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ABSTRACT
We adopt the fixed node restricted path integral Monte Carlo method within the ‘Worm algorithm’
to simulate Wigner’s Jelliummodel at finite, non zero, temperatures using free-particle nodes of the
density matrix. The new element is that we incorporate the Worm algorithm paradigm of Prokof’ev
and Svistunov in the grand canonical ensemble in order to more efficiently handle the fermionic
exchanges.Wepresent results for the structure and thermodynamic properties of the ideal Fermi gas
and three points for the interacting electron gas.We treat explicitly the case of the partially polarized
electron gas.
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1. Introduction

The free electron gas or the Jelliummodel ofWigner [1,2]
is the simplest physical model for the valence electrons
in a metal [3] (more generally it is an essential ingredi-
ent for the study of ionic liquids (see Ref. [4] Chapter 10
and 11): molten-salts, liquid-metals, and ionic-solutions)
or the plasma in the interior of a white dwarf [5]. It can
be imagined as a system of pointwise electrons of charge e
made thermodynamically stable by the presence of a uni-
form inert neutralising background of opposite charge
density inside which they move. In this work we will
only be interested in the jellium in the three dimensional
Euclidean space, leaving its study in a curved surface
[6–9] to later studies.

The zero temperature, ground-state, properties of the
statistical mechanical system thus depends just on the
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electronic density n, or the Wigner-Seitz radius rs =
(3/4πn)1/3/a0 where a0 is Bohr radius, or the Coulomb
coupling parameter � = e2/(a0rs). Free electrons in
metallic elements [3] has 2 � rs � 4 whereas in the inte-
rior of a white dwarf [5] rs � 0.01.

The recent two decades have witnessed an impres-
sive progress in experiments and also in quantumMonte
Carlo simulations which have provided the field with
the most accurate thermodynamic data available. These
simulations started with the work by Ceperley and co-
workers and Filinov and co-workers for jellium [10–18],
hydrogen, hydrogen-helium mixtures and electron-hole
plasmas in the 1990s and have been improved dramat-
ically. We recently also applied our newly developed
method to the binary fermion-boson plasma mixture
at finite temperature [19], where we discussed the
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thermodynamic stability of the two component mixture
where the two species are both bosons, both fermions,
and one boson and one fermion.

According to the Lindhard theory of static screening,
March and Tosi [20] suppose we switch on an appropri-
ately screened test charge potential δV in a free electron
gas. The Hartree potential δV(r) created at a distance r
from a static point charge of magnitude e at the origin,
should be evaluated self-consistently from the Poisson
equation,

∇2δV(r) = −4πe2[δ(r)+ δn(r)], (1)

where δn(r) is the change in electronic density induced by
the test charge. The electron density n(r)may be written
as

n(r) = 2
∑
k

|ψk(r)|2, (2)

where ψk(r) are single-electron orbitals, the sum over
k is restricted to occupied orbitals (|k| ≤ kF, where kF
is the Fermi wave vector) and the factor 2 comes from
the sum over spin orientations. We must now calculate
how the orbitals in the presence of the test charge, differ
from plane waves exp(ik · r). We use for this purpose the
Schrödinger equation,

∇2ψk(r)+
[
k2 − 2m

�2 δV(r)
]
ψk(r) = 0, (3)

having imposed that the orbitals reduce to plane waves
with energy �2k2/(2m) at large distance .1

With the aforementioned boundary condition the
Schrödinger equation may be converted into an integral
equation,

ψk(r) = 1√
�
eik·r + 2m

�2

∫
Gk(r − r′)δV(r′)ψk(r′) dr′,

(4)
with Gk(r) = − exp(ik · r)/(4πr) and � the volume of
the system.

Within linear response theory we can replaceψk(r) by
�−1/2 exp(ik · r) inside the integral. This yields

δn(r) = − mk2F
2π3�2

∫
j1(2kF|r − r′|) δV(r

′)
|r − r′|2 dr

′, (5)

with j1(x) being the first-order spherical Bessel function
[sin(x)− x cos(x)]/x2. Using this result in the Poisson
equation we get

∇2δV(r) = −4πe2δ(r)

+ 2mk2Fe
2

π2�2

∫
j1(2kF|r − r′|) δV(r

′)
|r − r′|2 dr

′,

(6)

which is easily soluble in Fourier transform. Writing
δV(k) = 4πe2/[k2ε(k)] we find,

ε(k) = 1 + 2mkFe2

πk2�2

[
1 + kF

k

(
k2

4k2F
− 1

)
ln

∣∣∣∣k − 2kF
k + 2kF

∣∣∣∣
]
,

(7)
which is the static dielectric function in RPA.

