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a b s t r a c t

We discuss the first three well known moment charge–charge sum-rules for a general
ionic liquid. For the special symmetric case of the Restricted Primitive Model, Das, Kim,
and Fisher (2011) has recently discovered, through Monte Carlo simulations, that the
Stillinger–Lovett or second-moment sum-rule fails at criticality. We critically discuss a
possible explanation for this unexpected behavior. On the other hand the fourth-moment
sum-rule turns out to be able to account for the results of the simulations at criticality.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that among all possible long-range pair-potentials, it is only in the Coulomb case that the decay law
of the correlations faster then any inverse power is compatible with the structure of equilibrium equations (such as the
Born–Green–Yvon). Under the exponential clustering hypothesis for charged fluids, a number of exact sum-rules on the
correlation functions can be obtained [1]. Of particular relevance is the Stillinger–Lovett second-moment charge–charge
sum-rulewhich is equivalent to the property that the inverse dielectric function vanishes in the limit of small wavenumbers.
When this condition holds the fluid completely shields any external charge inhomogeneity and behaves as a conducting
medium.

In a recent work Das, Kim, and Fisher [2,3] found out, through finely discretized grand canonical Monte Carlo simulations,
that in the Restricted Primitive Model (RPM) of an electrolyte, the second- and fourth-moment charge–charge sum-rules,
typical for ionic fluids, are violated at criticality. For a 1:1 equisized charge-symmetric hard-sphere electrolyte their grand
canonical simulations, with a new finite-size scaling device, confirm the Stillinger–Lovett second-moment sum-rule except,
contrary to current theory [4], for its failure at the critical point (Tc, ρc). Furthermore, the k4 term in the charge–charge
correlation or structure factor SZZ (k) expansion is found to diverge like the compressibilitywhen T → Tc at ρc . These findings
are in evident disagreement with available theory for charge-symmetric models and, although their results are qualitatively
similar to behavior expected for charge-asymmetric systems [4], even a semiquantitative understanding has eluded them.

Starting from the Ornstein–Zernike equation and extending at all densities the small density diagrammatic [5] property
for the partial direct correlation functions of behaving as 1/r in the r → ∞ limit, it is possible to arrive quickly to the
second- and fourth-moment sum rules even if the fourth-moment onewill not be expressed in terms of just thermodynamic
functions.

The second- and fourth-moment sum-rules are rigorously derived starting from the Born–Green–Yvon equations and
the exponential clustering hypothesis by Suttorp and van Wonderen [6–8] for a thermodynamically stable ionic mixture
made of pointwise particles of charges all of the same sign immersed in a neutralizing background, the ‘‘Jellium’’. The same
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sum-rules must hold also when we allow in the ionic mixture the presence of mobile charges of both signs, which requires
to consider a pair-potential regularization in order to prevent opposite charges collapse.

In this work we critically discuss the numerical findings of Das, Kim, and Fisher [2] at the light of the above mentioned
analytical work of Suttorp and van Wonderen [6–8] and of a recent result of Santos and Piasecki [9] proving the long range
behavior of the n-body correlation functions of a general fluid at his gas–liquid critical point.

2. The ionic fluids model

Amulti-component ionicmixture of an electrolyte ismade ofmobile chargeswhoseµ component (the particles of species
µ) has molar fraction xµ and charge zµe, here e is the unit of charge and zµ are integer numbers. So we may, in general, have
charges of both signs. One is generally interested in studying a neutral state (sincematter aroundus is neutrally charged). This
can be obtained in the event that

∑
µxµzµ = 0. Otherwise is necessary the addition of a neutralizing uniform background of

charge density−ρe
∑

µxµzµ, with ρ the number density of the system of charges. A particularly simple case id the Restricted
PrimitiveModel (RPM)wherewe have only two componentswith x1 = x2 = 1/2 and z1 = −z2 = 1 (without a background).

