
Physica A 515 (2019) 682–692

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

From the Liouville to the Smoluchowski equation for a
colloidal solute particle in a solvent
Riccardo Fantoni
Università di Trieste, Dipartimento di Fisica, strada Costiera 11, 34151 Grignano (Trieste), Italy

h i g h l i g h t s

• We reach the Smoluchowski dynamics of a colloidal Brownian particle suspended in a molecular solvent starting from the microscopic
Liouvillian evolution of the full classical model in the high friction limit.

• The integration of the solvent degrees of freedom goes through amultiple time scale perturbation expansionwhich removes the secular
divergences.

• A simple dynamical Monte Carlo scheme is then proposed to solve the resulting evolution equation for the colloid solute particle.
• In particular we study the approach to the equilibrium Boltzmann distribution at late times and its resilience behavior at shorter times.

a r t i c l e i n f o

Article history:
Received 11 May 2017
Received in revised form 5 August 2018
Available online xxxx

Keywords:
Colloidal suspension
Solvent
Solute
Brownian dynamics
Liouville
Fokker–Planck
Smoluchowski
Monte Carlo

a b s t r a c t

We show how the Smoluchowski dynamics of a colloidal Brownian particle suspended in
a molecular solvent can be reached starting from the microscopic Liouvillian evolution of
the full classical model in the high friction limit. The integration of the solvent degrees of
freedom goes through a multiple time scale perturbation expansion which removes the
secular divergences. A simple dynamical Monte Carlo scheme is then proposed to solve
the resulting evolution equation for the colloid solute particle. In particular we study the
approach to the equilibriumBoltzmanndistribution at late times and its resilience behavior
at shorter times as influenced by the steepness of the external potential and the friction
coefficient around their respective minima. This is very important to understand the fate
of the Brownian particle’s random walk and its evolution history.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The dynamics of a many-body system can be given in terms of the time evolution of the probability phase space density
of the chosen ensemble of particles.Wemust require that the total time derivative of the probability density vanishes so that
the probability density as seen by an observer moving with a phase point along its phase space trajectory, is independent of
time. Phase points of the statistical ensemble are neither created nor destroyed as time evolves.

The Liouvillian dynamics gives rise to the famous kinetic equation discovered by Boltzmann in 1872 (where the
assumption of two body collisions only and of uncorrelated successive collisions are only valid at sufficiently low density)
or to the exact Born–Bogoliubov–Green–Kirkwood–Yvon (BBGKY) hierarchical equations.

According to BBGKY the dynamics of a single particle requires the knowledge of the two-body probability density. But if
we additionally require that the particle we are looking upon has mass much larger than that of all the other particles it is
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possible to expand perturbatively such dynamics so to find a closed equation for just the single massive particle probability
phase space density.

A colloidal suspension is made of colloidal particles immersed in a solvent. The solvent (which may be water or other
liquids) is in general a molecular liquid which can be described at a microscopic level by particles much smaller and lighter
than the macromolecular colloidal particle. The problem of the dynamics of the big colloidal solute particle subject to its
interaction with the smaller solvent molecules in statistical equilibrium at a given absolute temperature T is an interesting
one. Starting from the observation in 1827 by Robert Brown of the motion of pollen grains in water and the interpretation
of Albert Einstein in 1905 which was later verified experimentally by Jean Baptiste Perrin in 1908, the Brownian motion
began to occupy an important role in non-equilibrium statistical physics. Even if the initial description of the colloid solute
particle dynamics was an empirical one it soon became clear the microscopic origin of the Brownian motion. A complete
microscopic description has to take into account the solvent in a proper way. The challenge is to be able to ‘‘remove’’ the
degrees of freedom of the solvent in favor of the ones of the solute particle. So as to have a mesoscopic description of the
dynamics of the colloid solute particle dressed by the solvent.

In the second half of last century it had been discovered [1] that it is indeed possible to derive the Brownian motion
equations starting from the Liouvillian evolution, L ≡ i{H, . . .}, with {. . .} the Poisson brackets and H the model classical
Hamiltonian, of the probability density in the phase space of a model of N solvent particles and the colloidal particle,
f [N+1](t) = exp(−iLt)f [N+1](0), to the Fokker–Planck equation [2,3] for the dynamics of the dressed solute particle alone
subject to friction. The friction coefficient ξ is expressed in terms of an equilibrium average over the phase space of the
solvent in the external field of the solute particle of a particular term containing themicroscopic force exerted by the solvent
on the colloidal particle. At the end of last century it was shown furthermore that a high friction expansion, in turn, brings [4]
to the Smoluchowski equation for the colloid solute particle or its equivalent stochastic Langevin equation. Some related
literature to the present framework can be found in the following references [5–8].

