernard Jancovici in 1981 showing the analytic exact solution for the Jellium on the plane, many other curved surfaces with
a conformal metric has been considered. Namely: the cylinder, the sphere, the pseudosphere, and the Flamm paraboloid.
From a physical point of view we can see the curvature of the surface as an additional external field acting on the system
of charges moving in the corresponding flat space [42]. Even if this point of view does not take into account the fact
that the Coulomb pair potential always reflect its harmonicity inside the given surface. For this reason we did not try a
unifying treatment but rather a detailed presentation of each case individually as characteristic of the diverse scenarios
which stem out of the various surfaces so far studied in the literature.

In our review we put light on the description of the surface, of the Coulomb potential (and the background potential
for the OCP) in the surface, and of the exact solution for the partition function and for the correlation functions. The
surfaces considered exhaust to the best of our knowledge all the cases considered in the literature until now. We hope
that the review could be a valuable instrument for the reader who needs to have a broad overview on this fascinating
exactly solvable fluid model giving the opportunity of finding in one place a self contained summary of various results
appeared in the literature at different times and in different journals. We did our best to fill in all the conceptual gaps
between the lines so that the reader can follow the various derivations without needing to refer to the original papers
which would require an interruption of the reading. This choice required a certain degree of detail which we thought
necessary in place of a more conversational presentation.

We decided to leave out the results of taking the thermodynamic limit of the various finite OCP expressions. If the
reader desires he can always go back to the original references to find this lacking piece of information. It is well known
that Coulomb systems have to exhibit critical finite-size effects [15]. The last surface considered, Flamm’s paraboloid,
is the only surface of non-constant curvature considered. Nonetheless the one-body density of the plasma is a constant



214 R. Fantoni / Physica A 524 (2019) 177–220

even in this surface in the thermodynamic limit [42]. On the Flamm paraboloid two different thermodynamic limits can be
considered [26]: the one where the radius R of the disk confining the plasma is allowed to become very big while keeping
the surface hole radius M constant, and the one where both R → ∞ and M → ∞ with the ratio R/M kept constant (fixed
shape limit). When the horizon shrinks to a point the upper half surface reduces to a plane and one recovers the well
known result valid for the one-component plasma on the plane. In the same limit the whole surface reduces to two flat
planes connected by a hole at the origin. When only one-half of the surface is occupied by the plasma the density shows
a peak in the neighborhoods of each boundary, tends to a finite value at the boundary and to the background density far
from it, in the bulk. In the thermodynamic limit at fixed shape, we find that the density profile is the same as in flat space
near a hard wall. In the grounded horizon case the density reaches the background density far from the boundaries. In this
case, the fugacity and the background density control the density profile close to the metallic boundary (horizon). In the
bulk and close to the outer hard wall boundary, the density profile is independent of the fugacity. In the thermodynamic
limit at fixed shape, the density profile is the same as for a flat space.

The importance of having an exactly soluble many-body systems at least at one special temperature relies in the
fact that it can serve as a guide for numerical experiments or for approximate solutions of the same system at other
temperatures or for different more realistic systems. For example the 2D OCP thermodynamics and structure can now be
efficiently expanded in Jack polynomials for even values of the coupling constant Γ [20,61,62]. And the TCP can be solved
in the whole stability range of temperatures [63].

The original 1981 work of Jancovici [12] has been important for the understanding of the fractional quantum Hall
effect in the Laughlin development [64] of a Jastrow correlation factor of the variational wave function of the Landau
problem [65] for an Hall system in its ground state. We expect the results on the curved surface to be relevant in the
developments towards a general relativistic statistical mechanics [66] which is still missing. The main difficulty being the
lack of a canonical Hamiltonian in a generally covariant theory where the dynamics is only given relationally rather than
in terms of evolution in physical time. And without a Hamiltonian it is difficult to even start doing statistical physics [67].

The quantum 2D OCP does not admit an analytic exact solution but it has been studied through a computer experiment
either in its ground state [68,69] or at finite temperature [70–73].

