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Summary. --  The asymptotic behaviours of particle correlation functions and the 
related sum rules are discussed for a layered classical plasma with e 2/r interactions 
in the fluid state, in dependence on the number of layers. These properties derive 
from consistency conditions imposed by screening on the hierarchical equations, as 
already treated by A. Alastuey and P. A. Martin (J. Stat. Phys., 39, 405 (1985)) for 
various Coulomb fluids. The main results concern i) the type of clustering of 
correlations needed for the validity of multipolar sum rules at various orders, ii) the 
proof that the pair correlation function in a finite multilayer may carry an electric 
dipole moment and the calculation of its partioning among the layers, and iii) the 
dimensionality crossover in an infinitely extended or periodically repeated 
multilayer with varying interlayer spacing and wave vector. 

PACS 61.20.Gy - Statistical theories of liquid structure. 

1.  - I n t r o d u c t i o n .  

Systems of electrons with two-dimensional dynamics have long been useful as 
models for a variety of physical systems such as inversion layers in semiconductors 
and semiconductor heterostructures [1, 2], surface electrons on liquid He[3], inter- 
calated graphite[4] and transition-metal dichalcogenides[5]. The thermodynamic 
states of physical interest may range from extreme degeneracy to quasi-classical, and 
the electronic system may be confined to a single layer or form a multiplicity of layers 
up to a periodic stacking. While most of the theoretical treatments in the literature 
have taken account of intralayer correlations, specific attention has recently been 
brought to the role of the interlayer correlations in two-layer structures in relation to 
Wigner crystallization [6] and collective excitations [7]. 

Correlations in both homogeneous and inhomogeneous Coulomb fluids have a 
number of exactly determinable asymptotic properties, which may be conveniently 
expressed in the form of sum rules arising as consistency relations imposed by the 
long-range Coulomb interactions[8]. In particular, Alastuey and Martin[9] have 
shown that correlations in a two-dimensional classical plasma with e 2 / r  interactions 
have an algebraic r-3 decay as an exact lower bound. In the present work we extend 
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their treatment to a system consisting of an arbitrary number Np of equispaced layers 
confining a classical one-component plasma with e2 / r  interactions. In view of the 
known differences in the asymptotic behaviours of correlations in the classical and 
quantal three-dimensional plasma [10,11] we do not expect that our results should be 
generally applicable without further analysis to layered systems of electrons in the 
quantal regime. 

2. - Equi l ibr ium equat ions  and mul t ipo lar  s u m  rules.  

The model consists of a stack of Np layers with interlayer spacing d, each layer 
having area S and containing a classical fluid of N point-like charges embedded in a 
uniform neutralizing background. The normal to the stack is taken along the 
z-direction and the z-coordinate of each layer is denoted by md with m an integer. All 
vectors are decomposed into their in-plane and z components, with the notation R = 
= (r, z) and K = (k, k~). The medium has a uniform dielectric constant equal to unity, 
so that image forces are absent and the particles interact via the potential e 2 r {R] ) = 
= e2(r 2 + z 2 )  -1/2, with Fourier transform r z) = ( 2 7 : / k ) e x p [ - k l z  { ]. 

The usual assumption is made that in the thermodynamic limit (N--. ~ and 
S -* ~ at fLxed average density p = N / S )  the instantaneous density correlation func- 
tions exist and continue to obey the equilibrium equations of the Born-Green-Yvon 
(BGY) hierarchy. Starting from the n-body density distribution functions, 

(2.1) ~:(R1 . . . .  , R~) = <IN(R1 )... N(Rn )]SL >, 

where N ( R )  is the particle density operator and the suffix SL indicates that the 
self-terms are omitted, we introduce [8] the density of excess particles at R when n 
particles are fixed at R1, ..., Rn as 

(2.2) ~:e(R{RI, . . .Rn) -= ~(R, Ri . . . .  , Rn) - 

-~ (R)9 (R1  . . . .  , R n )  + ~ 6'(R - Ri)t:(R 1 . . . .  , R n ) .  
i=1  

Furthermore, denoting by Q = (R2, ..., Rn) the positions of a set of (n - 1) particles 
we define the truncated n-body and (n + 1)-body correlation functions by 

(2.3) pT(R1, Q) = ~(R1, Q) - t z (R1)p(Q)  

and 

(2.4) ~T(R, R1, Q) = ~(R, R1, Q) - ~(R)~T(R1, Q) - ~(R1)pT(R, Q) - ~(Q)~(R, R1). 