For k → 0 this expression gives ε(k) → 1 + k2TF/k
2

with kTF = 3ω2
p/v2F (ωp being the plasma frequency and

vF the Fermi velocity) i.e. the result of the Thomas-Fermi
theory. However ε(k) has a singularity at k = ±2kF,
where its derivative diverges logarithmically .2 This sin-
gularity in δV(k) determines, after Fourier transform,
the behaviour of δV(r) at large r. δV(r) turns out to
be an oscillating function [21] rather than a monotoni-
cally decreasing function as in the Thomas-Fermi theory.
Indeed,

δV(r) =
∫

dk
(2π)3

4πe2

k2ε(k)
eik·r = e2

iπr

∫ ∞

−∞
dk

eikr

kε(k)
,

(8)
and the integrand has non-analytic behaviour at q =
±2kF,[

1
kε(k)

]
k→±2kF

= −A(k − (±)2kf ) ln |k − (±)2kF| + regularterms,
(9)

with A = (k2TF/4k
2
F)/(k

2
TF + 8k2F). Hence,

δV(r)|r→∞ = −Ae2

iπr

∫ ∞

−∞
dk eikr

[
(k − 2kF) ln |k − 2kF|

+ (k + 2kF) ln |k + 2kF|
]

= −2Ae2
cos(2kFr)

r3
. (10)

This result is based on a theorem on Fourier transforms,
Lighthill [22] stating that the asymptotic behaviour of
δV(r) is determined by the low-k behaviour as well as the
singularities of δV(k). Obviously, in the present case the
asymptotic contribution from the singularities is domi-
nant over the exponential decay of Thomas-Fermi type.
The result implies that the screened ion–ion interac-
tion in a metal has oscillatory character and ranges over
several shells of neighbours.

Today we are able to simulate on a computer the
structural and thermodynamic properties of Jellium at
finite, non zero, temperature. This allows us to predict
thermodynamic states that would be rather difficult to
obtain in nature or in the laboratory. Such as Jellium
under extreme conditions, partially polarised Jellium,
etc. In this work we will carry on some of these path
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integral simulations which make use of the Monte Carlo
technique, which is the best known method to compute
a path integral [23]. The computer experiment is alterna-
tive to the theoretical analytical approximations like RPA
that has been developed, during the years, with various
degrees of accuracies in different thermodynamic con-
ditions. Such theoretical approximations generally fall
into two categories: those which extend down from the
classical regime and those which assume some interpo-
lation between the T = 0 and high-T regimes. From the
former group we recall the Debye-Hückel (DH) theory
which solves for the Poisson-Boltzmann equations for
the classical one-component plasma and the quantum
corrections of Hansen et al. [24,25] of the Coulomb sys-
tem both with Wigner-Kirkwood corrections (H+WK)
and without (H). Clearly these methods do not perform
well in the quantum regime below the Fermi temperature
since they lack quantum exchange. The Random Phase
Approximation (RPA) [26,27] is a reasonable approxima-
tion in the low-density, high-temperature limit (where it
reduces to DH) and the low-temperature, high-density
limit, since these are both weakly interacting regimes.
Its failure, however, is most apparent in its estimation of
the equilibrium, radial distribution function g(r) which
becomes negative for stronger coupling. Extensions of the
RPA into intermediate densities and temperatures have
largely focused on constructing local-field corrections
(LFC) through interpolation since diagrammatic resum-
mation techniques often become intractable in strongly
coupled regimes. Singwi et al. [28] introduced one such
strategy. Tanaka and Ichimaru [29] (TI) extended this
method to finite temperatures and provided the parame-
terisation of the Jellium correlation energy. This method
appears to perform marginally better than the RPA at all
temperatures, though it still fails to produce a positive-
definite g(r) at values of rs > 2. A third, more recent
approach introduced by Perrot and Dharma-wardana
(PDW) [30] relies on a classical mapping where the dis-
tribution functions of a classical system at temperature
Tcf , solved for through the hypernetted-chain equation,
reproduce those for the quantum system at temperature
T. In a previous work, PDW showed such a temperature
Tq existed for the classical system to reproduce the corre-
lation energy of the quantum system at T = 0. Dharma-
wardana and Perrot [31] To extend this work to finite
temperature quantum systems, they use the simple inter-
polation formula Tcf =