The Hamiltonian of amulti-component ionic mixture consisting of s components, confined in a regionΩ ⊂ R
3 of volume

V , is

H =

N∑
i=1

p2i
2mαi

+ U(r1, . . . , rN ), (2.1)

U =
1
2

′∑
i,j

zαizαjvαiαj (|ri − rj|), (2.2)

with p = |p| and the pair-potential

vµν(r) = vc(r) + vsr
µν(r), (2.3)

where r = |r|, vc is the bare Coulomb potential

vc(r) =
e2

V

∑
k(̸=0)

4π
k2

eik·r, (2.4)

and vsr is a short-range regularization assumed integrable onR3 which includes the local repulsion effect needed to enforce
thermodynamic stability [10] when we allow for the presence of particles of opposite charge in the mixture. A first soft
regularization can be chosen as

vsr
µν(r) = −

e2

r
e−r/dµν , (2.5)

where the lengths dµν control the exponential decay at large distances. A second regularization amounts to introduce hard-
cores, namely

vsr
µν(r) =

{
∞ r < σµν

0 r > σµν,
(2.6)

where σµν = (σµ + σν)/2 and σµ is the diameter of the hard-sphere particles of species µ. In Eq. (2.4) we used periodic
boundary conditions just to stress the fact that we are interpreting the Monte Carlo simulations of Das, Kim, and Fisher [2],
but of course our theoretical arguments apply to the continuous system as well.

The system contains Nµ particles of species µ. We will denote by q = (α, r) the species α and the position r of a particle
of this species. The particle i of species µ has mass mµi , charge zµie with e the unit of charge and zµi = 0, ±1, ±2, . . . ,
position ri, and momentum pi. The symbol

∑
′ means that one should sum over all particles under the restriction i ̸= j

when αi = αj. Periodic boundary conditions have been assumed in the definition of the pair-potential. Each charge in the
region Ω is neutralized by a uniform background of opposite charge density. On account of the presence of the neutralizing
background the term k = 0 is excluded in Eq. (2.4). The potential energy of Eq. (2.2) is defined up to an additive constant, the
Madelung constant

∑
iz

2
αi
limr→0[v

c(r)− e2/r]/2, which takes into account the interaction of a particle with its own images,
and which becomes important in a grand-canonical calculation. We will generally use a Greek index to denote the species
label and a Roman index to denote the particle label.

Moreover we impose the constraint

Q = Ne
s∑

µ=1

xµzµ = constant, (2.7)

where N =
∑

µNµ is the total number of particles and xµ = Nµ/N are the molar fractions of particles of species µ. We also
have that ρ = N/V is the particles density and ρµ = ρxµ are the partial densities of the ionic mixture. The neutralizing
background has an uniform charge density −eρZ with ρZ = ρ

∑
µxµzµ.
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Table 1
Critical point estimates for the RPMmodel from several computer simulation
studies. The reduced temperature is T ∗

= kBTσ/e2 , with kB Boltzmann con-
stant, and the reduced density is ρ∗

= ρσ 3 .

Reference Year T ∗
c ρ∗

c

Valleau [12] 1991 0.070 0.07
Panagiotopoulos [13] 1992 0.056 0.04
Orkoulas [14] 1994 0.053 0.025
Caillol [15,16] 1997 0.0488(2) 0.080(5)
Orkoulas [17] 1999 0.0490(3) 0.070(5)
Yan [18] 1999 0.0492(3) 0.062(5)
Caillol [19] 2002 0.04917(2) 0.080(5)

The 1:1 equisized charge-symmetric hard sphere electrolyte, the RPMmodel, is obtained as the particular casewith s = 2,
x1 = x2 = 1/2, σ1 = σ2 = σ , z1 = −z2 = 1. So that Q = 0 and the neutralizing background vanishes.

