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Summary. - -  The interacting reference response function X~3](k) of three- 
dimensional jellium in k space was def'med by Niklasson in terms of the momentum 
distribution of the interacting electron assembly. Here the Fourier transform 
Fibril(r) of x~d](k) is studied for the jellium model with e2/r interactions in 
dimensionality d = 1, 2 and 3, in an extension of recent work by Holas, March and 
Tosi for the case d = 3. The small-r and large-r forms of F~ d] (r) are explicitly 
evaluated from the analytic behaviour of the momentum distribution n d (p). In the 
appendix, a model of ng(p) is constructed which interpolates between these limits. 

PACS 71.45 - Collective effects. 

1. - Introduction.  

The linear density response function X~el(k, co) of the jellium model in 
dimensionality d is customarily wri t ten in the form of an RPA-like expression 
involving a single-particle reference susceptibility and a local field fac tor[ l ] .  While 
the reference susceptibility is usually taken as the Lindhard function for the ideal 
Fermi  gas, Niklasson [2] introduced for d = 3 an interacting reference susceptibility 
which is defined in a similar way as the Lindhard function but  with the ideal Fe rmi  
momentum distribution replaced by the t rue momentum distribution of the 
interacting electron assembly. This involves, of course, a redefinition of the local field 
factor, which acquires the appealing feature of tending to a constant at large wave 
number  k instead of being asymptotically proportional to k s [3, 4]. 

In recent  work Holas, March and Tosi [5], hereaf ter  re fe r red  to as HMT, have 
evaluated the r-dependence of the Four ier  t ransform of Niklasson's interacting 
reference susceptibility in the static case for d -- 3, using known analytic propert ies  of 
the t rue momentum distribution. The present  work extends their  approach to lower 
dimensionalities (d = 2 and 1) and contrasts  the results with those obtained for 
d = 3 .  
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2. - I n t e r a c t i n g  r e f e r e n c e  s u s c e p t i b i l i t y  a n d  l o c a l  f i e ld  fac tor .  

2"1. Definition of interacting reference susceptibility in k space. - The interacting 
reference susceptibility in the static case (w = 0) is defined in k or reciprocal space as 

2(3-d) m f rid(P) 
(2.1) z~dl(k) -- z d P daP k 2 + 2k 'p  

where m is the electronic mass and nd(p) is the momentum distribution function of 
the interacting electron fluid. Owing to the isotropy of the homogeneous phase of 
jellium, the angular integration in eq. (2.1) can be carried out to yield 

m fdppn3   lnlk+2p I 
z2 k k 2p 

0 

zc  

4m f dppn2(p) O(k - 2p) 
(2.3) ~/~2] (k) - zk ~ / ~  _ 4p2 

0 

and 

r162 

I 1 (2.4) X~l](k ) = 8m dpnl(p) k2 
- 4p 2 

0 

"When the true momentum distribution in eqs. (2.2)-(2.4) is replaced by the ideal 
Fermi distribution, one recovers the well-known Lindhard results: 

(2.5) ;/~3](k)- m k F [ l +  (2kF) 2 - k e  I k + 2 k F  [] 
2z 2 4kF k In -- , k 2kr 

(2.6) X~ 21(k)= - m  1 - O ( k -  2kF) 1 -  

and 

4 m  
(2.7) Z~I] (k) - 

z k  

k + 2kF 
- -  In 

k - 2kF 

The Fermi momentum kF is related to the particle number density ~)d by 

(2.8) rkdr(d 1 kF = 2 ~  1/2 [ 4 \ 2 ) Qd] �9 

2"2. Local field factor. - The density response function X~dl(k, ~) is written in 
terms of the interacting reference susceptibility X~ dl (k, ~o) and of a local field factor 
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G~(k, co) as 

X~d~(k, oJ) 
(2.9) ~/[dJ (k, w) = 

1 - Vd(k)[1 -- Gd(k, ~o)]x~d](k, w) 

Here, Vd(k) is the d-dimensional Fourier transform of the e2/r Coulomb repulsive 
interaction, given by 4ze2/k 2 for d = 3 and by 2ze2/k for d = 2. In the jellium model 
for electrons in a quantum wire the Coulomb matrix element can be taken as 