It this work we outline a simpleMonte Carlo scheme that may be used to solve the resulting Smoluchowski equation that
we call Dynamical Monte Carlo (DynMC). The realistic case of a colloidal suspension of poly(methyl methacrylate) (PMMA)
particles inwater [9] is taken as an example. In particularwe study the approach to the equilibriumBoltzmanndistribution at
late times and its resilience behavior at shorter times as influenced by the steepness of the external potential and the friction
coefficient around their respective minima. This is very important to understand the fate of the Brownian particle’s random
walk and its evolution history. We test our new algorithm on the case of a harmonic one dimensional external potential for
which the analytic exact solution of the Smoluchowski equation is known.

Of course a more realistic treatment of the molecular solvent would be through a quantum statistical mechanics
description where L ≡ i[Ĥ, . . .]/h̄, with [. . .] the commutator and Ĥ the model Hamiltonian operator. Then we would
have amixed evolution where the solvent is treated quantummechanically and themassive colloid solute particle is treated
classically (see for example Ref. [10] or Ref. [11] where the full quantummechanical treatment is considered). We leave this
as an open future problem.

The paper is organized as follows: In Section 2we present the reduction from the Liouville equation to the Fokker–Planck
equation, in Section 3 we present the reduction from the Fokker–Planck equation to the Smoluchowski equation, in Section
4 we present the Dynamical Monte Carlo algorithm (DynMC), in Section 5 we carry on a computer experiment with the
newly developed algorithm to solve for the time dependence of the mean Brownian particle position under the influence of
an external harmonic potential in one spatial solution, Section 6 is for final remarks.

2. From the Liouville to the Fokker–Planck equation

In this section wewill reproduce and discuss themultiple time scale perturbation expansion presented in Ref. [12] which
brings from the microscopic Liouville equation for a solute particle in a solvent to its mesoscopic Fokker–Planck equation.

We consider a colloidal solute particle of diameter Σ and mass M immersed in a colloidal suspension of small solvent
particles of diameter σ and massm ≪ M . The Hamiltonian of the system of N + 1 particles can thus be written as

H =
P2

2M
+

N∑
i=1

p2i
2m

+ VN (rN ) + Vb(R, rN ), (1)

where VN is the total interaction energy of the N solvent particles of coordinates rN = (r1, r2, . . . , rN ) and momenta
pN

= (p1, p2, . . . , pN ), and Vb is the potential energy of the solvent particles in the field of a Brownian solute particle placed
at R with momentum P. The Liouville operator splits naturally into a solvent and a Brownian terms: L = Ls + Lb, with

Ls = −i
N∑
i=1

(
pi

m
·

∂

∂ri
+ fi ·

∂

∂pi

)
, (2)

Lb = −i
(

P
M

·
∂

∂R
+ F ·

∂

∂P

)
, (3)



684 R. Fantoni / Physica A 515 (2019) 682–692

where fi = −∂(VN + Vb)/∂ri is the force acting on the solvent particle i and F = −∂Vb/∂R is the force exerted on the solute
particle by the solvent particles. The Liouville equation for the phase space probability density of the systemofN+1 particles
is therefore

∂

∂t
f [N+1](B, bN

; t) = −i(Ls + Lb)f [N+1](B, bN
; t), (4)

where we use the following notation: B ≡ {R, P} and bN
≡ {rN , pN

}.
We now introduce a perturbation parameter ϵ =

√
m/M ≪ 1 and rescale the solute particle momenta accordingly as

follows: P′
= ϵP, so that

Lb = −iϵ
(
P′

m
·

∂

∂R
+ F ·

∂

∂P′

)
≡ ϵL′

b. (5)

We want to find now the Liouville equation for the one-particle distribution function

fb(B, t) ≡ f [1](R, P′
; t) =

∫
f [N+1](B, bN

; t) dbN . (6)

Integrating then Eq. (4) over the coordinates and momenta of the solvent we find
∂

∂t
fb(B, t) = −ϵ

P′

m
·

∂

∂R
fb(B, t) − ϵ

∫
F ·

∂

∂P′
f [N+1](B, bN

; t) dbN , (7)

where the term containing Ls vanishes because we assume zero net flow of probability at infinity in phase space.
The perturbation expansion in ϵ over amultiple time scale is necessary in order to extract the mesoscopic time evolution

from the microscopic one due to secular divergences of the solution at sufficiently long times, irrespective of how small ϵ
may be. We then introduce an auxiliary distribution function

f [N+1]
ϵ (B, bN

; t0, t1, t2, . . .) = f [N+1]
ϵ0 + ϵf [N+1]

ϵ1 + ϵ2f [N+1]
ϵ2 + · · · , (8)

which is a function of multiple time variables

t0 = t, t1 = ϵt, t2 = ϵ2t, . . . , tn = ϵnt. (9)

