
Available online at www.sciencedirect.com

Physica A 332 (2004) 349–359
www.elsevier.com/locate/physa

Direct correlation functions of the
Widom–Rowlinson model

R. Fantoni∗, G. Pastore
Dipartimento di Fisica Teorica dell’ Universit�a and Istituto Nazionale di Fisica della Materia,

Strada Costiera 11, Trieste 34014, Italy

Received 8 September 2003

Abstract

We calculate, through Monte Carlo (MC) numerical simulations, the partial total and direct
correlation functions of the three dimensional symmetric Widom–Rowlinson mixture. We .nd
that the di/erences between the partial direct correlation functions from simulation and from
the Percus–Yevick approximation (calculated analytically by Ahn and Lebowitz) are well .tted
by Gaussians. We provide an analytical expression for the .t parameters as function of the
density. We also present MC simulation data for the direct correlation functions of a couple of
non-additive hard sphere systems to discuss the modi.cation induced by .nite like diameters.
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1. Introduction

Fluid binary mixtures may exhibit the phenomenon of phase separation. The simplest
system able to undergo a demixing phase transition is the model introduced by Widom
and Rowlinson [1] some years ago. Consider a binary mixture of non-additive hard
spheres (NAHS). This is a Auid made of hard spheres of species 1 of diameter R11 and
number density �1 and hard spheres of species 2 of diameter R22 and number density
�2, with a pair interaction potential between species i and j that can be written as
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follows:

vij(r) =

{ ∞; r ¡Rij ;

0; r ¿Rij ;
(1)

where R12=(R11+R22)=2+�. The Widom–Rowlinson (WR) model is obtained choosing
the diameters of the spheres equal to 0,

R11 = R22 = 0 ; (2)

so that there is no interaction between like spheres and there is a hard core repulsion of
diameter � between unlike spheres. The symmetry of the system induces the symmetry
of the unlike correlations [h12(r) = h21(r); c12(r) = c21(r)]. The WR model has been
studied in the past by exact [2] and approximate [3–6] methods and it has been shown
that it exhibits a phase transition at high density. More recently, additional studies
have appeared and theoretical predictions have been con.rmed by Monte Carlo (MC)
computer simulations [7–10].
In this paper we will study the three-dimensional symmetric Widom–Rowlinson mix-

ture for which �1 = �2 = �=2, where � is the total number density of the Auid, and

h11(r) = h22(r) ; (3)

c11(r) = c22(r) : (4)

Moreover, we know from (1) that the partial pair correlation function gij=hij+1 must
obey

gij(r) = 0 for r ¡Rij : (5)

Our main goal is to focus on the direct correlation functions (dcf) of the WR
model as a simpli.ed prototype of NAHS systems. The reasons to focus on the
dcf’s is twofold: on the one hand, they are easier functions to model and .t. On
the other hand, they play a central role in approximate theories like the Percus–
Yevick approximation or mean spherical approximation (MSA) [11]. We hope that
a better understanding of the dcf’s properties in the WR model, could help in devel-
oping accurate analytical theories for the NAHS systems.
We calculate through MC simulations the like g(MC)11 (r) and unlike g(MC)12 (r) pair

distribution functions for a system large enough to allow a meaningful determination of
the correspondent partial dcf c(MC)11 (r) and c(MC)12 (r), using the Ornstein–Zernike equation
[11]. We compare the results for the unlike dcf with the results of the Percus–Yevick
(PY) analytic solution found by Ahn and Lebowitz [3,4]. In the same spirit as the work
of Grundke and Henderson [12] for a mixture of additive hard spheres, we propose a
.t for the functions �c11(r) = c

(MC)
11 (r) and �c12(r) = c

(MC)
12 (r) − c(PY )12 (r).

At the end of the paper, we also show the results from two MC simulations on
a mixture of NAHS with equal diameter spheres R11 = R22 = R12=2 and on one with
di/erent diameter spheres R11 = 0 and R22 = R12 to study the e/ect of non zero like
diameters on the WR dcf’s.
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2. MC simulation and PY solution

The MC simulation was performed with a standard NVT metropolis algorithm [13]
using N =4000 particles. Linked lists [13] have been used to reduce the computational
cost. We generally used 5:2×108 MC steps where one step corresponds to the attempt
to move a single particle. The typical CPU time for each density was around 20 h
(runs at higher densities took longer than runs at smaller densities) on a Compaq
Alpha Server 4100 5/533.
We run the simulation of WR model at 6 di/erent densities O�= ��3 = 0:28748, 0.4,

0.45, 0.5, 0.575, and 0.65. Notice that the most recent computer simulation calculations
[9,10] give consistent estimates of the critical density around 0.75. Our data at the
highest density (0.65) are consistent with a one-phase system.
The MC simulation returned the gij(r) over a range not less than 9:175� for the dens-

est system. In all the studied cases, pair distribution functions attained their asymptotic
value well inside the maximum distance they were evaluated. Thus, it has been possible
to obtain accurate Fourier transforms of the correlation functions [hij(k)]. To obtain
the cij(r) we used Ornstein–Zernike equation as follows:

c11(k) =
h11(k)[1 + (�=2)h11(k)] − (�=2)h212(k)