(2.10) v~ (k) = e 2 h(kRo), 

where Ro is the effective radius of the wire and the function h(x) can be of various 
forms depending on the type of transverse confinement. We shall take it to have the 
asymptotic behaviours 

(2.11) 

and 

h(x --~ O) = C_ (Ro ) In (x) 

4~e 2 
(2.12) h(x -o oo ) = C+ (Ro) - - ,  

X 2 

the latter being valid when both transverse confinement lengths are finite [6]. C_ (Ro) 
and C+ (Ro) in eqs. (2.11) and (2.12) are confinement-dependent functions. 

It was first shown by Niklasson[2] from the equations of motion for the 
single-particle and two-particle density matrices that, in regions of the (k, ~o)-plane 
well outside the particle-hole continuum, the local field factor introduced in eq. (2.9) 
satisfies two exact relations in particular limits (see also [7]). These relations are 
easily expressed in terms of the following function: 

(2.13) GeVtk ' =  l d  , J ~ k~, [,/(k'k'/2Vd(k')k2 ] ~d(k-) ( k ' ( k + k ' ) ) 2 V d ( ' k + k " ) }  ( S d ( k ' ) - i ) ' k  z Vd(k) 

Here, Sd (k) is the static structure factor of d-dimensional jellium, related to the pair 
distribution function gd (r) by 

1 
(2.14) 1 - gd (r) = ~ ~a [ 1 - Sd (k)] exp [ik" r]. 

G Pv (k) in eq. (2.13) is the form taken in d-dimensional jeUium by the static local field 
factor first introduced by Pathak and Vashishta[8]. Precisely, for l(o+_k2/2ml>> 
>> kF/2m one has 

(2.15) 

at finite ~ and 

(2.16) 

lim G~(k, ~) PV = G~ ( ~ )  
k - - )  ar 

lira Gd(k, ~) PV = Gd (k) 
o ) - - ~  oa 

at finite k. 

2"3. Asymptotic behaviour of local field factors for large k. - Equations (2.13) and 
(2.15) yield the following exact asymptotic values of the local field factor for large 
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wave number and finite frequency: 

(2.17) Gd(k---) ~ , ~) = 

2 
~ [ 1  - gs(0)] for d = 3,  

1 - g2(0) for d = 2,  

1 - gl (0) + (R~/4zQ 1 C+ ) I dq q2 h(qRo )[$1 (q) - 1] 

f o r d =  1. 

An alternative form of the local field factor needs to be introduced when one 
replaces X~ dl (k, ~o) in eq. (2.9) with the Lindhard function ~dl ~ ~o ~ ,  ~o), namely 

(2.18) Gd(k, w) = 1 + [Vd(k)z[dl(k, (o)] -1 -- [Vd(k)Z[od](k, ~)]-1 = 

-- Gd(k, ~o) + [v~(k)x~d](k, w)] -1 - [vd(k):~dl(k, w)]-I . 

Following the analysis given by Holas [3], the static Lindhard function has the 
large& expansion 

(2.19) Z[od](k) = - 4 m ~ d k - 2 [ 1  + 4C~dl<p2>~d~k-2 + l~(~[d]l~a4\[d]k-4 T .], 
~ 2  ',/~ /0  " '  

where 

(2.20) 

and the notation 

(2n + 1) -1 

Cn ~dj = (2n - 1)!!/(2n)!! 

1 

f o r d = 3 ,  

f o r d = 2 ,  

f o r d =  1 

(2.21) 
2 

<f(P)>[o dl = -~ ~ n~ 

has been used, n~ being the ideal Fermi-momentum distribution. In particular, 

d (2.22) <p2n >~dl _ _ _  k~n. 
2 n + d  

With the notation <...>~dl for the average in eq. (2.21) when n ~ (p) is replaced by nd (p), 
and using the normalization condition ~ n ~  ~ n d ( p ) =  N/2, we reach the 
result P P 

(2.23) Gd(k, O) = Gd(k, O) + 
mQdVd(k) 

+ ~ [(<p4 >id~ _ <p4 >~d~) c ~  _ ((<p2 >i~ )2 _ (<p2 >~1)2)(c~d~)2 ] + o(k -4)} .  