Eq. (8) indicates that the dependence of the distribution function on tn characterizes the evolution on the time scale t ∼ ϵn

for n = 0, 1, 2, . . .. So, the original Liouville Eq. (4) is replaced by(
∂

∂t0
+ ϵ

∂

∂t1
+ ϵ2 ∂

∂t2
+ · · ·

)
f [N+1]
ϵ = −i(Ls + ϵL′

b)f
[N+1]
ϵ , (10)

and the Liouville equation for the Brownian motion by(
∂

∂t0
+ ϵ

∂

∂t1
+ ϵ2 ∂

∂t2
+ · · ·

)
fbϵ = −ϵ

P′

m
·

∂

∂R
fbϵ − ϵ

∫
F ·

∂

∂P′
f [N+1]
ϵ dbN . (11)

Term by term integration of this equation shows that also fbϵ can be expanded in the form: fbϵ = fb0 + ϵfb1 + ϵ2fb2 + · · ·.
The crucial difference between Eq. (8) and a conventional perturbation expansion is the fact that the auxiliary function has a
physical meaning only along the so-called physical line defined by (9). We are therefore free to impose whatever boundary
conditions are needed to ensure that the expansion is free of secular divergences at successive powers of ϵ at large times.
The same is true of the expansion for fbϵ .

We will work up to order ϵ2, retaining only the three time variables t0, t1, and t2. Substituting the perturbation expansion
for f [N+1]

ϵ and fbϵ in Eq. (11) and equating coefficients of equal powers of ϵ, we arrive at the following results.

[0. ] To zeroth order in ϵ:
From Eq. (11) we find immediately

∂

∂t0
fb0 = 0, (12)

so that fb0 = fb0(R, P′
; t1, t2, . . .). From Eq. (10) we find

∂

∂t0
f [N+1]
ϵ0 = −iLsf

[N+1]
ϵ0 . (13)

Since the equilibrium phase space probability density of the solvent in the presence of the Brownian solute particle at
R satisfies the relation Lsf

[N]

0 (bN
|R) = 0, the solution to Eq. (13) is simply

f [N+1]
ϵ0 = fb0(R, P′

; t1, t2)f
[N]

0 (bN
|R), (14)

where∫
f [N]

0 (bN
|R) dbN

= 1, f [N]

0 (bN
|R) ∝ e−βH,

∂

∂R
f [N]

0 = βFf [N]

0 , (15)



R. Fantoni / Physica A 515 (2019) 682–692 685

here β = 1/kBT with T the absolute temperature. We now employ the freedom of choice of boundary condition on the
auxiliary function fbϵ imposing the following initial condition: fbϵ(R, P′

; t0 = 0, t1, t2) = fb0(R, P′
; t1, t2), which in turn

implies that fbn(R, P′
; t0 = 0, t1, t2) = 0 for n = 1, 2.

[1. ] To first order in ϵ:
From Eqs. (10) and (11) we find

∂

∂t0
f [N+1]
ϵ1 +

∂

∂t1
f [N+1]
ϵ0 = −iLsf

[N+1]
ϵ1 − iL′

bf
[N+1]
ϵ0 (16)

and
∂

∂t0
fb1 +

∂

∂t1
fb0 =

∫
(−iL′

b)f
[N+1]
ϵ0 dbN , (17)

respectively. Eqs. (12) and (14) show that fb0 and f [N+1]
ϵ0 are both independent of t0. To avoid secular growth of fb1 in (17)

it is necessary to impose ∂ fb1/∂t0 = 0, which combinedwith the initial condition for fb1 implies that fb1 = 0 identically,
and

∂

∂t1
fb0 =

∫
(−iL′

b)f
[N+1]
ϵ0 dbN

= −iL′

bfb0, (18)

where in the last equality we used Eq. (14). We therefore focus on the time evolution of fb0. Eq. (18) shows that on the
time scale t1 the evolution of the distribution function of the Brownian particle is the same as that of a single particle
in the field of the solvent. Eq. (16) can now be rearranged as follows(

∂

∂t0
+ iLs

)
f [N+1]
ϵ1 = −

(
∂

∂t1
+ iL′

b

)
f [N+1]
ϵ0

= −F ·

(
βP′

m
+

∂

∂P′

)
fb0f

[N]

0 , (19)

which, upon choosing the boundary condition f [N+1]
ϵ1 (R, P′, bN

; t0 = 0, t1, t2) = 0, has the formal solution

f [N+1]
ϵ1 (R, P′, bN

; t0, t1, t2) =

−

∫ t0

0
ds e−iLssF ·

(
βP′

m
+

∂

∂P′

)
fb0(R, P′

; t1, t2)f
[N]

0 (bN
|R), (20)

as can be checked by direct substitution in (20).
[2. ] To second order in ϵ:

From Eq. (11) and the fact that fb1 = 0 we find

∂

∂t0
fb2 +

∂

∂t2
fb0 =

∫
(−iL′

b)f
[N+1]
ϵ1 dbN . (21)