The equilibrium equations of the BGY hierarchy can then be written as 

(2.5) (/~e2)-IVn/:T(R1, Q) = ~(R1)EI{(R 1 {Q) + ~ F,L(R 1 - Ri)pT(R1, Q) + 
i = 2  

+ ~ I d r m F , , ( R 1 - R ~ ) ~ T ( R m ,  R 1 , Q ) ,  

where/~ = (kB T) -1 and R~ denotes the position of a particle in the m-th layer. In eq. 
(2.5) we have defined F,, (R) = -Vr  r and introduced the electric field E,, (R1 }Q) 
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generated at R1 when (n - 1) particles are at positions Q, 

(2.6) E, ,(R11q)= ~ ~ dr~Fr~(R1 - Rm)Pe(Rm ]q). 

The absolute convergence of the integral in eq. (2.6) and of the last integral on the 
right-hand side of eq. (2.5) requires that the correlations between a particle and any 
set of other particles should vanish as the particle is moved to infinite distance. The 
appropriate clustering condition is 

(2.7) ]~(R~, RI, Q) -p(R~)p(R~, Q)I <~ MIr,~ [ -~ 

with M finite and V > 0. We also note that 

(2 .8)  I drmPe(Rm IR1 . . . .  , Rn) = O, 

from the normalization condition relating the integral of the (n + 1)-body distribution 
function to the n-body one. Both these properties will be taken to be valid to all 
orders in what follows. 

Additional sum rules, relating to multipolar moments of correlations, can be 
shown to be valid [12, 13] if the decay of correlations is sufficiently rapid. Specifically, 
assume that the clustering conditions 

(2.9) ]D~w(R1, . . . ,Rn)] ~<M< r162 D = s u p ( I R i - R j l )  
i,j 

hold for n = 2, ..., no + 1 and V > 2 + lo (for Np finite) or V > 3 + l0 (for Np--~ ~). 
Then the (l, n) multipolar sum rules, 

[ (2.10) ~ drmpe(Rm I Q) (Rm.V) l 

where g is a unit vector in the plane of the layers, hold for 0 ~< 1 ~< Io and 1 ~< n ~< no. 
Equation (2.8) ensures that the charge sum rules (eq. (2.10) for 1 = 0) are always 
valid. If lo = 1 the dipole sum rules 

(2 .11 )  ~ I drmrm~e(Rm Iq) : 0 

also hold for the correlation functions up to the no-body one. 
Proposition (2.9), (2.10) follows from studying the asymptotic behaviour of 

the BGY equations for R1 = (2~, 0) with 2 -o  ~.  An integration over the area 
A of a circle C(2~, r0) centred in R1 and of given radius r0 is first carried 
out to handle the gradient terms, yielding in particular 

(2.12) f dr~ Vrl ~T (El, Q) = ~ dy ~T (~.U § g, Q) = 0(2 -~' ) 
J 

A C 

for the term on the left-hand side of eq. (2.5). It is easily seen that the second 
term on the right-hand side decays faster than ~(-~, while it shown in appendix 
A that the third term decays faster than 2-(~+2) irrespectively of the number 
of layers. Hence, the electric potential ~(R1 I Q) associated with the field Ell (R1 [Q) 
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must also decay faster than ~-(~+e). Comparison with a multipolar expansion 
yields eq. (2.10) for all 1 <~ lo. 

We shall focus in the following sections on the two-body correlation function. It  is 
therefore useful to show at this point the form taken by the above general formalism 
in this case. We have 

(2.13) pw(Rm, R~, ) = p(Rm)p(R' ,  )[g(Rm, R~, ) - 1] 

and 

(2.14) ~ ( R ~  ]R~,) = ~w(Rm, R ' , )  + p(Rm) 6(Rm - R ' , ) ,  

the first particle being in the m-th layer and the second in the m' - th  layer, and 
g(R, R ' )  being the usual pair distribution function. Equation (2.8) yields 

(2.15) I drmpw (Rm, R~, ) = - p ~m, m' , 

which may be viewed as a set of charge sum rules holding layer by layer. Finally, the 
appropriate BGY equilibrium equation involves the three-body correlation 
function, 

(2.16) (fle2)-lVr~PT(Rm, R~, )=~(Rm)EH(R m JR ' , )  +Fl l (Rm-R(n , )pw(Rm,  R ~ , ) +  

+ I drm. V,,(Rm- Rm, ). 