√
T2 + T2

q . This interpolation is
clearly valid in the low-T limit where Fermi liquid theory
gives the quadratic dependence of the energy on T. Fur-
ther in the high-T regime, T dominates over Tq as the
system becomes increasingly classical. The PDW results
match well with the simulation results in these two limits.

It is not surprising, however, that in the intermediate
temperature regime, where correlation effects are great-
est, the quadratic interpolation fails. A contemporary, but
similar approach by Dutta and Dufty [32] uses the same
classical mapping as PDW which relies on matching the
T = 0 pair correlation function instead of the correla-
tion energy. While we expect this to give more accurate
results near T = 0, we would still expect a breakdown of
the assumed Fermi liquid behaviour near the Fermi tem-
perature. Strict benchmarks have only recently been pre-
sented in Ref. [33]. Future Jellium work will include cre-
ating a new parameterisation of the exchange-correlation
energywhich uses the simulation data directly [16,34,35].
In doing so, simulations at higher densities and both
lower and higher temperaturesmay be necessary in order
to complete the interpolation between the ground-state
and classical limits.

As will be made clear in Section 4, till recently, not
even through computer experiments we were able to
obtain exact numerical results, since one had to face the
so called fermions sign problem which had not been
solved before the advent of recent simulation [15,16]
when it was demonstrated that the fermion sign prob-
lem can be completely avoided and exact results (with an
error below 1%) for the thermodynamic functions can
be obtained. In other words we were not able to extract
exact results not even numerically from a simulation for
fermions, unlike for bosons or boltzmannons. There-
fore, in order to circumvent the fermion sign problem,
we will here resort to the most widely used approxima-
tion in quantum Monte Carlo that is the restricted path
integral fixed nodes method [36,37]. But unlike previ-
ous studies we will implement this method upon the
worm algorithm [38,39] in the grand canonical ensem-
ble. This complements our previous study [2] carried out
in the canonical ensemble. In this work we will be just
interested in proving the validity of our new numeri-
cal scheme but not its accuracy. We will then not worry
about the finite size corrections, the imaginary thermal
time discretization error, and about a stringent compari-
sonwith previous canonical ensemble studies available in
literature since this program has been already carried on
in Ref. [2].

The work is organised as follows: in Section 2 we
describe the Jelliummodel from a physical point of view,
in Section 3 we introduce the parameter space neces-
sary for the description of Jellium at finite temperature, in
Section 4we describe the simulationmethod, in Section 5
we outline the problemwewant to solve on a computer, in
Section 6 we presents some details of our new algorithm,
Section 7 is for our numerical results, and in Section 8 we
summarise our concluding remarks.
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2. Themodel

The Jellium model of Wigner [20,40–42] is an assembly
of N+ spin up pointwise electrons and N− spin down
pointwise electrons of charge e moving in a positive
inert background that ensures charge neutrality. The total
number of electrons is N = N+ + N− and the average
particle number density is n = N/�, where� is the vol-
ume of the electron fluid. In the volume � = L3 there is
a uniform neutralising background with a charge density
ρb = −en. So that the total charge of the system is zero.
The fluid polarisation is then ξ = |N+ − N−|/N: ξ = 0
in the unpolarised (paramagnetic) case and ξ = 1 in the
fully polarised (ferromagnetic) case.

Setting lengths in units of a = (4πn/3)−1/3 and ener-
gies in Rydberg’s units, Ry = �2/2ma20, where m is the
electron mass and a0 = �2/me2 is the Bohr radius, the
Hamiltonian of Jellium is

H = − 1
r2s

N∑
i=1

∇∇∇2
ri + V(R), (11)

V = 1
rs

⎛
⎝2

∑
i<j

1
|ri − rj| +

N∑
i=1

r2i + v0

⎞
⎠ , (12)

where R = (r1, r2, . . . , rN) with ri the coordinate of the
ith electron, rs = a/a0, and v0 a constant containing the
self energy of the background. Note that the presence
of the neutralising background produces the harmonic
confinement shown in Equation (12).