Appendix A. Electrostatic potential of the background for the OCP in the pseudosphere

In this appendix we give the expression for the electrostatic potential of the background,

vb(q1) =

∫
ρb G(d10) dS0 = −nbe

∫
Ω

G(d10) dS0. (A.1)

The electric potential of the background satisfies Eq. (3.1). Using the coordinates (r, ϕ) we have,

v′′

b (r) +
1
r
v′

b(r) = αb
4a2

(1 − r2)2
, (A.2)

where αb = −2πρb and we denote with a prime a derivative with respect to r . This differential equation admits the
following solution for v′

b,

v′

b(r) = e−
∫ r
r0

1
r′

dr ′
[
v′

b(r0) + 4a2
∫ r

r0

αb

(1 − r ′2)2
e
∫ r′
r0

1
s ds dr ′

]
=

r0v′

b(r0)
r

+
4a2

r

∫ r

r0

αb
r ′

(1 − r ′2)2
dr ′. (A.3)

Since the potential has to be chosen continuous at r0 we set v′

b(r0) = 2a2αbr0/(1 − r20 ) to find,

v′

b(r) = 2a2αb

⎧⎪⎪⎨⎪⎪⎩
r

1 − r2
r ≤ r0

r20
1 − r20

1
r

r > r0
,

where r0 = tanh(τ0/2). For the potential inside Ωaτ0 we then have,

vb(r) = −αba2 ln(1 − r2) + constant, (A.4)

or using the coordinates (τ , ϕ),

vb(τ ) = −αba2 ln[1 − tanh2(τ/2)] + constant. (A.5)

We need to adjust the additive constant in such a way that this potential at τ = τ0 has the correct value corresponding
to the total background charge. We then have,

constant = vb(0) = −en
∫
Ωaτ0

G(τa) dS
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= 2πa2qn
∫ τ0

0
ln[tanh(τ/2)] sinh τ dτ

= αba2[ln[1 − tanh2(τ0/2)] + sinh2(τ0/2) ln[tanh2(τ0/2)]]. (A.6)

We reach then the following expression for the potential inside Ωaτ0 ,

vb(τ ) = αba2
{
ln
[
1 − tanh2(τ0/2)
1 − tanh2(τ/2)

]
+ sinh2(τ0/2) ln[tanh2(τ0/2)]

}
. (A.7)

The self energy of the background is,

V 0
N =

1
2

∫
S
ρbvb dS (A.8)

=
1
2
ρbαba22πa2

{∫ τ0

0
ln
[
1 − tanh2(τ0/2)
1 − tanh2(τ/2)

]
sinh τ dτ+

sinh2(τ0/2) ln[tanh2(τ0/2)]
∫ τ0

0
sinh τ dτ

}
= −2a4(πρb)2{1 − cosh τ0 + 4 ln[cosh(τ0/2)] + 2 sinh4(τ0/2) ln[tanh2(τ0/2)]}.

Notice that if we drop the last term on the right hand side of this equation, i.e. if we adjust the additive constant so that
the potential of the background vanishes on the boundary ∂Ωaτ0 , then in the limit a → ∞ we recover the self energy of
the flat system N2e2/8.

Appendix B. The flat limit for the OCP in the pseudosphere

In this Appendix we study the flat limit a → ∞ of the expressions found for the density in Section 9.6. We shall
study the limit a → ∞ for a finite system and then take the thermodynamic limit. Since for a large system on the
pseudosphere boundary effects are of the same order as bulk effects it is not clear a priori whether computing these two
limits in different order would give the same results. In Ref. [24] we show that it does.

For a finite disk of radius d = aτ0, we have in the flat limit a → ∞, d ∼ r0. In Eq. (10.101), in the limit a → ∞, the
term eC given by (9.46) becomes

eC ∼

(
r20
4a2

)−Nb

eNb (B.1)

where Nb = πnbr20 is the number of particles in the background in the flat limit. Since for large a, t0 = r20/4a
2 is small,

the incomplete beta function in Eq. (10.101) is

Bt0 (ℓ+ 1, α) =

∫ t0

0
e(α−1) ln(1−t) tℓ dt ∼

∫ t0

0
e−(α−1)t tℓ dt ∼

γ (ℓ+ 1,Nb)
αℓ+1 (B.2)

Expanding (1 − (r2/4a2))4πnba
2

∼ exp(−πnbr2) in Eq. (10.101) we finally find the density as a function of the distance r
from the center

n(1)(r) = nbe−πnbr2
∞∑
ℓ=0

(πnbr2)ℓ

αℓ−NbNNb
b e−Nb (nb/ζ ) + γ (ℓ+ 1,Nb)

(B.3)