The electric field E~ entering eq. (2.16) is to be determined from the Poisson equation. 
It should also be remarked that in the limit N v --. ~,  according to the proof of 
proposition (2.9), (2.10) given above and in appendix A, an algebraic decay of 
two-body correlations implies a slower algebraic decay of the electric field. 
Therefore, an algebraic decay would not be compatible with eq. (2.16) if the 
three-body correlations were to decay more rapidly than the two-body ones. 

For a homogeneous fluid confined to a single layer Alastuey and Martin [9] have 
shown that under appropriate clustering conditions on the two, three- and four-body 
correlation functions the structure factor S(k) at long wavelengths is related to the 
interaction potential by 

(2.17) lira S( k ) = [pfle2"r k, 0)] -1 = k / kD 
k--.-,O 

with kD --- 2=~e 2. However, such a behaviour of S(k) implies that the asymptotic form 
of the pair correlations contains a term behaving like r -3, which contradicts the 
assumed validity of the clustering conditions. While the charge sum rule suffices to 
ensure that S(k) vanishes for k--* 0, a dipole moment arising from the three-body 
correlation function must supplement the k~ 1 term in determining the value of S(k) /k  
for k --. 0. 

Taking S(k) /k  as a finite constant for k --. 0 and bearing in mind the possibility of 
other singularities arising at finite k, the conclusion is that the pair correlations 
cannot decay asymptotically faster than r -3. According to the BGY equation for the 
pair correlation function, the excess potential ~(r, z) associated with the field E(r,  z) 
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then cannot decay faster than r -3 for z = 0. In fact, from the Poisson equation 

1 
[rEi, (r, z)] + =:- (2.18) - - -  Ez (r, z) = 4r~ ' (z)~z e ( r [  0) 

r Dr Oz 

and assuming only the charge sum rule, the first two terms of a multipolar expansion 
for ~(r, z) have the form Pl ( I cos 01 )/IRI (t + 1) where 1 = 1 or 2, cos 0 = z~ I R I and Pl (x) 
are the Legendre polynomials. Using P1 (0) = 0 and P1 (1) = 1 one sees that ~(r, 0) 
decays like r -3 and ~(0, z) decays like [zl -2. These behaviours were derived in early 
work by Fetter  [14] within a hydrodynamic approach, which reduces in the static case 
to the Debye-Hfickel approximation and thus assumes that the relation in eq. (2.17) is 
valid. The magnitude of the dipole moment associated with the pair correlation 
function is given in this approximation by the Debye screening length 1/kD. 

The important point to be stressed is that for a monolayer, at variance from the 
case of the three-dimensional classical plasma, an algebraic decay of correlations and 
an algebraic decay of the potential are mutually consistent. We carry out below the 
same analysis for a multilayered system. 

3. - Asymptotic behaviour of  correlations in a multilayered plasma: the case of  
finite Np. 

We have seen in sect. 2 that the type of clustering which ensures the validity of 
multipolar sum rules up to order (lo, no) is independent of the number Np of layers 
provided that Np is finite. We examine in this section the asymptotic behaviour of the 
pair correlations in this case. The limit N~--~ ~ will be discussed in the next 
section. 

As a first step we rewrite the BGY eq. (2.16) as 

(3.1) (fle2)-lVrPT(R~, O) = ~EIj(R,~ I0) + Win(r), 

where one of the particles has been taken at the origin and we have defined 

W,~ (r) = ~ ~ dr' F~ (R~, ) H(R~, R~, ) 
~t F J 

(3.2) 

with 

(3.3) H(Rm, R ' ,  ) = pW(/~, R~, , O) + ~(r - r' )$m,~,pw(R~, 0). 

Use has been made of the symmetry properties of the three-body correlation 
function. 