[1 + (�=2)h11(k)]2 − [(�=2)h12(k)]2
; (6)

c12(k) =
h12(k)

[1 + (�=2)h11(k)]2 − [(�=2)h12(k)]2
: (7)

From the hij(k) and cij(k), we get the di/erence �ij(k) = hij(k) − cij(k) which is the
Fourier transform of a continuous function in real space. So it is safe to transform
back into real space [to get �ij(r)]. Finally, the dcf’s are obtained from the di/erences
hij(r) − �ij(r).
While for a system of NAHS in three-dimensions a closed-form solution to the PY

approximation is still lacking, Ahn and Lebowitz have found an analytic solution of
this approximation for the WR model (in one and three dimensions).
The PY approximation consists of the assumption that cij(r) does not extend beyond

the range of the potential

cij(r) = 0 for r ¿Rij : (8)

Combining this with the exact relation (5) and using the Ornstein–Zernike equation, we
are left with a set of equations for cij(r) and gij(r) which have been solved analytically
by Ahn and Lebowitz.
Their solution is parameterized by a parameter z0. They introduce the following two

functions of z0 (which can be written in terms of elliptic integrals of the .rst and third
kind):

I1 ≡
∫ ∞

z0

dz

z
√
z3 + 4z=z0 − 4

; (9)

I2 ≡
∫ ∞

z0

dz√
z3 + 4z=z0 − 4

(10)
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Fig. 1. Top panel: partial dcf’s obtained from the MC simulation (points) with the c(PY )12 (r) obtained from the
PY approximation (line) at a density ��3=0:28748. Bottom panel: partial pair distribution functions obtained
from the MC simulation compared with the ones obtained from the PY approximation at the same density.
The open circles and the dashed line: the like correlation functions. Closed circles and the continuous line:
the unlike correlation functions.

and de.ne z0 in terms of the partial densities �1 and �2 as follows:

� ≡ 2�
√
�1�2 =

(I2=2)3

cos I1
: (11)

They then de.ne the following functions (note that in the last equality of Eq. (3.76)
in Ref. [4] there is a misprint):

Oc12(k)≡ − 2√
�1�2

√
1 + Y

z30Y 3 + 4Y + 4

×sin


1
2

√
z30Y 3 + 4Y + 4

∫ ∞

1

dz

(z + Y )
√
z30z3 + 4z − 4


 ; (12)
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Fig. 2. Same as in Fig. 1 at a density ��3 = 0:4.

Oh12(k) ≡ Oc12(k)[1 − �1�2 Oc12(k)] ; (13)

where Y ≡ (2k=I2)2.
We also realized that some other misprint should be present in the Ahn and Lebowitz

paper since we have found empirically that the PY solution (with k in units of �) should
be given by

c12(k) = Oc12(ks) ; (14)

where s is a scale parameter to be determined as follows:

s= −[ Oh12(r = 0)]1=3 : (15)

Notice that for the symmetric case �1 = �2 = �=2 and � = �� = 0:90316 : : : we .nd
z0 = 1 and s= 1.

In Figs. 1–3 we show three cases corresponding to the extreme and one intermediate
density. In the .gures, we compare the MC simulation data with the PY solution for
the partial pair distribution functions and the partial dcf. Our results for the partial
pair distribution functions at ��3 = 0:65 are in good agreement with the ones of Shew
and Yethiraj [9]. The .gures show how the like correlation functions obtained from

Riccardo
Evidenziato

Riccardo
Nota
¯h12(k) =¯ c12(k)[1 − ρ1ρ2 ¯ c12(k)^2]^(-1)
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Fig. 3. Same as in Fig. 1 at a density ��3 = 0:65.

the PY approximation are the ones that di/er most from the MC simulation data. The
di/erence is more marked in a neighborhood of r = 0 and becomes more pronounced
as the density increases.

3. Fit of the data

From the simulations we found that c(MC)12 (r)¡ 8×10−3 for r ¿� at all the densities
studied. This allows us to say that �c12(r) � 0 for r ¿�. Moreover we found that both
�c12(r) for r ¡�, and �c11(r) are very well .tted by Gaussians

�c11(r) � b11 exp[ − a11(r + d11)2] for all r ¿ 0 ; (16)

�c12(r) � b12 exp[ − a12r2] for 0¡r¡� : (17)

In Figs. 4 and 5 we show the behaviors of the parameters of the best .t (16)
and(17), with density. In order to check the quality of the .t, we did not use the data
at O�=0:45 in the determination of the parameters. The points for a12 and b12 are well
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Fig. 4. We plot, for .ve di/erent values of the density, the parameters a12 (diagonal crosses) and b12
(starred crosses) of the best Gaussian .t (17) to �c12(r) for r ¡�, and .t them with parabolae (lines). The
parameters at ��3 = 0:45 where not used for the parabolic .t and give an indication of the quality of the .t.