Since fb0 is independent of t0, secular growth is again suppressed by setting ∂ fb2/∂t0 = 0. Substituting the solution (20)
into Eq. (21) we obtain a closed equation for the evolution of fb0(R, P′

; t1, t2):

∂

∂t2
fb0 = lim

t0→∞

∫
dbN f [N]

0 (bN
|R)iL′

b

×

∫ t0

0
ds e−iLssF ·

(
βP′

m
+

∂

∂P′

)
fb0, (22)

where the limit t0 → ∞ can be easily taken because fb0 is independent of t0. Recognizing that e−iLssF is the time
evolution F(−s) we then find

∂

∂t2
fb0 = lim

t0→∞

∫ t0

0
ds ⟨L′

bF(−s)⟩b ·

(
βP′

m
+

∂

∂P′

)
fb0

=
1
3

∫
∞

0
ds ⟨F · F(−s)⟩b

∂

∂P′
·

(
βP′

m
+

∂

∂P′

)
fb0, (23)

where ⟨. . .⟩b =
∫

. . . f [N]

0 (bN
|R) dbN denotes an equilibrium average over the phase space variables of the solvent

particles in the external field of the solute particle.
Putting together the results obtained so far and going back to physical time and to the original momentum variable P,
we arrive finally to the Fokker–Planck (or Klein [2] and Kramers [3]) equation for fb(R, P; t):

∂

∂t
fb(R, P; t) =

(
ϵ

∂

∂t1
+ ϵ2 ∂

∂t2

)⏐⏐⏐⏐
t1=ϵt,t2=ϵ2t

fb0(R, P; t1, t2)



686 R. Fantoni / Physica A 515 (2019) 682–692

=

[
−

P
M

·
∂

∂R
+ ξ

∂

∂P
·

(
P +

M
β

∂

∂P

)]
fb(R, P; t), (24)

where the friction coefficient

ξ =
β

3M

∫
⟨F · F(−s)⟩b ds. (25)

3. From the Fokker–Planck to the Smoluchowski equation

We now introduce a dimensionless friction ξd = ξτT with τT = Σ/vT a thermal time and vT =
√
1/βM the

thermal velocity. In the high friction limit one can carry on a multiple time scale perturbation expansion in the small
ϵb ≡ 1/ξd ≪ 1 parameter [4], which multiplies the time derivative in the Fokker–Planck equation (24), to finally reach
the Smoluchowski [13] equation, governing the time evolution of the probability density in configuration space:

ρb(R, t) =

∫
fb(R, P; t) dP. (26)

We then repeat the same multiple time scale perturbation analysis performed in the previous section replacing now ϵ with
ϵb. If we use the following notation

LFP ≡
∂

∂P
·

(
P +

M
β

∂

∂P

)
, (27)

the identification of different powers of ϵb in the Fokker–Planck equation gives the following relations:

LFPfb0 = 0, (28)

LFPfb1 = τT

[
∂

∂t0
+

P
M

·
∂

∂R

]
fb0, (29)

LFPfb2 = τT

[
∂

∂t0
+

P
M

·
∂

∂R

]
fb1 + τT

∂

∂t1
fb0. (30)

The zeroth order equation imposes a Maxwellian distribution

fb0(R, P; t0, t1, . . .) = Φ(R; t0, t1, . . .)e−βP2/2M . (31)

The first order equation imposes then

LFPfb1 = τT
∂Φ

∂t0
e−βP2/2M

+ τT
P
M

·
∂Φ

∂R
e−βP2/2M . (32)

In order to eliminate secular divergences we must require ∂Φ/∂t0 = 0, and the first correction for the distribution function
is now given by

fb1(R, P; t0, t1, . . .) = −τT
P
M

·
∂Φ

∂R
e−βP2/2M

+ Ψ (R; t0, t1, . . .)e−βP2/2M . (33)

The second order equation becomes

LFPfb2 =

[
τT

∂Ψ

∂t0
+ τT

∂Φ

∂t1
− (vT τT )2

∂

∂R
·
∂Φ

∂R

]
e−βP2/2M

+ τT
P
M

·
∂Ψ

∂R
e−βP2/2M

+[
τ 2
T

(
v2
T

∂

∂R
·

∂

∂R
−

P
M

·
∂

∂R
P
M

·
∂

∂R

)
Φ

]
e−βP2/2M . (34)

In order to remove the secular divergences as t0 grows to infinity, we must impose ∂Ψ /∂t0 = 0. Moreover it is easy to
show that the eigenfunctions of LFP are the functions Hn exp(−βP2/2M) where Hn is the nth Hermite polynomial. Since the
Maxwellian is associated with a null eigenvalue, in order to require that the integral of the right hand side of Eq. (34) in dP
vanishes, we must impose that all terms multiplying the Maxwellian vanish, due to the orthogonality condition between
the eigenfunctions. We must then have