The kinetic energy scales as 1/r2s and the poten-
tial energy (particle-particle, particle-background, and
background-background interaction) scales as 1/rs, so
for small rs (high electronic densities), the kinetic energy
dominates and the electrons behave like an ideal gas. In
the limit of large rs, the potential energy dominates and
the electrons crystallize into a Wigner crystal. Wigner
[43] No liquid phase is realisable within this model since
the pair-potential has no attractive parts even though
a superconducting state [44] may still be possible (see
chapter 8.9 of Refs. [45,46]).

The Jelliumhas been solved either by integral equation
theories in its ground-state [28] or by computer exper-
iments in its ground-state [47] in the second half of
last century but more recently it has been studied at
finite, non zero, temperatures by several research groups
[10–12,14–18].

It was shown in Ref. [13] that the data of Brown et
al. [10,11] are inaccurate at rs = 1. This appears to be a
systematic error of the fixed node method so it would be
interesting to know whether this problem may be solved
with the present method which seems a promising route

to access higher densities which was not possible in the
paper by Brown et al.

3. Jellium at finite temperature

For the Jellium at finite temperature it is convenient to
introduce the electron degeneracy parameter� = T/TF,
where TF is the Fermi temperature

TF = TD
(2π)2

2[(2 − ξ)α3]2/3
, (13)

here ξ is the polarisation of the fluid that can be either
ξ = 0, for the unpolarised case, and ξ = 1, for the fully
polarised case, α3 = 4π/3, and

TD = n2/3�2

mkB
= �2

mkBα
2/3
3 (a0rs)2

, (14)

is the degeneracy temperature, [23] for temperatures
higher than TD quantum effects are less relevant.

The state of the fluid will then depend also upon the
Coulomb coupling parameter,� = e2/(a0rs)kBT [10]. So
that

� = rs
�

[
2(2 − ξ)2/3α

4/3
3

(2π)2

]
. (15)

The behaviour of the internal energy of the Jellium in
its ground-state (� = 0) has been determined through
Diffusion Monte Carlo (DMC) by Ceperley and Alder
[47]. Three phases of the fluid appeared, for rs < 75 the
stable phase is the one of the unpolarised Jellium, for
75 < rs < 100 the one of the polarised fluid, and for rs >
100 the one of the Wigner crystal. They used systems
from N = 38 to N = 246 electrons.

4. The simulation

The density matrix of a system of many fermions at tem-
perature kBT = β−1 can be written as an integral over all
paths {Rt}
ρF(Rβ ,R0;β)

= 1
N!

∑
P

(−1)P
∮

PR0→Rβ
dRt exp(−S[Rt]), (16)

the pathRt begins atPR0 and ends atRβ andP is a per-
mutation of particles labels. For nonrelativistic particles
interacting with a potential V(R) the action of the path,
S[Rt], is given by (see Appendix 1)

S[Rt] =
∫ β

0
dt

[
r2s
4

∣∣∣∣dRtdt

∣∣∣∣
2
+ V(Rt)

]
. (17)

Thermodynamic properties, such as the energy, are
related to the diagonal part of the density matrix, so that
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the path returns to its starting place or to a permutation
P after a time β .

To performMonte Carlo calculations of the integrand,
one makes imaginary time discrete with a time step τ ,
so that one has a finite (and hopefully small) number of
time slices and thus a classical system of N particles in
M = β/τ time slices; an equivalentNM particle classical
system of ‘polymers’ [23].