.tted by a straight line or a parabola. As shown in Fig. 4 the best parabolae are

a12( O�) = 0:839 + 0:096 O�− 1:287 O�2 ; (18)

b12( O�) = −0:155 + 0:759 O�− 0:159 O�2 : (19)

Fig. 5 shows how the parameters for �c11(r) are much more scattered and hard to .t.
The quartic polynomial going through the .ve points, for each coePcient, are

a11( O�) = −55:25 + 504:8 O�− 1659: O�2 + 2364: O�3 − 1236: O�4 ; (20)

b11( O�) = 171:4 − 1556: O�+ 5166: O�2 − 7421: O�3 + 3906: O�4 ; (21)

d11( O�) = 128:9 − 1144: O�+ 3747: O�2 − 5328: O�3 + 2782: O�4 : (22)

The diPculty in .nding a good .t for these parameters may be twofold: .rst we are
.tting �c11(r) with a three (instead of two) parameter curve and second, the partial
pair distribution functions obtained from the MC simulation are less accurate in a
neighborhood of the origin (due to the reduced statistics there). This inaccuracy is
ampli.ed in the process of .nding the partial dcf’s. Such inaccuracy will not a/ect
signi.cantly �c12(r) which has a derivative very close or equal to zero near the origin,
but it will signi.cantly a/ect �c11(r), which is very steep near the origin.

In order to estimate the quality of the .t we have used the simulation data at
O�= 0:45. From Fig. 4 we can see how the parabolic .t is a very good one. In Fig. 5
the point at O� = 0:45 gives an indication of the accuracy of the quartic .t. We have
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Fig. 5. We plot, for .ve di/erent values of the density, the parameters a11; b11 and d11 (stars) of the
best Gaussian .t (16) to �c11(r), and draw the quartic polynomial (lines) through them. The parameters
at ��3 = 0:45 where not used to determine the quartic polynomial and give an indication of the quality of
the .t.

also compared the pair distribution and dcf’s obtained from the .t with those from
MC: both the like and unlike distribution functions are well reproduced, while there
is a visible discrepancy in the dcf from the origin up to r = 0:5�. However we expect
that moving on the high-density or low-density regions (where the quartic polynomial
becomes more steep), the quality of the .t will get worst. In particular, the predicted
negative values for a11, in those regions, are completely unphysical and the .t should
not be used to extrapolate beyond the range 0:28¡ O�¡ 0:65.

4. From WR to NAHS

In order to see how the structure, and in particular the dcf’s of the WR model
change as one switches on the spheres diameters we have made two additional MC
simulations. In the .rst one we chose �1 = �2 = 0:65=R312 and R11 = R22 = R12=2. The
resulting partial pair distribution functions and partial dcf are shown in Fig. 6. From a
comparison with Fig. 3, we see how in this case the switching on of the like diameters
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Fig. 6. Monte Carlo results at a density �= �1 = �2 = 0:65=R312 for the partial dcf’s (on top) and the partial
pair distribution function (below) of a mixture of NAHS with R11 = R22 = R12=2. The open circles denote
the like correlation functions. The closed circles denote the unlike correlation functions.

causes both c12(r) for r ¡R12 and g12(r) for r ¿R12 to approach r=R12 with a slope
close to zero.
In the second simulation we chose �1 = �2 = 0:65=R312 and R11 = 0, R22 = R12. The

resulting partial pair distribution functions and partial dcf’s are shown in Fig. 7. From
a comparison with Fig. 3 we see how in this case the switching on of the like di-
ameters causes both g11(0) and c11(0) to increase, and c12(r) to lose the nearly zero
slope at r = 0. As in the previous case, g12(r) for r ¿R12 approaches r = R12 with
a slope close to zero. The like 22 correlation functions for r ¿R12 vary over a range
comparable to the one over which vary the like 11 correlation functions of the WR
model.
For both these cases, there is no analytic solution of the PY approximation available

and a better understanding of the behavior of the direct correlation functions may help
in .nding approximate expressions [14].



358 R. Fantoni, G. Pastore / Physica A 332 (2004) 349–359

Fig. 7. MC results at a density � = �1 = �2 = 0:65=R312 for the partial dcf’s (on top) and the partial pair
distribution function (below) of a mixture of NAHS with R11 =0 and R22 =R12. The open circles denote the
like 11 correlation functions. The open triangles denote the like 22 correlation functions. The closed circles
denote the unlike correlation functions.

5. Conclusions

In this paper, we have evaluated the direct correlation functions (dcf) of a Widom–
Rowlinson mixture at di/erent densities through Monte Carlo (MC) simulation and we
have studied the possibility of .tting the di/erence between MC data and the PY dcf’s.
We found a very good parameterization of c12(r) for r ¡� (see Eqs. (17)–(19)) and
a poorer one for c11(r) (see Eqs. (16) and (20)–(22)). The diPculty in this last case
probably arises from the necessity of using three parameters [instead of just two needed
for parameterizing c12(r)], although it cannot be completely excluded some e/ect of
the decreasing precision of the simulation data near the origin.
In the last part of the paper, we have illustrated with additional MC data the changes

induced in the WR dcf’s by a .nite size of the excluded volume of like correlations.
These results are meant to provide a guide in the search of a manageable, simple
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analytical parameterization of the structure of mixtures of non additive hard spheres
which is still not available although highly desirable.
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