The RPM has been carefully studied through several computer simulations and the critical point of the gas–liquid
coexistence has been given various estimates during the years as summarized in Table 1. On the coexistence spinodal line
the isothermal compressibility χT = (∂ρ/∂p){Nµ},T/ρ → ∞, with p the pressure of the mixture. On approaching the
critical point, the amplitude of density fluctuations increases and local fluctuations become correlated over increasingly
long distances. Anomalies in the intensity of light scattered from a fluid near its critical point, particularly the phenomenon
known as critical opalescence, were first studied theoretically by Ornstein and Zernike as far back as 1914 [11].

3. The moment sum-rules

While the thermodynamic stability of the fluid model ensures the existence of the correlation functions in the thermo-
dynamic limit,

ρ(n)(q1, . . . , qn) = ρ1 · · · ρn g (n)
α1...αn

(r1, . . . , rn)

=

⟨
′∑

i1,...,in

δ(r1 − ri1 )δα1,αi1
· · · δ(rn − rin )δαn,αin

⟩
, n = 1, 2, . . . , (3.1)

where ⟨. . .⟩ is a thermal average defined for an infinitely extended system, sum-rules are exact relationships that the
correlation functions must obey and can be derived from the microscopic constituent equations like for example the Born–
Green–Yvon (BGY) hierarchy [5] under appropriate plausible assumptions.

Sometimes it proves convenient to introduce another set of correlation functions, namely the Ursell’s functions h(n),

g (2)
α1α2

(r1, r2) = h(2)
α1α2

(r1, r2) + 1, (3.2)

g (3)
α1α2α3

(r1, r2, r3) = h(3)
α1α2α3

(r1, r2, r3) + h(2)
α1α2

(r1, r2) + h(2)
α1α3

(r1, r3) + h(2)
α2α3

(r2, r3) + 1, (3.3)

g (4)
α1α2α3α4

(r1, r2, r3, r4) = h(4)
α1α2α3α4

(r1, r2, r3, r4) + h(3)
α1α2α3

(r1, r2, r3) + h(3)
α1α2α4

(r1, r2, r4)

+ h(3)
α1α3α4

(r1, r3, r4) + h(3)
α2α3α4

(r2, r3, r4)

+ h(2)
α1α2

(r1, r2)h(2)
α3α4

(r3, r4) + h(2)
α1α3

(r1, r3)h(2)
α2α4

(r2, r4)

+ h(2)
α1α4

(r1, r4)h(2)
α2α3

(r2, r3) + h(2)
α1α2

(r1, r2)

+ h(2)
α1α3

(r1, r3) + h(2)
α1α4

(r1, r4)

+ h(2)
α2α3

(r2, r3) + h(2)
α2α4

(r2, r4) + h(2)
α3α4

(r3, r4) + 1, (3.4)
. . .

It has been shown by Alastuey and Martin [20] that among all possible long-range potentials, it is only the Coulomb case
that a decay law of the Ursell correlations faster than any inverse power is compatible with the structure of equilibrium BGY
equations. We may then assume, at least far away from a critical point, that these Ursell functions tend to zero faster than
any power r−m

ij with integer m, if the separation rij between the positions ri and rj goes to infinity. This assumption is the
usual exponential clustering hypothesis for charged systems.

Introducing the notation
∫
dq . . . =

∫
dr

∑s
α=1 . . . we must have the following normalization properties for the two

sets,

lim
N→∞

1
Nn

∫
dq1 . . . dqn ρ(n)(q1, . . ., qn) = 1, (3.5)

lim
N→∞

1
Nn

∫
dq1 . . . dqn ρ1 · · · ρnh(n)

α1 ... αn
(r1, . . ., rn) = 0. (3.6)
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In the following we will drop the superscript on the correlation functions when not leading to confusion. Note also that
ρ(q) =

⟨∑
iδ(r − ri)δα,αi

⟩
= ρα in a homogeneous mixture whereas h(2)

α1α2
(r1, r2) = hα1α2 (|r1 − r2|) in a homogeneous and

isotropic mixture.