When α → ∞ the terms for ℓ > Nb in the sum vanish because αℓ−Nb → ∞. Then

n(1)(r) = nbe−πnbr2
E(Nb)−1∑
ℓ=0

(πnbr2)ℓ

γ (ℓ+ 1,Nb)
+∆n(1)(r) (B.4)

The first term is the density for a flat OCP in the canonical ensemble with a background with E(Nb) elementary charges
(E(Nb) is the integer part of Nb). The second term is a correction due to the inequivalence of the ensembles for finite
systems and it depends on whether Nb is an integer or not. If Nb is not an integer

∆n(1)(r) = nb
(πnbr2)E(Nb)e−πnbr2

γ (E(Nb) + 1,Nb)
(B.5)

and if Nb is an integer

∆n(1)(r) = nb
(πnbr2)Nbe−πnbr2

NNb
b e−Nb (nb/ζ ) + γ (Nb + 1,Nb)

(B.6)



216 R. Fantoni / Physica A 524 (2019) 177–220

In any case in the thermodynamic limit r0 → ∞, Nb → ∞, this term ∆n(1)(r) vanishes giving the known results for the
OCP in a flat space in the canonical ensemble [12,55]. Integrating the profile density (B.4) one finds the average number
of particles. For a finite system it is interesting to notice that the average total number of particles N is

N = E(Nb) + 1 (B.7)

for Nb not an integer and

N = Nb +
1

1 +
N
Nb
b e−Nbnb

ζγ (Nb+1,Nb)

(B.8)

for Nb an integer. In both cases the departure from the neutral case N = Nb is at most of one elementary charge as it was
noticed before [74,75].

Appendix C. Green’s function of Laplace equation in Flamm’s paraboloid

In this appendix, we illustrate the calculation of the Green function, for the various situations considered, using the
original system of coordinates (r, ϕ).

C.1. Laplace equation

We first find a solution v(q), not circularly symmetric, to Laplace equation

∆v = 0 , (C.1)

through the separation of variables technique. We then write

v(r, ϕ) = R(r)φ(ϕ) , (C.2)

so that Laplace equation splits into the two ordinary differential equations

φ′′
= −k2φ , (C.3)

(r2 − 2Mr)R′′
+ (r − M)R′

= k2R . (C.4)

Taking care of the boundary condition φ(ϕ + 2π ) = φ(ϕ) we find that the first equation admits solution only when k is
an integer. The solutions being

φn = C+einϕ + C−e−inϕ n = 0, 1, 2, 3, . . . (C.5)

The solutions of the second equation are

Rn =

{
C1 cosh(na) + C2 sinh(na) r > 2M
C1 cos(na) + C2 sin(na) r < 2M

(C.6)

where

a =

⎧⎪⎪⎨⎪⎪⎩
2 arctan

√
r

2M − r
r < 2M

2 ln
√
r +

√
r − 2M

√
2M

r > 2M
(C.7)

Here C−, C+, C1, and C2 are the integration constants.
Then the general solution is real for C+ = C− = C0

v(r, ϕ) =

∞∑
n=0

Rn(r)φn(ϕ) =

⎧⎪⎪⎨⎪⎪⎩
C0

(
C1 + C2

sin a
cosϕ − cos a

)
r < 2M

C0

(
C1 + C2

sinh a
cosϕ − cosh a

)
r > 2M

(C.8)

If we require the Coulomb potential to go to zero at r = ∞ we must choose C1 − C2 = 0 so that (for C0 = 1)

v(r, ϕ) =

⎧⎪⎪⎨⎪⎪⎩
1 +

sin a
cosϕ − cos a

r < 2M

1 +
sinh a

cosϕ − cosh a
r > 2M

(C.9)

Moreover v(2M, ϕ) = 1.
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C.2. Green’s function of Laplace equation

We now want to find the Coulomb potential generated at q = (r, ϕ) by a charge at q0 = (r0, ϕ0) with r0 > 2M . We
then have to solve the Poisson equation

∆G(r, ϕ; r0, ϕ0) = −2πδ(r − r0)δ(ϕ − ϕ0)/
√
g , (C.10)

where g = det(gµν) = r2/(1 − 2M/r). To this end we expand the Green function G and the second delta function in a
Fourier series as follows

G(r, ϕ; r0, ϕ0) =

∞∑
n=−∞

ein(ϕ−ϕ0)gn(r, r0) , (C.11)