We introduce the structure factor S(K) as 

S(K) = ~ Sm (k) exp [ - ikz md],  
m 

(3.4) 

where 

(3.5) S i n ( k )  = ~mO -}- ~ - 1  f drexp [ - i k  "r]pT (R~, 0)  

are the partial structure factors describing intralayer (m = 0) and interlayer (m ;~ 0) 
correlations. Using eq. (2.6) for the excess electric field, the Fourier transform of 
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eq. (3.1) then is 

(3.6) Sin(k) - ~,~o = - ( k D / k ) ~ e x p [ - I m  - m 
m' 

' [kd] Sin' (k) + kD Am (k), 

where 

(3.7) Am(k) = - i (27:peke)-~Z I d r e x p [ - i k ' r ]  I dr' k .F , , (R~, )H(R~,  R~,) .  
?q~t 

Hence, 

( 3 . 8 )  Sm(k)/k=Zm,Amlm,(k)[ 8 m ' ~  kD +/lm,(k)], 

where A,~,  (k) is the inverse of a matrix Am~, (k) which is defined by 

(3.9) Atom' (k) = (k/kD) 8mm' + exp [ - I m - m ' I kd]. 

The charge sum rule (2.15) yields 

(3.10) lim S~ (k) = 0 
k ~ 0  

for all values of m. Using it in eq. (3.6) we find 

(3.11) lira ~ S,~,(k) _ ~ o  + limLlm(k). 
k--*O m'  k kD k--)O 

Clearly, the quantity on the right-hand side of this equation must be independent of 
the index m. We denote it thereafter by the symbol A. Namely, 

(3.12) A = l i m ~  S~(k) _ 1 + lim Ao(k)= limzlm~o(k). 
k--.0 m k kD k-~0 k--.0 

It is evident from eqs. (3.12) and (3.5) that A gives the length of the electric dipole 
moment associated with the total pair correlation function ~6e(Rm 10)/t:. Equation 

m 

(3.12) implies very strong correlations: we can obtain the dipole moment of the whole 
stack from a three-body correlation function involving a particle in anyone of the 
layers and the particle at the origin, provided that we add the quantity kg 1 when the 
first particle lies in the same layer as the particle at the origin. 

We can now examine the solution of eq. (3.6) in the long-wavelength limit. Using 
eq. (3.12) in eq. (3.8) we have 

Sin(k) 
(3.13) lira - -  - areA, 

k ~ 0  k 

where the coefficients am are given by 

(3.14) ~m = lira Z A , ~ ,  (k) 
k---)Om' 

and satisfy the sum rule ~ am = 1. For instance, for a bilayer am = 1/2, while for a 
m 
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trilayer we find 

(3.15) 

and 

(3.16) 

1 + 3 dkD + 2(dkD)e 

3 + 8 dk D + 4(dkD)2 

~ 0  -~  

1 + 2 dkD 

3 + 8 dkD + 4(dkD)2 

We see that the partitioning of the total dipole moment A among the various layers is 
exactly known from eq. (3.13) and (3.14). The coefficients a,~ are functions of dkD 
which depend only on the number of layers. 

The values taken by the quantities ~,~(k) at long wavelengths remain to be 
discussed. It is evident from eq. (3.12) that they cannot be all equal to zero. A more 
formal argument, relating the behaviour of ~ A ~ ( k - ~ 0 )  to the clustering of cor- 

m 
relation functions, is given in appendix B. The result is that, if A ~ 0, the intralayer and 
interlayer pair correlation functions cannot decay asymptotically faster than r -3. 

The discussion given in appendix B does not exclude the possibility A = 0. This 
would imply/Ira (k--) 0) = 0 for all m ~ 0 and A o (k--~ 0) = - k ~  1. Evidently, the linear 
term in the low-k expansion of the intralayer and interlayer structure factors would 
then be absent and the leading term would presumably have a regular k 2 behaviour, 
completely invalidating a Debye-Hfickel approximation. As is shown in appendix B, 
in such a case a slow asymptotic decay would still be present in the three-body 
and /o r  four-body correlation functions. 

4. - Asymptotic behaviour of correlations in the limit Np--, ~ .  