Taking into account eq. (2.17), we conclude that  the leading term in the high-k 
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expansion of Gd (k, 0) is given by 

(2.24) Gd (k, 0) { 
A~]k2/(6zqse 2) 

A~]k/(2zQ2e 2) 

A IT 1] (R0 k) 2 / (2z  ~ 1 e 2 C+ ) 

for d = 3 ,  

for d = 2 ,  

f o r d =  1, 

where A[T dl= (T)~ d ] -  (T}~ d] and T= p2/2m is the kinetic energy operator. 

2"4. Asymptotic behaviour of Gd(k, w)for large w. - Following Iwamoto [9], the 
asymptotic form of the Lindhard function at high frequency can be given in terms of 
the frequency-moment sum rules, namely 

(2.25) 
T. [d] 

lim z[d](k, w) = ~V+l(k)  
w - ~  ~ j =  l O) 2j 

The first two moments in eq. (2.25) are 

(2.26) L~d](k) = Qd k2 

and 

(2.27) L[~d](k)- Qdk2[( k2 ) 2 12['r\[d] k~ ] 
m -~m + d \-/o -~m " 

The analogous expansion for X~ ~] (k, co) is obtained by replacing (...}~dj with (...)[o d] in 
the frequency moments. By substituting these expansions into eq. (2.18) we find 

(2.28) Gd (k, w ~ ) PV = = Gd (k) 
[d] 12 A T 

d 2QdVd(k) 

Comparison of eqs. (2.23) and (2.28) shows that  their leading terms differ only by a 
numerical factor. 

3. - C o o r d i n a t e  space  r e s p o n s e  f u n c t i o n  F~ d] (r). 

The response function F~ d] (r) in coordinate space is defined as the d-dimensional 
Fourier transform of X~ ~ (k). Angular integration yields 

ao  

(3.1) F~ 3j (r) - 1 I dk kx~ ~] (k) sin (kr), 
2z2r 

o 

(3.2) if F~2](r) = ~ dkkx~2](k)Jo(kr) 
o 
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and 

(3.3) 

Qc 

~.[1](r) = 1 I ~1] (kr).  " I --  d k k z  (k)cos 
2r 

o 

Using eqs. (2.2)-(2.4) in eqs. (3.1)-(3.3) and two definite integrals given by 
Gradshteyn and Ryzhik[10] we find 

(3.4) F ~ l ( r  ) _ m I d p p n 3 ( p ) s i n ( 2 p r  ) 
2~3r 2 

0 

c c  

(3.5) F~2](r ) _ m I dpn2(p)[zPrJ~ Y~ 
~ 2 f  

0 

and 

: r  

I nl (P) (3.6) F~ 1](r) = 2m dp sin(2pr).  
z p 

0 

Upon inserting the ideal Fermi distribution in place of the true momentum 
distribution in eqs. (3.1)-(3.3), we recover results for the Lindhard function in 
r-space [11]: 

(3.7) F~31(r ) _ mk~  j l (2kFr )  , 
2 z  3 r 2 

k~ m 
(3.8) F~ 2] (r) - 

2z  
- - [ J o ( k F r ) Y o ( k F r )  + J l (kFr)  Yl(kFr)] 

and 

(3.9) F~I] (r)  _ 2m Si(2kFr).  

In these equations j ,  (x) is the spherical Bessel function [sin (x) - x cos (x)]/x 2, Jn (x) 
and Yn (x) are the n-th-order Bessel functions of the first and the second kind and 
Si(x) is the sine integral. 

Of course, n~(p) tends to the ideal Fermi distribution in the limit of coupling 
strength tending to zero. However, at finite coupling strength the momentum 
distribution acquires a high-momentum taft and its discontinuous jump across the 
Fermi surface is reduced below unity. Numerical determinations of nd (p) by quantal 
simulation methods are available both for d = 2 [12] and d = 3 [13]. In the following 
sections we shall use the above-mentioned properties of n~(p) to determine the 
behaviours of F[ al (r) at small and large r. 
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4. - S m a l l - r  e x p a n s i o n  o f  i n t e r a c t i n g  s u s c e p t i b i l i t y .  