δ(ϕ − ϕ0) =
1
2π

∞∑
n=−∞

ein(ϕ−ϕ0) , (C.12)

to get an ordinary differential equation for gn[(
1 −

2M
r

)
∂2

∂r2
+

(
1
r

−
M
r2

)
∂

∂r
−

n2

r2

]
gn(r, r0) = −δ(r − r0)/

√
g . (C.13)

To solve this equation we first solve the homogeneous one for r < r0: gn,−(r, r0) and r > r0: gn,+(r, r0). This equation was
already solved in (C.6) for n ̸= 0

gn,± = An,±(
√
r +

√
r − 2M)2n + Bn,±(

√
r +

√
r − 2M)−2n (C.14)

and for n = 0 one finds

g0,± = A0,± + B0,± ln(
√
r +

√
r − 2M) . (C.15)

The form of the solution immediately suggest that it is more convenient to work with the variable x = (
√
r +√

r − 2M)2/(2M). For this reason, we introduced this new system of coordinates (x, ϕ) which is used in the main text.
We then impose the following boundary conditions: (i) the solution at r = r0 should be continuous, (ii) the first

derivative at r = r0 should have a jump due to the delta function, (iii) at r = 2M the solution should tend to the solution
of the flat system (M → 0), and (iv) the solution should vanish at r = ∞, namely,

gn,−(r0, r0) = gn,+(r0, r0) , (C.16)

g ′

n,−(r0, r0) = g ′

n,+(r0, r0) +
1

√
r0(r0 − 2M)

, (C.17)

Bn,− = 0 for n > 0 , An,− = 0 for n < 0 , (C.18)

An,+ = 0 for n > 0 , Bn,+ = 0 for n < 0 . (C.19)

Performing the Fourier series of Eq. (C.11) then leads to the following result,

Ghs(r, ϕ; r0, ϕ0) = − ln |z − z0| , (C.20)

where the complex coordinates z = (
√
r +

√
r − 2M)2eiϕ and z0 = (

√
r0 +

√
r0 − 2M)2eiϕ0 have been introduced. This

solution reduces to the correct Coulomb green function on a plane as M → 0 and it is the Coulomb potential on one
universe of the surface S.

In order to find the Coulomb potential on the whole surface we can then start from the definition (10.3) and go back
to the s = (

√
r +

√
r − 2M)2 variable. If we do this we find as solutions,

s± = 2M(
√
u2 + 1 ± u)2 , (C.21)

So that for the Coulomb potential one can choose one of the two definitions depending on which charge is in the upper
or lower universe. Neglecting an additive constant we could then set

Gws(u, ϕ; u0, ϕ0) = − ln|z − z0| , (C.22)

where z = (
√
u2 + 1 + u)2eiϕ and z0 = (

√
u2
0 + 1 + u0)2eiϕ0 . Actually this potential as it stands does not have the correct

symmetry properties under the exchange of the charges from one universe to the other. It can easily be shown that if
z is a point in the upper universe then 1/z is its symmetric in the lower universe. Then we should expect that if we
take z0 = 1 (in the horizon) the potential created at z should be the same as the one created at 1/z, by symmetry. More
generally, one should have Gws(z, z0) = Gws(1/z, 1/z0).

We then need to revise the calculations of the Coulomb potential. We define the Coulomb potential as the solution
of Poisson equation with the boundary condition that the electric field vanishes at infinity (this also happens for a flat
space). However it turns out that with this boundary condition one still have several different solutions, and contrary to
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the flat case, there are some that differ in more than a constant term. One can see this by solving Poisson equation using
the Fourier transform, the constants of integration for the term which does not depend on the angular variable cannot be
determined.

However one can impose some additional conditions. For instance we expect the Coulomb potential to be symmetric
in the exchange of z and z0. The previous solution − ln |z − z0| does satisfy this, but it is not the unique solution with this
property. Additionally, we can impose the symmetry relation Gws(z, z0) = Gws(1/z, 1/z0). Then one finds the solution

Gws(z, z0) = − ln(|z − z0|/
√

|zz0|) . (C.23)

We have not verified if this is the only solution (up to a constant) satisfying this symmetry, but we think so. For the
whole surface we think that we should use this Coulomb potential instead of the original one , which does not treat on
the same foot the upper and lower parts of the surface. However we have noticed that this potential does not reduce to
the flat one when M = 0, but this is normal: if we work with the whole surface the limit M = 0 is not exactly the flat
one, it is two flat planes connected by a hole at the origin, this hole modifies the Coulomb potential.