3.1. The Ornstein–Zernike approach

The Ornstein–Zernike (OZ) equation in reciprocal-space for a fluid mixture is given by

ĥµν(k) = ĉµν(k) + ρ
∑

λ

xλĉµλ(k)ĥλν(k), (3.7)

where k = |k|, ĥµν(k) is the Fourier transform of the partial total correlation functions hµν(r) = gµν(r) − 1 with gµν the
partial radial distribution functions

gµν(r) =
1

Nρxµxν

⟨
′∑
i,j

δµ,αiδν,αjδ(r − ri − rj)

⟩
, (3.8)

and ĉµν(k) are the Fourier transform of the partial direct correlation functions [5].
The partial structure factors are defined as

Sµν(k) = xµδµν + ρxµxν ĥµν(k). (3.9)

Given a partial function fµν we can now introduce the following number–number, number–charge, and charge–charge
functions⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

fNN =

∑
µ,ν

fµν

fNZ =

∑
µ,ν

zµfµν

fZZ =

∑
µ,ν

zµzν fµν

(3.10)

where in the RPM case fNZ = 0.
We can moreover introduce the following definitions⎧⎪⎨⎪⎩

h̃µν =
√
xµxν ĥµν

c̃µν =
√
xµxν ĉµν

S̃µν = Sµν/
√
xµxν = δµν + ρh̃µν

(3.11)

with which the OZ equation can be written in a simple matrix form

S̃ − I = ρS̃c̃, (3.12)

where I is the identity matrix. Eq. (3.12) can also be rewritten as follows

S̃ = (I − ρc̃)−1. (3.13)

It is natural [5] to separate the direct correlation functions into a short-range and a Coulombic part

ĉµν(k) = ĉsrµν(k) −
4πβzµzνe2

k2
, (3.14)

where ĉsrµν(k) is a regular function in the k → 0 limit. We then see, after some algebra, that in the small k limit, it must be
SNN ∼ k0, SNZ ∼ k2, and SZZ ∼ k2. Moreover, It is a simple algebraic task, starting from the matrix form S̃ = k2(k2I−ρk2c̃)−1,
to show that for the RPM case

SZZ (k) =
k2

(kD/z̄2)2
+

(ρ

4
ĉsrZZ (0) − 1

) k4

(kD/z̄2)4
+ O(k6), (3.15)

where kD =

√
4πβρ z̄22e2 is the Debye wave-number with z̄22 =

∑
µxµz2µ. In the RPM z̄22 = 1. Since we have SZZ (k) =∑

µxµz2µ + ρ
∑

µ,νxµxνzµzν ĥµν(k), using spherical symmetry, from Eq. (3.15) follow the following first three charge–charge
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moment sum-rules

ρ
∑
µ,ν

xµxνzµzν

∫
dr hµν(r) = −z̄22 (3.16)

ρ
∑
µ,ν

xµxνzµzν

∫
dr r2hµν(r) = −

6
(kD/z̄2)2

(3.17)

ρ
∑
µ,ν

xµxνzµzν

∫
dr r4hµν(r) = −

120
(kD/z̄2)4

(
1 −

ρ

4
ĉsrZZ (0)

)
. (3.18)

The first identity, the zeroth-moment sum-rule, is a consequence of the normalization conditions of the correlation functions
(3.8)

ρ
∑

µ

xµzµ

∫
dr hµν(r) =

∑
µ

zµ
⟨NµNν⟩ − ⟨Nµ⟩⟨Nν⟩ − δµν⟨Nµ⟩

⟨Nν⟩
= −zν (3.19)

and reflects internal screening (or bulk elecroneutrality). The second, the second-moment sum-rule, is commonly known as
the Stillinger–Lovett (SL) condition [21] and reflects external screening. The third is the fourth-moment sum-rule.

In view of the exponential clustering expected to hold in ionic fluids away from criticality (see next section) we may
assume the following small k expansions

SNN (k)/SNN (0) = 1 +

∑
p≥1

(−)pξ 2p
N,p(T , ρ)k2p, (3.20)

SZZ (k)/z̄22 = 0 + ξ 2
Z,1k

2
−

∑
p≥2

(−)pξ 2p
Z,p(T , ρ)k2p, (3.21)

where working in the grand-canonical ensemble [5] SNN (0) = χT/χ
0
T with χ0

T = β/ρ the isothermal compressibility of the
ideal gas.