∂Φ

∂t1
= v2

T τT
∂

∂R
·
∂Φ

∂R
. (35)

We now can collect the results obtained so far to obtain the distribution function to order ϵ2
b as follows

fb(R, P; t) =

[
Φ − ϵbτT

P
M

·
∂Φ

∂R
+ ϵbΨ + O(ϵ2

b )
]
e−βP2/2M , (36)
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and from Eq. (26) it follows immediately

ρb(R, t) =

(
2Mπ

β

)3N/2 [
Φ + ϵbΨ + O(ϵ2

b )
]
. (37)

Then the time evolution for ρb is obtained restricting the different variables ti to the physical line as follows
∂

∂t
ρb(R, t)

=

(
∂

∂t0
+ ϵb

∂

∂t1

)(
2Mπ

β

)3N/2

[Φ(R; t1, . . .) + ϵbΨ (R; t1, . . .) + O(ϵ2
b )]t0=t,t1=ϵbt,...

= ϵb
∂

∂t1

(
2Mπ

β

)3N/2

Φ(R; t1, . . .)|t0=t,t1=ϵbt,... + O(ϵ2
b ). (38)

Then using Eq. (35) we finally find the diffusion equation

∂ρb(R, t)
∂t

=
v2
T

ξ

∂

∂R
·
∂ρb(R, t)

∂R
+ O(1/ξ 2

d ). (39)

If we had an external field Fe(R) = −∂Ve(R)/∂R acting on the Brownian solute particle then the initial Hamiltonianwould
have been

H =
P2

2M
+

N∑
i=1

p2i
2m

+ VN (rN ) + Vb(R, rN ) + Ve(R), (40)

and the Smoluchowski equation [13] becomes

∂ρb(R, t)
∂t

=
v2
T

ξ

∂

∂R
·

(
∂

∂R
− βFe(R)

)
ρb(R, t), (41)

which can also be written as
∂ρb(R, t)

∂t
=

v2
T

ξ

∂

∂R
e−βVe(R) ∂

∂R
eβVe(R)ρb(R, t), (42)

which shows immediately that ρb ∝ exp[−βVe(R)] is a stationary solution. So that calling

βv2
T/ξ = 1/γ , (43)

where γ is usually known as themobility, we can rewrite the Smoluchowski Eq. (41) as

∂ρb(R, t)
∂t

=
∂

∂R
·

(
∂

∂R
v2
T

ξ
−

Fe(R)
γ

)
ρb(R, t), (44)

which through Ito’s calculus [14] can be proved to be equivalent to the following stochastic differential equation, the
Langevin equation

γ Ṙ = Fe(R) +

√
2(γ vT )2/ξ ζ (t), (45)

where we denote with the dot a time derivative and ζ is a white noise. In this respect Eq. (43) is considered as a case of
fluctuation and dissipation theorem. It is then straightforward to show that for Fe = 0 we find ⟨[R(t) − R(0)]2⟩ = 6Dt with
D = v2

T/ξ the diffusion constant. Eq. (43) is known as the Einstein relation. The fluctuations of the particle as it undergoes
its random walk are related to the drag force (or dissipation of momentum) that the particle feels as it moves through the
solvent.

The Einstein relation gives an excellentway to determine Boltzmann’s constant experimentally.Watch a particle perform
a Brownian jitter. After time t , the distance traveled by the particle should be ⟨R2

⟩ = 2kBTt/πηΣ , where we have used the
Stokes formula γ = 3πηΣ to relate themobility to the viscosity η. This experimentwas done in 1908 by the French physicist
Jean Baptiste Perrin and won him the 1926 Nobel prize.

The full form of the Langevin equation is the one with the acceleration term. Then using the relation P/M = V = Ṙ
we should have in a less viscous fluid the equation MV̇ = −γV + Fe + γ

√
2Dζ for which we still find for F = 0,

⟨[R(t) − R(0)]2⟩ = 6Dt and ⟨V(t) · V(t)⟩ = 3Dγ /M at late times. This stochastic differential equation leads through Ito’s
calculus to the Fokker–Planck equation for fb(R, P; t). This Eq. (24) is sometimes also called the Klein and Kramers equation
and sometimes the Chandrasekhar equation.

4. The dynamical Monte Carlo method

We now want to show how the Smoluchowski evolution equation can be solved by stochastic means. In nature,
equilibrium distributions are generated by an evolution process. The Smoluchowski equation

∂ρb(R, t)
∂t

= ∇∇∇ · D(R) · [∇∇∇ − βFe(R)]ρb(R, t), (46)
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is the unique ‘‘master’’ equation which is:

• local in space
• goes to the Boltzmann distribution
• is Markovian

Here D(R) is, in general, a many-body tensor. In the previous section we saw that for the one-body problem it is sufficient to
take it as a constant diagonal tensor Dij = δijD and Fe = −∇∇∇Ve is the external force.