The small-r properties of F~ dj (r) are determined by the behaviour of nd (p) at large 
momenta. This is known to be 

4zQ3 2 
(4.1) n s ( p ) =  --~o ] gs(0)P-S + @ I I 

for d = 3, from the work of Kimball [14, 15] and 

[ 2ze2 ~2 . . .  
(4.2) n2(p) ) g2 ' P ~ + 

for d = 2, from the work of Rajagopal and Kimball [16]. In these equations a0 is the 
Bohr radius and gd(0) is the value of the pair distribution function gd(r) evaluated at 
separation r = 0. This value is related to the asymptotic behaviour of the structure 
factor Sd (k) according to 

(4.3) g3(O) - 3zao lira ka(1 - Ss(k)) 
8k~ k-~. 

and 

a0 lira k s(1 - S2(k)). (4.4) g2(0) = 2k---~ k-~ 

The asymptotic behaviour of the momentum distribution for the case d -- 1 has 
been evaluated in [6]. The result is 

( 4Z~)lC+ )2 
(4.5) nl (p) = aoR~ gl (O)p -s + . . . .  

where 

(4.6) g l ( O )  - aoR~ lim ka(1 - S ~ ( k ) ) .  
4ZkF C+ k-~ | 

Using eq. (4.1) in eq. (3.4) HTM find 

[ 41T\[3],,~.2 1 ~ as } (4.7) F~J( r  ) = m__~Q~ 1 - 3 \ - / i  .... + (Te)~ 3]m2r4 - r5 + . . . .  
z r  45 z~ 3 

where as is the coefficient of p - s  in eq. (4.1) and (T~)~ dl is the n-th moment of the 
kinetic energy T. 

For the other dimensionalities we obtain the following expressions by the same 
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method. For  d = 2 we get 

(4.8) F[2](r) - 2me2jr {[(~ - ln(2)) + (ln(p)>~ 2]] + 

[(1 ) ] } 
+ ln(r)  + ~ - 7 + ln(2) m(T>~ 21 - (T ln(p)>~ 21 r 2 A- m(T>I2]r 2 ln(r)  + ... , 

where ~ = 0.57721 ... is Euler's constant. For  d = 1 we find 

aw } (4.9) F~l](r) = - 2 m e l r  <T~>~l}r2~ + (2r) 7 + . . . .  
0 (2n + 1)! 8!~)1 

where aw is the coefficient of p - s  in eq. (4.5). 
It should be noticed that higher-order terms in the expansions given in eqs. (4.7)- 

(4.9) cannot be evaluated without knowledge of the high-momentum behaviour of 
nd (p) going beyond that  explicitly shown in eqs. (4.1), (4.2) and (4.5). The coefficients 
of such higher-order terms may diverge for some forms of nd(p). 

5. - L o n g - r a n g e  b e h a v i o u r  o f  F[ d] (r). 

In order to determine the behaviour of F~l(r)  at large r, HMT rewrite the 
right-hand side of eq. (3.4) in the form of the one-dimensional Fourier t ransform of the 
function O(p)p n3 (p) and apply the Lighthill technique for the asymptotic estimation 
of such Fourier  transforms [17]. 

The momentum distribution in the homogeneous phase of d-dimensional jellium is 
known to have a discontinuity (reduction by a jump) of magnitude ZF at p = k F and 
most probably discontinuities in its derivatives there. One can thus express nd(p) as 

(5 .1)  na(p) = sgn (p - kF) (p -- k~)**+ analytical t e rms ,  
: o -~- . ,  

with b~o dl= --ZF/2.  Moreover, we assume that  the expansion 

(5 .2)  
C[d] 

nd(p ) = vn p~ + analytical terms 
n=0 n! 

holds for rid(p) near p = 0. 
HMT conclude from such behaviours of n3(p) 

expansion for F~ 81 (r) has an oscillatory part  
that  the asymptotic large-r 

(5.3) [F~S](r)] ~ - : r3r~Im exp[2ikTr] n=0 ~ (kFbnE3] + nb~31 1)n+1 

with leading term --[mkFb~S]/2z3]cos(2kFr)/r 3, as well as a non-oscillatory 
contribution 

(5.4) [F~ 81 (r)] n~176 - -  
2nc[3] m ( _ l ) n  2n 1 

2~3r  2 n = l  ~ + 1  ' 
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where only the odd terms in the power series expansion (5.2) contribute, with leading 
term [mc~ 8] / ( 2 z )  8 ]/r 8. 