Das, Kim, and Fisher [2] has calculated through grand-canonical Monte Carlo simulations the second S2 and fourth S4
moments: SZZ (k)/z̄22 = 0+S2k2−S4k4+· · · for the RPM, and found a deviation of about 16% on the SL condition, S2 = 1/k2D, at
criticality. Moreover S4 appears to diverge to+∞ upon approaching the RPM critical point. At criticality, density correlations
are long ranged and [11] SNN (k) ∼ 1/k2−η for k → 0with 0 < η < 1 the anomalous critical-point decay exponent [22] (equal
to zero in the Ornstein–Zernike theory) [23]. Equivalently, in real-space, in three dimensions,

∑
µ,νxµxνhµν(r) ∼ 1/r1+η for

r → ∞. Then according to Proposition 1 of Ref. [24] we cannot say anything about the SL sum-rule; the fact that the SL sum
rule is found to failmeans that the density correlationsmust decay as 1/r5 or slower. Evidently the development of clustering
or association amongst the particles of the mixture upon approaching the critical point inhibits the external screening. Or in
other words, the diverging density fluctuations that characterize criticality destroy perfect screening at (Tc, ρc).

3.2. The Born–Green–Yvon approach [6–8]

Suttorp and van Wonderen [6] study a thermodynamically stable ionic mixture with pointwise mobile charges all of
the same sign (zµ ≤ 0 for all µ) with the pair-potential of Eq. (2.3) without the short-range term vsr . Starting from the
Born–Green–Yvon hierarchy [5] and using the hypothesis of exponential clustering of the Ursell’s functions they are able
to show that independently of the statistical ensemble used to describe the ionic liquid the internal screening and SL
conditions (3.16)–(3.17) hold. In order to make progress for subsequent relationships one has to specify the ensemble. In a
grand-canonical ensemble with the constraint (2.7) the independent variables are β , V , the s − 1 chemical potentials, and
q = Q/V . They are able to prove the following additional sum-rules for the partial pair Ursell’s functions

ρ
∑
µ,ν

xµxν

∫
dr hµν(r) =

2
3

β

ρ

∂ρ

∂β
− 2

q
ρ

∂ρ

∂q
+ 1, (3.22)

ρ
∑
µ,ν

xµxνzµ

∫
dr r2hµν(r) = −

6
(kD/z̄2)2

e
∂ρ

∂q
, (3.23)

ρ
∑
µ,ν

xµxνzµzν

∫
dr r4hµν(r) = −

120
(kD/z̄2)4

e2βρ

q
∂p
∂q

, (3.24)

where p is the pressure and in the partial derivatives all others independent variables are kept constant. For example, we
see that from Eq. (3.22) follows

SNN (0) =
χT

χ0
T

=
2
3

β

ρ

∂ρ

∂β
+ 2

(
1 −

q
ρ

∂ρ

∂q

)
. (3.25)
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Fig. 1. Sketch of p̃(q) near q = 0 upon approaching criticality.

For an ionic mixture with positive and negative mobile charges, made thermodynamically stable by the addition of the
short-range pair-potential vsr , the zeroth-moment of Eqs. (3.22) and (3.16) clearly continue to hold as well as the second-
moment SL sum-rule of Eqs. (3.18)–(3.23) as it is shown in Ref. [24]. Note that in order to derive the SL sum-rule a weaker
condition than the exponential clustering hypothesis is actually needed as shown in Ref. [24]. That is, one just needs to
require a certain short-range behavior of the Ursell functions. For the fourth-moment condition of Eq. (3.24) we also expect
there to be no effect due to the short-range regularization as shown in Refs. [25–27] and in Appendix. So we can say that the
Suttorp and vanWonderen sum-rules hold generally for the more general ionic liquid model of a mixture with positive and
negative mobile charges opportunely regularized.