The asymptotic solution of ρb(R, t) will be ρ0(R) ∝ exp[−βVe(R)]. It is easy to see that this distribution satisfies
dρ0/dt = 0. If we assume the process is ergodic, since it is Markovian, this must be the only solution.

Let us define Green’s function: G(R,R0; t) = G(R0 → R; t) is the solution to Eq. (46) with the boundary condition at zero
time: G(R,R0; 0) = δ(R − R0). We can prove that the Green’s function satisfies detailed balance:

ρ0(R)G(R → R′
; t) = ρ0(R′)G(R′

→ R; t), (47)

for any value of t . To do that one writes the evolution equation for the symmetrized Green’s function: [ρ0(R)/ρ0(R′)]1/2
G(R → R′

; t), and sees that the right hand side of themaster equation is a Hermitian operator (see Appendix) which implies
that the symmetrized Green’s function is symmetric in R and R′. Then the random walk must eventually have ρ0 as its
equilibrium distribution [15]. G can be used for a transition probability and it will always give an acceptance probability of
unity [16]. Also it gives the interesting dynamics of a viscous particles always in contact with a heat bath.

The Smoluchowski equation leads to an interesting process but we can only calculate G in the short time limit. In the
following we explain a general procedure for devising an algorithm of sampling G. Let us calculate the moments of G,

In(R0, t) =

∫
dR (R − R0)nG(R0 → R; t). (48)

Take the time derivative of this equation, use the master equation on the right hand side, and integration by parts to get
a simple integral over G on the right hand side. We interpret this as an average ⟨. . .⟩. We assume there are no absorbing
surfaces of the random walks. Then,

dI0/dt = 0. (49)

This implies the normalization of G is always one, so the evolution describes a process which neither creates nor destroys
walks. The next moment is:

d[I1]k/dt = ⟨∇∇∇ jDkj + Dkj[Fe]jβ⟩, (50)

where we use the Einstein summation convention over the repeated indexes. Let us assume that Fe and ∇∇∇D are slowly
varying. Then we can replace them by the values at the initial point and integrate in time:

[Rt ]k = ⟨Rk⟩ = [R0]k + t⟨∇∇∇ jDkj(R) + Dkj(R)[Fe]j(R)β⟩g |R=R0+O(t2), (51)

where ⟨. . .⟩g is an average respect to the small time Green’s function Gg of Eq. (54). The equation for the second moment is:

dI2/dt = 2⟨Dii + (R − R0)i(∇∇∇ jDij + Dij[Fe]jβ)⟩, (52)

Integrating in time we then find

⟨(R − R0)2⟩ = 2⟨Dii(R)⟩g |R=R0 t + O(t2). (53)

The solution at small time is a Gaussian distribution with the above mean and covariance, namely

Gg (R,R0; t) =
e−(R−Rt )(4⟨Dii(R)⟩g |R=R0 t)

−1(R−Rt )√
4π⟨Dii(R)⟩g |R=R0 t

3N . (54)

According to the central limit theorem, Eqs. (51) and (53) are all that is needed to simulate the randomwalk if the time step
t is sufficiently small. The effect of the external field is to push the mean position of the Brownian particle away from its
current position. An outward push in directions where the external force is positive. The cage of the surrounding solvent is
also present whenever the diffusion tensor is R dependent.

5. A simple Monte Carlo simulation

For some simple forms of the external potential Ve the Smoluchowski equation admits an analytical solution. For example
the one-dimensional Smoluchowski equation in empty space (which requires the probability density to vanish at spatial
infinity faster than any inverse power of R) can be solved analytically for

• A linear potential Ve(x) = cx [17],

G(x, x0; t) =
e−

(x−x0+Dβct)2

4Dt
√
4πDt

. (55)
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• A harmonic potential Ve(x) = cx2/2 [18],

G(x, x0; t) =
e−

(
x−x0e

−2t/t̃
)2

2S(t)/βc

√
2πS(t)/βc

, (56)

S(t) = 1 − e−4t/t̃ ,

t̃ = 2/βcD.

In each one of these cases a proper change of time dependent coordinates is used to reduce the Smoluchowski equation to
the free diffusion equation.

Except for these simple cases in order to extract the evolution of the Green’s function wemust resort to a simulation. We
can then use the Markovian property as follows

G(R,R0; t − t0) =∫
Gg (R,Rn; t − tn)Gg (Rn,Rn−1; tn − tn−1) · · ·Gg (R1,R0; t1 − t0) dR1dR2 · · · dRn, (57)

where tn − tn−1 = τ is a small time step. At fixed R,R0, and t − t0 = (n + 1)τ we can then easily compute the Green’s
function G(R,R0; t) through a Monte Carlo integration sampling the successive Gg of Eq. (54) with the Box–Müller method
(see Ref. [15] section 3.1). For small enough τ we sampleGg (R1,R0; τ ) at fixedR0 generatingR1 thenwe sampleGg (R2,R1; τ )
generating R2 and so on for the remaining n − 2 factors ending with the generated Rn. We can then evaluate Gg (R,Rn; τ ) at
fixed R on Rn with a Monte Carlo integration to find G(R,R0; (n + 1)τ ). Clearly we will have to control the convergence of
the algorithm as τ gets smaller and smaller.