We return to eqs. (3.6) and (3.7), in which we have to take the limit Np --) ~ in the 
sums over the layer index m' .  We first take Fourier transforms with respect to the 
z-coordinate, by multiplying both sides of eq. (3.6) by exp [ - ikz  md] and summing 
over the layer index m. In the limit Np--) ~ we find 

(4.1) S(K) - 1 = - ( kD/k )  ~ F~(K)Sm(K)  + kDA(K), 

where 

(4.2) Fro(K) = exp[ - ik~md]  ~ e x p [ - i k ~ m ' d -  k]m'  ]d] = 
m '  = - r  

= exp [ - ik~ rod] 

and 

(4.3) ~I(K) = - i (2 r :~k2)  -1 ~ f d r ' k . F , , ( R ; , ) .  
m '  = - r 1 6 2  

sinh (kd) 

cosh (kd) - cos (kz d) 

exp[ - ik~md]  ~ d r e x p [ - i k . r ] H ( R ~  
m = - ~  

, R ~ , ) .  

We have assumed that the two integrals in eq. (3.7) can be interchanged (see 
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appendix B). The sum over m in eq. (4.1) can now be carried out, with the 
result 

(4.4) 

where [15] 

S(K) - 1 = -pflv(K)S(K) + kDA(K), 

(4.5) v(K) - 
2rze 2 sinh (kd) 

k cosh(kd) - cos(k~d) 

We may remark that the same result (4.4) is obtained when, instead of taking the 
limit N p - .  ~ ,  one imposes periodic boundary conditions along the z-direction on a 
stack of Np layers. In this case S(K) and A(K) are the sums of S,~(k, ks) and of 
zl,~(k, k~) over the layers included in the Born-yon Karman periodicity cell. 

The effective potential v(K) in eq. (4.5) shows dimensional crossover with varying 
d, tending to 2=e 2/k in the limit d --. ~ (an infinite stack of independent monolayers) 
and to 4=e 2/(K2d) in the limit d--. 0 (a three-dimensional plasma with mean particle 
density p/d and two-dimensional dynamics). In the latter limit the Poisson equation 
becomes a local differential equation and one can apply the argument developed by 
Martin[8] to analyse the clustering of correlations in a fully three-dimensional 
plasma. In brief, if one assumes an algebraic decay of the total charge density, the 
Poisson equation yields a slower algebraic decay of the total electric field. This result 
is not compatible with the asymptotic behaviour of the BGY equation for the pair 
correlation function, leading to the conclusion that correlations must asymptotically 
decay more rapidly than any finite inverse power of the distance. 

Expression (4.5) for v(K) yields v ( K ) ~  47:e 2/(k2d) in the limit k-~ 0 at k~ = 0, for 
any finite value of the layer spacing d. Equation (4.4) yields 

2 S(k, O) 1 
(4.6) lim - -  - + lira A(k, 0). 

k-~0 d k 2 k D k~0 

This relation should be contrasted with the analogous relation which can easily be 
obtained for the case of a finite number of layers from the results in sect. 3, 

S(k, O) 1 
(4.7) li~noN' k - kD + k-~olimA(k' 0). 

The charge sum rules suffice to ensure that the last term on the right-hand side of 
eq. (4.6) is at most a finite constant, so that S(k, 0) is proportional to k 2 in the limit 
kd << 1. Such an analytic behaviour of S(k, 0) at the origin precludes the possibility of 
drawing conclusions on the existence of algebraic terms in the asymptotic behaviour 
of the pair correlations. If in addition the dipole sum rule holds for the three-body 
correlation function ~,H(R,~, R~,) in eq. (4.3), then zl(k--* 0, 0) vanishes and the 
further sum rule 

(4.8) lim - -S (k '  O) = L~ 
k--~0 k 2 

holds. Here, 

(4.9) LD = (4rz•fle 2/d) -1/2 
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is the three-dimensional Debye screening length. Equation (4.8), which may also be 
written as the integral relation 

(4.10) m=~-~ P I drr2[g(r' m d ) -  1] = -4L~) 

on the total pair correlation function, is the form presently taken by the 
Stillinger-Lovett sum rule [16,17]. It ensures that the plasma is capable of screening 
completely any static distribution of external charges having spatial dependence of 
the form Pext(r). 

The partial structure factors Sm (k) are related to the total structure factor S(K) 
by 

(4.11) 

~/d 

Sin(k) = 7 dkz exp[ik~md]S(K), 
r 1 6 2  

- z / d  

thus requiring full knowledge of the kz dependence of S(K) even in the limit k --) 0. 
The multipolar sum rules provide no information on the behaviour of d(0, k~). On the 
assumption that A(K) can be neglected, Fetter[15] has solved eqs. (4.4) and (4.11) in 
conjunction with the Poisson equation. Within this approximation he has shown that 
the partial pair correlation function ~T (r, z) decays exponentially both as a function of 
r at fixed z and as a function of z at fLxed r, such a decay being anisotropic except in 
the limit dkD << 1. 