C.3. The grounded horizon case

Imagine now that the horizon at r = 2M is a perfect conductor. We then start from

gn,± = An,± cosh
[
2n ln(

√
r +

√
r − 2M)

]
+ Bn,± sinh

[
2n ln(

√
r +

√
r − 2M)

]
. (C.24)

We fix the four integration constants, for each n, requiring that: (i) the solution at r = r0 should be continuous, (ii) the
first derivative at r = r0 should have a jump due to the delta function, (iii) at r = 2M the solution should vanish, and (iv)
the solution has the correct behavior at r = ∞, namely,

gn,−(r0, r0) = gn,+(r0, r0) , (C.25)

g ′

n,−(r0, r0) = g ′

n,+(r0, r0) +
1

√
r0(r0 − 2M)

, (C.26)

gn,−(2M, r0) = 0 , (C.27)

An,+ = Bn,+ for n ≥ 0 , An,+ = −Bn,+ for n < 0 . (C.28)

Performing the Fourier series of Eq. (C.11) then leads to the following result for r > r0

G(r, ϕ; r0, ϕ0) = − ln

√
1 + c2 − 2c cos(ϕ − ϕ0)
1 + b2 − 2b cos(ϕ − ϕ0)

+ 2 ln
√
r0 +

√
r0 − 2M

√
2M

, (C.29)

b =

( √
r +

√
r − 2M

√
r0 +

√
r0 − 2M

)2

, (C.30)

c =

(
(
√
r +

√
r − 2M)(

√
r0 +

√
r0 − 2M)

2M

)2

, (C.31)

and the solution for r < r0 is obtained by merely exchanging r with r0.
In terms of the complex numbers z and z0 this can be rewritten as follows

Ggh(r, ϕ; r0, ϕ0) = − ln
⏐⏐⏐⏐ (z − z0)/2M
1 − zz̄0/4M2

⏐⏐⏐⏐ (C.32)

where the bar over a complex number indicates its complex conjugate. We will call this the grounded horizon green
function. Notice how its shape is the same of the Coulomb potential on the pseudosphere [24] M playing the role of the
complex radius. This green function could have been found from the Coulomb one (C.20) by using the images method
from electrostatics.

Appendix D. The geodesic distance on the Flamm paraboloid

The geodesics are determined by the following equation

r̈ + (Γrrr ṙ2 + Γrϕϕ ϕ̇
2)/grr = 0 , (D.1)

ϕ̈ + 2Γϕϕr ϕ̇ṙ/gϕϕ = 0 , (D.2)

where the dot stands for a total differentiation with respect to time and the Christoffel symbols are as follows

Γrrr = grr,r/2 , (D.3)

Γϕϕr = −Γrϕϕ = gϕϕ,r/2 . (D.4)
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Here the comma means partial differentiation as usual.
The geodesics equation (D.1)–(D.2) is then

r̈ −

[
M

(r − 2M)2
ṙ2 + rϕ̇2

](
1 −

2M
r

)
= 0 , (D.5)

ϕ̈ +
2
r
ϕ̇ṙ = 0 , (D.6)

The geodesic distance between two points on the surface is

d(q1, q2) =

∫ t2

t1

ds
dt

dt =

∫ r2

r1

y dr =

∫ r2

r1

√
1

1 −
2M
r

+ r2x2 dr

where x(r) = dϕ/dr and y(r) = ds/dr .
Using ϕ̇ = xṙ in Eqs. (D.5) and (D.6) we find

x′
=

(
2
r

+
M

r2 − 2Mr

)
x + r

(
1 −

2M
r

)
x3 , (D.7)

where the prime stands for differentiation with respect to r .
The solution for x(r) and y(r) are as follows

x(r) = ±

√
15r3(2M − r)

r4(30M2 − 24Mr + 5r2) − C
, (D.8)

y(r) =

√
r2x2 +

r
r − 2M

, (D.9)

with C the integration constant, so that,

d(q, q0) =

∫ r

r0

y(r ′) dr ′ , (D.10)

ϕ − ϕ0 =

∫ r

r0

x(r ′) dr ′ . (D.11)
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