Eq. (57) suggests a path integral representation of the Green’s function solution of the Smoluchowski equation, namely

G(R,R0; t − t0) ∝

∫∫ R

R0

e−S DR(t), (58)

with an action

S =

∫ t

t0

dt ′
∑
k

[
Ṙk(t ′) − ⟨∇jDkj + Dkj[Fe]jβ⟩|R=R(t ′)

]2
/4⟨Dii⟩|R=R(t ′), (59)

where the dot denotes a total derivative with respect to time.
If the colloidal particle is initially localized around R̄0 =

∫
Rρb0(R) dR where we assume to be given ρb0(R) = ρb(R, t0)

we may want to find its average position at a later time

R̄(t) =

∫
RG(R,R0; t − t0)ρb0(R0) dRdR0. (60)

Relevant mesoscopic time scales are the time τb = 1/ξ over which the velocity of a Brownian particle relaxes. At room
temperature, for typical values of ξ , we find τb ≈ 10−9 s. Taking Σ ≈ 1 µm and M ≈ 10−21 kg [9,19] at room temperature
1/β ≈ 10−21 J we have vT ≈ 1 m/s and τT ≈ 10−6 s. Another relevant time scale is the time required for an isolated
Brownian particle to diffuse over a distance equal to its diameter τc = Σ2/D = ξβMΣ2

≈ 10−3 s > τT > τb. On the
microscopic level the shortest time scale is the Enskog mean collision time τE = 1/ΓE =

√
βm/π/4ρsσ

2g(σ ) where g(r)
(see Ref. [12] section 2.5) is the radial distribution function of the solvent. For a solvent such as water σ = Σ/104, and
τE ≈ 10−12 s. We already know that for t ≫ τE the Smoluchowski solution tends to the equilibrium Boltzmann distribution
which remains then stable on a large subsequent time scale. For example, for the one dimensional harmonic potential with
an initial Gaussian distribution centered on x0 we find

x̄(t) =

√
2x0e−βcDt√

(1 − e−2βcDt )[1 + coth(βcDt)]
, (61)

showing that the relaxation time is proportional to 1/βcD. In Fig. 1 we show a DynMC simulation of this case for βcD =

1 s−1, x0 = 2 m, and fixed τ = 0.001 s. Clearly at long enough times the solute particle will reach the equilibrium average
position

R̄e =

∫
Re−βVe(R) dR∫
e−βVe(R) dR

. (62)

The natural time scale over which the Smoluchowski evolution approach equilibrium is τb. What may be interesting to
observe is whether a proper control of the external fields allows the approach to equilibrium to happens more rapidly, thus
indicating a ‘‘persistence’’ of the Boltzmann distribution since early times. Clearly if Ve(R) = Ve(R) onemust end up in R̄e = 0,
by symmetry. For a single Brownian particle Eq. (51) becomes

Rτ ≃ R0 + τDβ⟨Fe⟩g |R=R0 , (63)
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Fig. 1. DynMC simulation for the one dimensional harmonic potential with an initial Gaussian distribution centered on x0 = 2 m with βcD = 1 s−1 and
τ = 0.001 s. In this case ⟨Fe(x)⟩g = −cx/(1 + βcDτ ). The continuous line is the exact analytical solution of Eq. (61) and the symbols are the results of the
simulation.

so that, if ⟨Fe⟩g = 0 we will have Rt = R0 at all time slices and

R̄(t) =

∫
RGg (R,R0; t − t0)ρb0(R0) dRdR0. (64)

We also immediately see that the persistence will be the more important the steeper the external potential approaches
its minimum. On an unstable equilibrium point of the potential (a maximum) the Green’s function will be swallowed and
eventually vanish in time.

Another interesting question is to determine the influence on the evolution of a spatially dependent diffusion coefficient
D(R) = v2

T/ξ (R) rather than a constant. From Eq. (51) we see that around an equilibrium point for the external potential we
will still have

Rτ ≃ R0 + τ ⟨∇∇∇D⟩g |R=R0 . (65)

We will call this the ‘‘cage effect’’ of the solvent on the evolution of the solute particle.
In addition to the empty space boundary conditions other kinds are possible. Calling I ≡ D(∇∇∇ − βFe) the flux operator

and ∂Ω the boundary of the space Ω where the solute particle is confined, the most general case are the radiation boundary
conditions, namely

n̂(R) · I(R)G(R,R0; t − t0) = ωG(R,R0; t − t0), R ∈ ∂Ω, (66)

where n̂(R) denotes a unit vector normal to the surface ∂Ω . The reactivity is measured by the ω parameter. For ω = 0 we
have a non-reactive or reflective boundary condition and for ω → ∞ we have a reaction boundary condition. So for a confined
case we have to choose the required boundary condition and then determine the proper small time step Green’s function
Gg . For example for the solution in half space X ≥ 0with a reaction boundary condition at X = 0, G((0, Y , Z),R0; t − t0) = 0,
we may use the image technique as follow