4"1. Dynamical implications. - We next wish to point out how the foregoing 
discussion may be related to the dynamics of the classical layered plasma at long 
wavelengths. The effective potential v(K) determines a characteristic frequency 
oJ0(K) given by 

(4.12) o~02 (K) = v(K), 

where M is the mass of the particles. In the limit k --~ 0 the dispersion relation (4.12) 
describes an optic mode at kz = 0 and an acoustic one at kz ~ O. The hydrodynamic 
treatment given by Fetter [15] leads to a collective mode with a dispersion relation 
given by (4.12) supplemented by a k 2 term with a coefficient determined by the 
adiabatic free-gas speed of sound. Olego et al. [18] have found that the dispersion 
relation (4.12) is in good agreement with the results of their inelastic light scattering 
experiments from GaAs-(A1Ga)As heterostructures. 

A simple connection between structure and dynamics can be made on the 
assumption that the f-sum rule on the dynamic structure factor S(K; co), 

k2 
(4.13) do) ~o2 S(K; ~o) = - - ,  

27: tiM 
- - c o  

is exhausted by a single collective mode. Since S(K) is the integral of S(K; (o) over 
frequency, this would lead one to express S(K) in terms of the collective-mode 
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frequency as 

k 2 
(4.14) S ( K )  = 

Comparison of eq. (4.14) with eq. (4.4) shows that such a single-mode representation 
of the spectrum is allowed in the limit k--, 0 only if k z -  0, where ~l(k--, 0, 0) 
vanishes. In fact, the work of Totsuji[19] on the dynamics of a classical 
two-dimensional plasma shows that excitational electron-electron collisions give a 
relevant spectral contribution at long wavelengths (a Landau-type contribution 
associated with single-particle excitations is exponentially small in this limit). The 
collisional damping of the collective mode as calculated by Totsuji is linear in k for 
k ~ 0, i.e. of the same order as the frequency of the acoustic mode. It thus appears 
that a single-mode representation of the spectrum at kz ;~ 0 is invalid for a layered 
classical plasma. 

5. - Summary and concluding remarks. 

In this work we have applied to a layered classical plasma methods of analysis 
previously developed to examine the asymptotic behaviours of the correlation 
functions in Coulomb fluids and the sum rules that are consistent with these 
behaviours. Our main results concern the conditions for the validity of multipolar 
sum rules, the dipolar structure of a finite multilayer and the dimensionality 
crossover in an infinitely extended (or periodically repeated) multilayer with varying 
interlayer spacing and wave vector. 

The theoretical possibility of crystalline order is notoriously related to poor 
clustering of particle correlations and has drawn considerable attention for Coulomb 
systems in low dimensionalities. In particular, from an analysis of the BGY hierarchy 
for a monolayer Gruber and Martin[20] have shown that the pair or three-body 
correlation functions should decay asymptotically more rapidly than r -8 in order to 
exclude crystallinity. Their analysis is easily extended to a finite multilayer, leading 
to the same conclusion. However, Requardt and Wagner [21] have recently been able 
to obtain more stringent conditions through the use of the Mermin inequality for a 
variety of Coulomb systems including the monolayer with r-1 interactions. 

* * *  

Sponsorship and support by the Istituto Nazionale di Fisica della Materia is 
gratefully acknowledged. 

A P P E N D I X  A 

Asymptotic behaviour of  the (n + 1)-body term in the BGY equations for layered 
plasmas. 

We prove in this appendix that the (n + 1)-body term in eq. (2.5), under the 
clustering condition (2.9), decays faster than 2 -(~ § 2) when R1 = ()~u, 0) with ~--~ ~ ,  
irrespectively of the number Np of layers. Since the group of particles at Q is kept 
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fLxed in taking the limit, it is sufficient to examine the behaviour of the three-body 
term. 