In the following two subsections we shall apply these arguments to determine the 
long-range behaviour of F~2](r) and F~l](r). 

5"1. Two-dimensional jellium. - The analysis of the large-r behaviour of F~ e] (r) on 
the basis of the behaviours of n2 (p) in eqs. (5.1) and (5.2) is quite complex. There does 
not seem to be an asymptotic expansion for the product J0 (x) Yo (x) in eq. (3.5) having 
a simple expression for its coefficients. 

We start by defining the function f o ( x )=  zx[Jo(x)Yo(x)]  for x i> 0 and its 
successive integrals 

(5.5) ~ ( x ) =  [ f i ( t ) d t  = ~x2[J~176 + J l ( x ) Y l ( x ) ]  = ] f i ( t ) d t  
0 

and 
X 

(5.6) fn (x) = ]fn - 1 (t) dt .  

These functions possess an upper bound (Ifn (x) l <<" constant) and have the following 
asymptotic expansions: 

i) the large-x expansion 

cos 2x [ 1+ 1282~ +o x 25642x  + 

and for any n > 0 

(5.8) f~(x) ~ [ 
X - - - >  oo 

( - -  )n/2 + 1 

n COS (2X) + ... for even n ,  

(_)(n - 1)/2 

n sin (2x) + ... for odd n ; 

ii) the small-x expansion 

(5.9) fi  (x) = 2x In (2x) + O(x) 

and for any n > 0 

2 d~ x n+l in(x) + ~ X n - i  (5.10) fn (X) > 
x-~0 ( n + l ) !  ~=1 (n - - i ) !  

Here, the coeefficients di are the integration constants needed to connect with the 
large-x behaviour in eq. (5.8). For example, we have di = 0 (see eq. (5.5)) and d2 
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Fig. 1. - Plot of the function (z/2) x 2 I[Jo (t) Yo (t) + J1 (t) Y1 (t)] dt (lower curve) compared with 
cos(2x)/4 (upper curve). 0 

-0.196344.. .  (see fig. 1). In general d n can be obtained by a limiting process, 

(5.11) d,~ 

(2j + 1)(~/4)  

I fn (t) dt 1 

= lim o 
j ~ oo j (~ /2 )  

I f ,~_l( t )d t  
0 

for even n ,  

for odd n .  

Given these definitions, the long-range behaviour of F~el(r) can be obtained by  
successive integration by parts on eq. (3.5). A first integration by parts yields 

(5.12) F~ 2](r) - m I 215(p ( z r )  2 (2b~ - kF) 
0 

+ [DF ~ n2 ](P))fi (pr) dp = 

m ( 2b[oe]f~(kF 
yg2T ) if[ + -- D n2 ](P)fi (pr) dp , 

0 

where we have introduced the notation [D F n2 ](p) for the derivative of ne (p) at p > k F 
and p < kF and have made use of the fact that  n2 (p) f i  (pr) vanishes both at infinity 
and in the origin. From eqs. (5.8) and (5.12) we thus find 

(5.13) F~e](r) = mb~2] s in(2kFr)  0 [ 1 / / \  
(arr) 2 + \ / ' ~ -  " 
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After N integrations by parts, we obtain 

(5.14) F121 (r) - z-yr 1( __ )n r n - n=lZ ( - )n _ _ r  n _{_ . . . .  