Note that in addition to sampling the path, the permu-
tation is also sampled. This is equivalent to allowing the
ring polymers to connect in different ways. This macro-
scopic ‘percolation’ of the polymers is directly related to
superfluidity as Feynman [48–50] first showed. Any per-
mutation can be broken into cycles. Superfluid behaviour
can occur at low temperature when the probability of
exchange cycles on the order of the system size is non-
negligible. The superfluid fraction can be computed in
a path integral Monte Carlo calculation as described in
Ref. [46]. The same method could be used to calculate
the superconducting fraction in Jellium at low temper-
ature. However, the straightforward application of those
techniques to Fermi systems means that odd permuta-
tions subtract from the integrand. This is the ‘fermions
sign problem’ [36] first noted by Feynman [51] who after
describing the path integral theory for boson superfluid
4He, pointed out:

The [path integral] expression for Fermi particles, such
as 3He, is also easily written down. However in the case
of liquid 3He, the effect of the potential is very hard to
evaluate quantitatively in an accurate manner. The rea-
son for this is that the contribution of a cycle to the sum
over permutations is either positive or negative depend-
ing whether the cycle has an odd or an even number of
atoms in its length L.

Thermodynamic properties are averages over the ther-
mal N-fermions density matrix which is defined as a
thermal occupation of the exact eigenstates φi(R)

ρF(R,R′;β) =
∑
i
φ∗
i (R)e

−βEiφi(R′). (18)

The partition function is the trace of the density matrix

Z(β) = e−βF =
∫

dR ρF(R,R;β) =
∑
i
e−βEi . (19)

Other thermodynamic averages are obtained as

〈O〉 = Z(β)−1
∫

dR dR′ 〈R|O|R′〉ρF(R′,R;β). (20)

Note that for any density matrix the diagonal part is
always positive

ρF(R,R;β) ≥ 0, (21)

so that Z−1ρF(R,R;β) is a proper probability distribu-
tion. It is the diagonal part which we need for many

observables, so that probabilistic ways of calculating
those observables are, in principle, possible.

Path integrals are constructed using the product prop-
erty of density matrices

ρF(R2,R0;β1 + β2)

=
∫

dR1 ρF(R2,R1;β2)ρF(R1,R0;β1), (22)

which holds for any sort of density matrix. If the prod-
uct property is used M times we can relate the den-
sity matrix at a temperature β−1 to the density matrix
at a temperature Mβ−1. The sequence of intermediate
points {R1,R2, . . . ,RM−1} is the path, and the time step
is τ = β/M. As the time step gets sufficiently small the
Trotter theorem tells us that we can assume that the
kinetic T and potential V operator commute so that:
e−τH = e−τT e−τV and the primitive approximation for
the fermions density matrix is found [23]. The Feynman-
Kac formula for the fermions density matrix results from
taking the limit M → ∞. The price we have to pay for
having an explicit expression for the density matrix is
additional integrations; all together 3N(M − 1). With-
out techniques formultidimensional integration, nothing
would have been gained by expanding the density matrix
into a path. Fortunately, simulation methods can accu-
rately treat such integrands. It is feasible tomakeM rather
large, say in the hundreds or thousands, and thereby
systematically reduce the time-step error.

In addition to the internal energy and the static struc-
ture of the Jellium one could also measure its dynamic
structure, the ‘superconducting fraction’, the specific
heat, and the pressure [23].

4.1. Restricted path integral Monte Carlo

In this section we give a brief review of the restricted path
integral Monte Carlo (RPIMC) method fully described
in Refs. [36,37]. The fermion density matrix is defined
by the Bloch equation which describes its evolution in
imaginary time

∂

∂β
ρF(R,R0;β) = −H ρ(R,R0;β), (23)

ρF(R,R0; 0) = A δ(R − R0), (24)

where β = 1/kBT with T the absolute temperature and
A is the operator of antisymmetrisation. The reach ofR0,
γ (R0, t), is the set of points {Rt} for which

ρF(Rt′ ,R0; t′) > 0 0 ≤ t′ ≤ t, (25)

where �t is the imaginary thermal time, and is illustrated
in Figure 1.
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Figure 1. Illustration of the reach γ (R0, t) of the fermion density
matrix.

Note that

ρF(R0,R0; t) > 0, (26)

and clearly

ρF(R,R0; t)|R∈∂γ (R0,t) = 0. (27)

We want to show that (27) uniquely determines the solu-
tion. Suppose δ(R, t) satisfies the Bloch equation

(
H + ∂

∂t

)
δ(R, t) = 0, (28)

in a space-time domai α = {t1 ≤ t ≤ t2,R ∈ �t} where
�t is the space domain at fixed imaginary thermal time.
And the two conditions

δ(R, t1) = 0, (29)

δ(R, t)|R∈∂�t = 0 t1 ≤ t ≤ t2, (30)

are also satisfied. Consider
∫ t2

t1
dt

∫
�t

dR e2V0tδ(R, t)
(
H + ∂

∂t

)
δ(R, t) = 0,

(31)
where V0 is a lower bound for V(R).