Gg (R,R0; τ ) =
e−[(X−Xt )2+(Y−Yt )2+(Z−Zt )2]/4⟨Dii(R)⟩g |R=R0 τ√

4π⟨Dii(R)⟩g |R=R0 t
3N −

e−[(X+Xt )2+(Y−Yt )2+(Z−Zt )2]/4⟨Dii(R)⟩g |R=R0 τ√
4π⟨Dii(R)⟩g |R=R0τ

3N . (67)

6. Conclusions

In conclusion, for a colloidal suspension made up of one solute big and heavy particle and N solvent small and light
particles we show how it is possible to reduce the Liouville dynamics to the Fokker–Planck dynamics by integrating over the
coordinates and momenta of the solvent particles. And how integrating furthermore on the momenta of the solute particle
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it is possible to reduce the Fokker–Planck equation to the Smoluchowski equation in the high friction regime. The two
successive reductions are based on a multiple time scale perturbation expansions. The first reduction was discovered in
the second half of last century and the second reduction at the end of last century a simple Dynamical Monte Carlo (DynMC)
algorithm is presented to solve the Smoluchowski equation for the Brownian motion of the solute particle in empty space
and a thought computer experiment illustrated.

We discuss how a steep external potential around its minimum will drive the approach to equilibrium more rapidly
than the natural time scale τb and the cage effect due to the solvent. In particular we present a DynMC simulation on the
harmonic case with a constant diffusion which well reproduces the exact analytical solution of the Smoluchowski equation.
The simplicity of the simulation makes it very useful for the treatment of problems which do not have an analytic solution.
Wepresented results for the average position of the solute particle as a function of time, but other quantities can be computed
as for example the full Green’s function starting from Eq. (57).

Wediscuss the proper boundary conditions to be imposed on the Smoluchowski second order partial differential equation
in order to have a radiation, reflective, or reaction boundary andwe give the small time expression for the Green’s function in
half space with a reaction boundary condition on the plane of separation using the image technique. An interesting progress
that could be made at the level of the Fokker-Planck description is to derive the expression for the friction coefficient for a
colloidal patchy sticky hard sphere in a solvent of isotropic sticky hard spheres, in the spirit of Refs. [20–36]. Or in a solvent
of penetrable square well particles, in the spirit of Refs. [37–42]. Or fluid mixtures adsorbed in porous disordered materials
with random confinement, as in Refs. [43,44].

We leave as an open problem the generalization of the present treatment to the case of a classical Brownian solute
macromolecule in a quantum solvent.

Appendix. Hermiticity of the Smoluchowski operator

We will work in empty space. Then we introduce the Smoluchowski operator LS(R) = ∇∇∇Dρ0(R)∇∇∇ρ−1
0 (R). For any two

functions g(R) and h(R) decaying to zero at spatial infinity faster than any inverse power we can write, using two times an
integration by parts,∫

dR
1

√
ρ0(R)

g(R)LS(R)
√

ρ0(R)h(R) =

−

∫
dR ρ0(R)∇∇∇

(
1

√
ρ0(R)

g(R)
)
D∇∇∇

1
√

ρ0(R)
h(R) =∫

dR
1

√
ρ0(R)

h(R)LS(R)
√

ρ0(R)g(R), (A.1)

which proves the Hermiticity, [
√

ρ0
−1LS

√
ρ0]

†
=

√
ρ0

−1LS
√

ρ0, of the Smoluchowski operator. So that, from the Chapman–
Kolmogorov relation

G(R0 → R; t) =

∫
dR1 G(R1 → R; τ )G(R0 → R1; t − τ ), (A.2)

follows
∂

∂t
G(R0 → R; t) = LS(R)G(R0 → R; t)

=

∫
dR1G(R1 → R; τ )LS(R1)G(R0 → R1; t − τ )

=

∫
dR1

G(R0 → R1; t − τ )
ρ0(R1)

LS(R1)ρ0(R1)G(R1 → R; τ )

τ→t
−→

1
ρ0(R0)

LS(R0)ρ0(R0)G(R0 → R; t), (A.3)

where in the last limit we used the initial condition G(R0 → R1; 0) = δ(R0 − R1). And, using the symmetry of the left
hand side of Eq. (A.3) respect to exchange of R0 ↔ R, we finally find the detailed balance relation ρ0(R0)G(R0 → R; t) =

ρ0(R)G(R → R0; t).
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