On the other hand from the work of Santos and Piasecki [9] follows that the Ursell functions of any order have a long-
range behavior on a critical point, thus violating the exponential clustering hypothesis necessary to prove the Suttorp and
van Wonderen sum rules. In this sense the numerical result found by Fisher et al. of the violation of the second and fourth
moment of the charge–charge structure factor of the Restricted Primitive Model at criticality, is not in contradiction with
the result of Suttorp and van Wonderen. But is instead telling us something that goes beyond the analysis of the sum-rules
based on the exponential clustering hypothesis.

Note that we can write the partial derivative on the right hand side of Eq. (3.23) as follows

∂ρ

∂q
=

∂(ρ, µ1, T , V )
∂(q, µ1, T , V )

=
∂(ρ, µ1, T , V )
∂(N1,N2, T , V )

∂(N1,N2, T , V )
∂(q, µ1, T , V )

=
1
V

[(
∂µ1

∂N2

)
N1

−

(
∂µ1

∂N1

)
N2

]
T ,V

[(
∂N1

∂q

)
µ1

(
∂N2

∂µ1

)
q
−

(
∂N1

∂µ1

)
q

(
∂N2

∂q

)
µ1

]
T ,V

. (3.26)

So that for the symmetric RPM where µ1 = µ2, using the 1 ↔ 2 symmetry, we find ∂ρ/∂q = 0, since the first Jacobian
vanishes. Whereas, for a one component system, where q = eρ, we find ∂ρ/∂q = 1/e.

From the analysis of Suttorp and van Wonderen we also deduce that

z̄22S4 =

(
z̄2
kD

)4 e2βρ

q
∂p
∂q

= −

(
z̄2
kD

)4

e2βρ
∂2p̃
∂q2

, (3.27)

where p̃ = p − qµ̃q with µ̃q = −∂ p̃/∂q the Lagrange multiplier which takes into account of the constraint (2.7). The RPM
results of Das, Kim, and Fisher [2] show how (kD/z̄2)4z̄22S4 → 0 for ρ → 0 (their Fig. 3). This is easily explained observing
that as ρ → 0 we must have βp → ρ so that from Eq. (3.27) follows

(kD/z̄2)4z̄22S4 → e2
∂ρ2

∂q2
= 0. (3.28)

This result also implies that, in view of Eq. (3.18), ρ ĉsrZZ (0) → 4.
Moreover from Das, Kim, and Fisher [2] Fig. 4, follows that in the RPM we must have

lim
q→0

∂2p̃
∂q2

= −∞ (3.29)

when one approaches the critical point. Notice that by charge symmetry we must have that both p and p̃ are even functions
of q. So a sketch of p̃(q) near q = 0 must look as in Fig. 1. The figure aims to give a very qualitative sketch of p̃(q) only
in a very narrow neighborhood of q = 0. Away from criticality we must have ∂p/∂q|q=0 = 0 and S4 is finite. But near
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criticality ∂p/∂q|q=0 > 0 and S4 diverges. This means that near criticality there is a non negligible variation of the pressure
of the fluid upon switching on a charge asymmetry (q ̸= 0) keeping overall neutrality with the neutralizing background.
So notwithstanding the fact that the exponential clustering hypothesis breaks down near criticality the results of Das, Kim,
and Fisher [2] do not tell us anything about the failure of the fourth-moment sum-rule. On the other hand their Figs. 1 and
2 indicate the failure of the SL condition upon approaching the critical point, as already observed in the previous section.

4. Conclusions

We studied a general ionic mixture with particles of different mass, diameter, and charge immersed in a neutralizing
background so that the mixture is globally neutral. When we allow for the presence of mobile charges of opposite sign we
need to add either a soft- or a hard-core regularization to the pair-potential in order tomake themixture thermodynamically
stable.