In the indicated limit we can write the following inequality: 

~IdrmF,,(R~)~w(Au, Rm, O) l <" 

<<. ~ I drm rm M + I drmr~2 [pT(A~e, rm, O)l , 
o IR~ 13 [sup(A, [Rm I ) ]  ' 

where, from the results of Gruber et al. [12], the second term on the right-hand side 
decays like A-7. Hence, 

(AA) I~Idrr~F,,(Rm)pT(A~e, Rm, O) l <~ ~ I drr-2 M +O(A_V)" 
m ~ 0 [sup(A, r)]~ 

r >~ Imld 

In the case where Np is finite, it is evident that  the first term on the right-hand side of 
eq. (&l)  also decays like A-~, i.e. faster than A -(~ § 2) if V > l0 + 2. 

In the case Np--* ~ ,  on the other hand, the above term can be rewritten as 

= 1 [sup (A, r)] ~ 
r~>md 

] } =47:[m~'= [A-V l r-idr+Jr-(:+~)dr md m = [)~/d] ~ + r - ( 1  + ~ ) d r  " 

For  A--, ~ we have 

A ~ A I f(x)d x ~f(md/A)m = d f(n)An ~ -~ 

with n = md/A and An = d/A --) 0, if f(x) does not change appreciably with x in the 
range An. Hence, in the case N p - - ) ~  the (n + 1)-body term decays faster than 

A -(~ +2) if ~ > 10 + 3. 

A P P E N D I X  B 

Clustering of correlations and behaviour of Am (k) at long wavelengths. 

Starting from the definition of Am(k) in eq. (3.7), we first prove that ~Am(k --)0) = 
m 

= 0 if i) the clustering condition (2.9) holds for V > 3 and n = 2, 3 and 4; and ii) for 

Ixl we have Ixl~[dypT(XyO)<.M < ~, x and y being any two sufficiently large 
position coordinates in the layers. 

Following the line of argument  given by Alastuey and Martin [9] for a similar 
proposition regarding a monolayer, we use the condition ii) above to interchange the 
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order of the two integrals in eq. (3.7). We can then write 

(B.1) = -i(2= 2k2)-l  f dr ' k .F, , (R~,)  I d r e x p [ - i k . r J H ' ( R m ,  R~, ) ,  
m s 

where 

(B.2) H'  (Rm, R~, ) = H(R,~, R~, ) + ~ o  r pW (R&,, O) = 

= pe(Rm J R ' , ,  0)  - ~p~(Rm [ R ~ , )  - p~e(Rm I 0 ) .  

The difference between H '  and H in eq. (B.2) does not contribute to the integral in 
eq. (B.1) and has been included so that we may make use of the multipolar sum rules 
given in eq. (2.10). After expanding the factor e x p [ - i k . r ]  in eq. (B.1) and using the 
charge sum rules, we find 

r f o., f o(1). 

However, under the condition i) the dipolar sum rule holds for both two-body and 
three-body correlation functions, so that the first term on the right-hand side of 
eq. (B.3) vanishes. 

By summing eq. (3.11) over all layers we then find that 

Sm (k) 
(B.4) A - lim m = (NpkD) -] + o(1) 

k-,0 k 

under the same conditions i) and ii) stated above. It would be natural to assume this 
result in a Debye-Hiickel treatment, its implication being that the dipole moment as 
read from the large-z behaviour of the electric potential created by a stack of Np 
layers is that of a monolayer with particle density Np~. However, it follows from 
eq. (B.4) that the asymptotic form of the total pair correlation function ~,pw(Rm, 0) 
would contain a term behaving like r -3. We have thus reached a contradiction: the 
clustering condition i) must hold for the validity of eq. (B.4), but eq. (B.4) refutes the 
validity of condition i). 

We therefore conclude that 

(B.5) lim ~ A ~ ( k )  = O(1) 
k ---* 0 m 

and that the clustering cannot be faster than r -3 for at least one among the two-, 
three- and four-body correlation functions. It would seem reasonable to expect that 
the higher-body correlations should not decay more slowly than the two-body ones, 
leading to the conclusion that the asymptotic decay of the total pair correlation 
function should not be faster than r-3. In such a case, A ~ 0 and the discussion given 
in the main text shows that each one of the partial pair correlations cannot decay 
faster than r-3. However, it seems to us that the possibility A = 0, implying slow 
decay of correlations at higher order, cannot be excluded. 
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