Evidently, in analogy with the case d = 3 the large-r asymptotic expansion of 
F~ 2j (r) can be divided into the sum of an oscillatory part and a non-oscillatory part. 
The former is given by the first term on the right-hand side of eq. (5.14) and its 
leading term is 

(5.15) 
[F~2 ] (r)] ~162 ~ mb[o z] sin (2kF r) 

( z r )  2 

The non-oscillatory part is given by the second term on the right-hand side of 
eq. (5.14) and its leading term is 

(5.16) [F~ 2] (r)] n~176 ~ - -  
m d  2 c~ 2] 

$g2r3 

5"2. One-dimensional jellium. - In order to apply the Lighthfll technique to 
determine the long-range behaviour of Fit lj (r), we first rewrite eq. (3.6) in the form of 
a one-dimensional Fourier transform, 

(5.17) F~lJ(r ) = 2m Im I dpO(p)nl (P)  exp[2ipr] 
Jr p 

Because of the 0 function the integrand in eq. (5.17) is non-analytic at p = 0. This 
may lead to a non-oscillatory contribution to the large-r expansion. From expansion 
(5.2) we obtain [  .Eij 
(5.18) [Fi[1](r)]non_os c = _ __2m C01113/: "~- t.2n+l 

Z 2 n=0 (2n + 1)! 

1] 
The singularity of nl(p)  at p = k F is instead responsible for an oscillatory 

contribution, following from eq. (5.1) as 

b[1] f pn 
(5.19) [F~l](r)] ~ 2m~ Im 0 d p s g n ( p ) p + k F  exp[2ipr] e x p [ - 2 i k F r ] .  

To leading order the result is 

(5.20) [F~l](r)] ~ = 2mb[~ c~ + 0 ( 1 )  
ZkF r r-2 " 

5"3. Comparison of results in various dimensionalities. - In summary, table I 
compares the leading terms of the large-r asymptotic expansion of F[d](r) in 
the various dimensionalities. Evidently, the leading term in the asymptotic expansion 
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TABLE I . -  Leading terms of the large-r asymptotic expansion for the oscillating and 
non-oscillating parts of F~ d] (r). 

F~ d] (r--) ~ ) Oscillating term Non-oscillating term 

mkF b [3] cos (2kF r) m c~ 3] 
d = 3  

d = 2  

d = l  

2(zrr) 3 (2 z)3r ~ 

m bo ~2] sin (2k F r) md,2 c~ 21 

(z r )  2 z2r3 

2mb~ 1] cos (2k F r) 
-mc~  1] 

ZkF r 

is the oscillating one for d = 3 and d = 2, while in the quantum wire the 
non-oscillating te rm is dominant. 

6. - Conclus ions .  

The main results of the present  work concern i) the asymptotic behaviours of the 
local field factors Gd (k, ~o) and Gd (k, ~) in eqs. (2.17), (2.24) and (2.28); ii) expressions 
(3.4)-(3.6) for the interacting reference susceptibility F~ dl (r) in the form of a single 
integral and iii) the small-r and large-r  expansions of F~ dl (r) in eqs. (4.7)-(4.9), (5.3), 
(5.4), (5.14) and (5.18)-(5.20). These results were already known in the l i terature [3-5] 
for d = 3, but  are mostly new for d = 2 and d = 1. 

In the Appendix we have evaluated a model for the momentum distribution nd (r), 
which leads to a model for F~d~(r) allowing an interpolation between the limiting 
behaviours discussed in sect. 4 and 5. 

APPENDIX 

Evaluat ion  of  F[ dl (r) u s ing  a model  n~ (r). 

Following HMT we consider a model momentum distribution given for d = 2 
and d = 3 by 

(A.1) nd(p) = ndA (p) + riB(p) = v~(kF -- p)(ad + fldp 2) + 
a2(d + 1) 

( ~  + p 2 ) d + l  ' 

and for d = l  by 

a w (A.2) nl(p)  = ~(kF - -p ) (a l  + ]~lp 2) + (~2 + p2)4 ' 

eqs. (A.1) and (A.2) satisfy propert ies (4.1), (4.2) and (4.5). Of their  five parameters ,  
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kF and as, a6 and au have an obvious meaning, while ad, fld and ~d can be 
determined from three requirements on the momentum distribution: 

i) it satisfies the normalization condition 2 ~ n d ( p ) =  N, leading to 
P 

(~3) 