We have

∂

∂t
[
e2V0tδ2(R, t)

]
= 2V0e2V0tδ2(R, t)+ 2e2V0tδ(R, t)

∂

∂t
δ(R, t). (32)

Since ∫ t2

t1
dt

∫
�t

dR
∂

∂t

(
e2V0t

2
δ2(R, t)

)

=
∫ t2

t1
dt
∂

∂t

(
e2V0t

2

∫
�t

dR δ2(R, t)
)

= e2V0t2

2

∫
�t2

dR δ2(R, t2), (33)

where in the last equality we used Equation (29). Then
from Equation (31) follows

e2V0t2

2

∫
�t2

dR δ2(R, t2)

−
∫ t2

t1
dt e2V0t

∫
�t

dR

× [
V0δ

2(R, t)− δ(R, t)H δ(R, t)
] = 0. (34)

Then using Equation (30) we find

e2V0t2

2

∫
�t2

dR δ2(R, t2)

+
∫ t2

t1
dt e2V0t

∫
�t

dR

× [
(V(R)− V0)δ

2(R, t)+ λ (∇∇∇δ(R, t))2] = 0. (35)

With λ = �2/2m. Each term in Equation (35) is non-
negative so it must be

δ(R, t) = 0 inα. (36)

Let ρ1 and ρ2 be two solutions of the restricted path prob-
lem and let δ = ρ1 − ρ2. Then δ(R, t)|R∈∂γ (R0,t) = 0 for
t1 ≤ t ≤ t2. By taking t2 to infinity and t1 to zero we
conclude that the fermion density matrix is the unique
solution.

Equation (35) also shows that the reach γ has the tiling
property [36]. Suppose it did not. Then there would exist
a space-time domain with the density matrix non-zero
inside and from which it is only possible to reach R0 or
any of its images PR0, with P any permutation of the
particles, crossing the nodes of the density matrix. But
such a domain cannot extend to t = 0 because in the clas-
sical limit there are no nodes. Then this density matrix
satisfies for some t1 > 0 the boundary conditions (29)
and (30) and as a consequence it must vanish completely
inside the domain contradicting the initial hypothesis.

We now derive the restricted path identity. Suppose
ρF is the density matrix corresponding to some set of
quantum numbers which is obtained by using the projec-
tion operator A on the distinguishable particle density
matrix. Then it is a solution to the Bloch equation (23)
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with boundary condition (24). Thus we have proved the
Restricted Path Integral identity

ρF(Rβ ,R0;β)

=
∫

dR′ ρF(R′,R0; 0)
∮
R′→Rβ∈γ (R0)

dRt e−S[Rt],

(37)

where the subscript means that we restrict the path
integration to paths starting at R′, ending at Rβ and
node-avoiding. The weight of the walk is ρF(R′,R0; 0) =
(N!)−1 ∑

P(−)Pδ(R′ − PR0). It is clear that the con-
tribution of all the paths for a single element of the density
matrixwill be of the same sign, thus solving the sign prob-
lem; positive if ρF(R′,R0; 0) > 0, negative otherwise. On
the diagonal the densitymatrix is positive and on the path
restriction ρF(R,R0;β) > 0 then only even permutations
are allowed since ρF(R,PR;β) = (−)PρF(R,R;β). It
is then possible to use a bosons calculation to get the
fermions case.

Important in this argument is that the random walk is
a continuous process so we can say definitely that if sign
of the density matrix changed, it had to have crossed the
nodes at some point.

The restricted path identity is one solution to Feyn-
man’s task of rearranging terms to keep only positive
contributing paths for diagonal expectation values.