We derived a series of sum-rules on the first three moments of the charge–charge correlation functions starting from
the Ornstein–Zernike theory [5]. Then we showed that the sum-rules derived by Suttorp and van Wonderen [6] for an ionic
mixturemade of particles all of the same sign immersed in a neutralizing background remain valid if one allows the particles
to carry charges of opposite sign and adds a soft or a hard-core repulsion in order to ensure thermodynamic stability.
In particular they remain valid for the symmetric RPM case when the neutralizing background vanishes. Suttorp and van
Wonderen derivation relies on the assumption of the exponential clustering in the mixture [1].

We interpreted recent results of Das, Kim, and Fisher [2] reporting the failure of the charge–charge second-moment
sum-rules for the RPM of a ionic liquid at criticality and the divergence of the charge–charge fourth-moment at criticality.
In particular the divergence of the fourth moment S4 at the critical point of the RPM seems to still be in agreement with
the fourth-moment sum-rule (even if the exponential clustering of the Ursell’s function breaks down there as shown in
Ref. [9]) if one assumes that at criticality there is a non negligible variation of the pressure of the fluid upon switching on
a charge asymmetry (q ̸= 0) keeping overall neutrality with the neutralizing background. The observed violation of the
second-moment sum-rule on the other hand seems to indicate that at criticality the clustering phenomenon occurring in
the ionic mixture is responsible for the break down of the external screening and the system behaves as an insulator [1].
At criticality we do not have anymore an exponential or short-range clustering but a long-range clustering as shown by the
results of Ref. [9].

Our results could be helpful to a better understanding of Refs. [28,29] and Refs. [30–32]. Moreover our results could give
some insights to study the critical behavior of more complex fluids such as the ones described in Refs. [33–45].
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Appendix. Invariance in form of the moment sum-rules under the addition of a hard-core

Let us call PWE the point-wise particle electrolyte considered by Suttorp and vanWonderen [6] and HSE the hard-sphere
electrolyte obtained by our model of Eqs. (2.1)–(2.6). The configurations space of PWE is ΩN whereas the one of HSE is
ON = {R ≡ (r1, . . . , rN ) ∈ ΩN

| ∀i, j ̸= i |ri − rj| > σαiαj} ⊂ ΩN . In particular it is well known from electrostatics that
HSE is equivalent to the PWE restricted to the configuration space ON . We then conclude that the sum-rules of Eqs. (3.23)
and (3.24) must hold also for the HSE. In any case the thermodynamic quantities on both sides of the sum-rule will remain
unchanged after the restriction. Infact, calling the complementary set Oc

N = ΩN
− ON = {R ≡ (r1, . . . , rN ) ∈ ΩN

| ∃i, j ̸=

i |ri − rj| ≤ σαiαj} we have for a generic thermal average of an everywhere finite physical observable

⟨. . .⟩PWE =

∫
ΩN . . . e−βUdR∫

ΩN e−βUdR
=

∫
ON

. . . e−βUdR +
∫
Oc

N
. . . e−βUdR∫

ON
e−βUdR +

∫
Oc

N
e−βUdR

=

∫
ON

. . . e−βUdR
(
1 +

∫
Oc

N
. . . e−βUdR/

∫
ON

. . . e−βUdR
)

∫
ON

e−βUdR
(
1 +

∫
Oc

N
e−βUdR/

∫
ON

e−βUdR
)

→

∫
ON

. . . e−βUdR∫
ON

e−βUdR
= ⟨. . .⟩HSE, (A.1)

in the thermodynamic limit Ω → R
3 and N = ρV . Since the measure of ON is an infinite of higher order than the measure

of Oc
N . This does not mean of course that the Ursell functions themselves will be equal for the PWE and the HSE and in fact

they will be different generally.
This argument suggests that Suttorp and van Wonderen analysis [6] continues to hold also for an ionic mixture with

mobile charges of opposite sign opportunely regularized. This has recently been proved semi-heuristically by Alastuey and
Fantoni [27] for the fourth moment of the charge–charge structure factor of such an ionic mixture.
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