3 2 3z as 
as + ~f iskF + for d = 3, 

32 kFS~ 

1 2 1 a~ 
1 = a2 + ~fl2kF + --2 - - k ~  4 for d = 2, 

+ 1 f l l k 2  + 5~ a ~  
32 kF ~ 17 for d = 1 ; " 1  

3 

ii) it reproduces the value of the mean kinetic energy (T)~ d~, leading to 

5z as 

<T)~d] ~ a6 
(A.4) ~ - a2 + fl2k~ + ~kf~2 f o r d = 2 ,  

3 z  aw 

f o r d = 3 ,  

f o r d =  1; 

iii) it reproduces the discontinuity ZF at p = kF, leading to 

(A.5) ad + k~fld = ZF �9 

After inserting the model n~(p) of eqs. (A.1) and (A.2) into eqs. (3.4)-(3.6), all 
integrations can be performed analytically. The results are reported in the following 
subsections. 

A'I. Three-dimensional jellium. - HMT find for d = 3 

(A.6) F~SP(r) - 4~zr)a - ( a s  + k~.fls) + --2r 2 cos(2kFr) + 

and (assuming ~s > 0) 

+[a~+3k~fis 3fls ] } 
2kFr 4kFr s sin (2kF r) 

(A.7) 
4 ) 

F~SJ~(r) = - 32~2~  r 1 + 2~sr + (~3r) 2 e x p [ - 2 ~ 3 r ] .  

The model reference susceptibility is the sum of the two contributions in eqs. (A.6) 
and (A.7). 

The small-r and large-r expansions of this model F~8](r) agree with those 
given in eq. (4.7) and in eqs. (5.3) and (5.4). The contribution due to F~3~(r) 
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is exponentially small at large r and non-oscillatory terms are absent because 
even powers only enter the small-p expansion of the model n3 (p) in eq. (A.1). 

A'2. Two-dimensional jellium. - For d = 2 we obtain, from well-known properties 
of the Bessel functions [18], 

(A.8) F~2~ (r) - ma2 { 2 } ~ t J o ( k F r )  Yo(kFr) + Jl (kFr) Yl (kFr)] - 

mfi2[~[3Jo(kFr)Yo(kFr)+2Jl(kFr)Yl(kFr)-J2(kFr)Y2(kFr)]}zr 4 ~-~> 

sin (2 kF r) 
> m(a2 + k~fl2) 

~_~ ~ 2(~r) 2 

and (assuming ~2 > 0) 

(A.9) F~2~(r)- ~2a6 [ 1 d ]2[H(o1)(i~r)]2 25 r ~2 d~2 

where 1t(o 1) (x) = Jo (x) + iYo (x) is the zeroth-order Bessel function of the third kind. 
The asymptotic large-r behaviour of this function is 

2 
(A.10) [Ho (1) (i~2r)] 2 --~ - - -  exp [ -2~2r ] .  

z~2 r 

Finally, we have the model reference susceptibility 

(A.11) F[ 21 (r) = F[ 2]A (r) + F[ 218 (r). 

It is readily verified that the smaU-r and large-r expansions of this function agree 
with those given in eq. ~4.8) and in eqs. (5.15) and (5.16). As in the case d = 3, the 
contribution due to F[ 2~ (r) is exponentially small at large r. 

A'3. One-dimensional jellium. - For d = 1 we obtain 

(A'12) F~I]A(r)- 2mal si(2krr) mfll [ kF c~ - sin(2kFr) r 2r 2 

and (assuming ~1 > 0) 

(A.13) F~]B( r ) -  maw[  ( ~81 "4  ~1~ 11 3 6 1( ) _2~1r] ] 1 -- 1 + + ~ ( ~ r ) 2 +  ~ r )  s exp[ 

Finally, we have the model response function 

(A.14) F~ 11 (r) = r~ lt4 (r) + F~ 1~ (r). 

Again it is readily verified that the small-r and large-r expansions of this 
function agree with those in eq. (4.9) and in eqs. (5.18) and (5.20). Contrary 
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to the other  cases the te rm F[i1]8(r) contributes to the leading te rm in the large-r  
expansion of will = - i  (r), its magnitude being -mc{o ~1 w i t h  C0 [11 ai + aw/~Sl. 
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