The problem we now face is that the unknown den-
sity matrix appears both on the left-hand side and on
the right-hand side of Equation (37) since it is used to
define the criterion of node-avoiding paths. To apply
the formula directly, we would somehow have to self-
consistently determine the density matrix. In practice
what we need to do is make an ansatz, which we call ρT ,
for the nodes of the density matrix needed for the restric-
tion. The trial density matrix, ρT , is used to define trial
nodal cells: γT(R0).

Then if we know the reach of the fermion density
matrix we can use the Monte Carlo method to solve the
fermion problem restricting the path integral (RPIMC)
to the space-time domain where the density matrix has a
definite sign (this can be done, for example, using a trial
density matrix whose nodes approximate well the ones
of the true density matrix) and then using the antisym-
metrisation operator to extend it to the whole configu-
ration space. This will require the complicated task of
sampling the permutation space of the N-particles [23].
Recently it has been devised an intelligentmethod to per-
form this sampling through a new algorithm called the
worm algorithm [38,39]. In order to sample the path in
coordinate space one generally uses various generalisa-
tions of the Metropolis rejection algorithm [52] and the

bisection method [23] in order to accomplish multislice
moves which becomes necessary as τ decreases.

The pair-product approximation was used by Brown
et al. [10] (see Appendix 2) to write the many-body den-
sity matrix as a product of high-temperature two-body
density matrices [23]. The pair Coulomb density matrix
was determined using the results of Pollock [53] even if
these could be improved using the results of Vieillefosse
[54,55]. This procedure comes with an error that scales
as ∼ τ 3/r2s where τ = β/M is the time step, with M the
number of imaginary time discretizations. A more dom-
inate form of time step error originates from paths which
cross the nodal constraint in a time less than τ . To help
alleviate this effect, Brown et al. [10] use an image action
to discourage paths fromgetting too close to nodes. Addi-
tional sources of error are the finite size one and the
sampling error of the Monte Carlo algorithm itself. For
the highest density points, statistical errors are an order
of magnitude higher than time step errors.

The results at a given temperature T where obtained
starting from the density matrix in the classical limit, at
small thermal times, and using repetitively the squaring
method

ρF(R1,R2;β) =
∫

dR′ ρF(R1,R′;β/2)ρF(R′,R2;β/2).
(38)

Time doubling is an improvement also because if we have
accurate nodes down to a temperature T, we can do accu-
rate simulations down to T/2. Equation (38) is clearly
symmetric in R1 and R2. The time doubling cannot be
repeated without reintroducing the sign problem.

Brown et al. [10] use N = 33 electrons for the fully
spin polarised systemandN = 66 electrons for the unpo-
larised system.

5. The problem

We need to adopt a free fermion density matrix restric-
tion [10] for the path integral calculation from the worm
algorithm [39,56] to the reach of the reference point in
the moves ending in the Z sector: remove, close, wig-
gle, and displace. The worm algorithm is a particular
path integral algorithmwhere the permutations need not
to be sampled as they are generated with the simula-
tion evolution. We will use the primitive approximation
of Equations (A8)–(A10), randomise the reference point
time slice, restrict also the G sector, in particular the
advance and swapmoves, choose the probability of being
in the G sector, C0 defined in Ref. [39], as small as possi-
ble, in order not to let theworm algorithm get stuck in the
G sector when we have many time slices. Usually choos-
ing a smaller time step allows to use a larger C0 since the
path is smoother and the restriction gives less problems
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in the transition from the G to the Z sector. Or equiv-
alently increasing the number of time slices at fixed C0
gives a larger permanence in the Z sector. The algorithm
chooses autonomously the optimal τ to be used.

The restriction implementation is rather simple: we
just reject the move whenever the proposed path is such
that the ideal fermion density matrix calculated between
the reference point and any of the time slices subject to
newly generated particles positions has a negative value.
Our algorithm is described in detail in the following
section.

The trial density matrix used to perform the restric-
tion of the fixed nodes path integral is chosen as the one
of ideal fermions which is given by

ρ0(R,R′; t) ∝ A

[
e−

(ri−r′j)2
4λt

]
, (39)

where λ = �2/2m and A is the antisymmetrisation
operator acting on the same spin groups of particles. We
expect this approximation to be best at high tempera-
tures and low densities when the correlation effects are
weak. Clearly in a simulation of the ideal gas (V = 0) this
restriction returns the exact result for fermions.

We will use the primitive approximation in a grand
canonical ensemble calculation at fixed chemical poten-
tial μ, volume �, and temperature T. Decreasing the
chemical potential the average number of particles
diminishes. Decreasing C0 the simulation spends more
time in the Z sector.

So, we will take the Bohr radius a0 as units of length
and energies in Rydberg’s units. In particular in the grand
canonical simulation the path integral time step τ (Ry−1)

will be independent from rs, unlike the simulations of
Brown et al. [10]

The Coulomb potential is treated through the method
of Natoli and Ceperley [57] which cures its long range
nature (see Appendix 3). Even if the comparison with
the direct method by Fraser et al. [58] gives already
reasonable results.

Wewill explicitly determine the dependence of the Jel-
lium properties (structural and thermodynamic) on the
polarisation ξ .

6. Our algorithm

Our algorithm briefly presented in the previous section
is based on the worm algorithm of Boninsegni et al.
[39,56,59–61]. This algorithmuses amenuof ninemoves.
Three self-complementary: swap, displace, and wiggle,
and the other six are three couples of complementary
moves: insert-remove, open-close, and advance-recede.
These moves act on ‘worms’ with a head Ira and a tail

Masha in the β-periodic imaginary thermal time, which
can swap a portion of their bodies (swapmove), canmove
forward and backward (advance-recede moves), can be
subdivided in two or joined into a bigger one (open-close
moves), and can be born or die (insert-remove moves)
since we are working in the grand-canonical ensemble.
The configuration space of the worms is called the G sec-
tor. When the worms recombine to form a closed path
we enter the so called Z sector and the path can trans-
late in space (displace move) and can propagate in space
through the bisection algorithm (wiggle move) carefully
explained in Ref. [23].

In order to reach a restricted path integral we restrict
themoves that end in theZ sector, that is: displace, wiggle,
close, and remove. This is pictorially shown in Figure 2
for the first three moves. It is important to stress the fact
that we choose the reference point time slice randomly
(i.e. we choose an integer random number between 1
and M, say m, and the reference point will then be R0 =
Rmτ ), before eachmove, to increase the acceptances in the
restrictions. This is allowed because we are free to per-
form a translation in the β-periodic imaginary thermal
time. The reaches of different reference points will in gen-
eral be different. In the figure the reach is schematically
represented as a double cone.

In order to increase the acceptances in the restrictions
we also restricted some moves in the G sector: swap and
advance.

In order to implement the restriction we reject the
move whenever the proposed path is such that the
ideal fermion density matrix of Equation (39) calculated
between the reference point and any of the time slices
subject to newly generated particles positions has a nega-
tive value. That is, whenever the path ends up in a region
not belonging to the reach of the reference point as shown
in Figure 2. The restriction of the G sector moves acts in
the same way but on worms rather than on closed paths.
When calculating diagonal properties we consider only
the density matrix at the reference point.

Since the averages are only taken during the perma-
nence in the Z sector it is fundamental to restrict the
moves that end in the Z sector. Since these are the ones
that have an influence on the measures of the various
estimators during the run. If we enter the Z sector in
such a way that we are out of the reach of the reference
point the algorithm will continue wandering in the G
sector till a door to the Z sector opens up. The code with-
out restrictions gives the bosonic calculation so we are
free to restrict also the G sector in order to increase the
acceptances of the Z sector.

For each move we can decide the frequency of the
move and the maximum number of time slices it oper-
ates on, apart from the displace move where instead of
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Figure 2. (Color online) Illustration of the rejection algorithm
within the worm algorithm. The bold line represents schemati-
cally the closed path or the openworm, of a single electron. In the
most general case thesewillwind through thebeta periodic imag-
inary thermal time circle, but this is not shown in the illustration.
The reference point is ri0 and themicroscopic reach is represented
schematically as the shaded doubly cylindrical region. In general
the reach will be a complicated region of space-time as pointed
out in Figure 1 for the macroscopic reach. Only the three moves:
displace (Z→Z), wiggle (Z→Z), and close (G→Z) are shown. On
the left we have the starting configuration and on the right we
show two different actions of each move, one accepted and one
rejected.

the maximum number of time slices we can decide the
maximum extent of the spatial translation displacement.
It is well known thatMonteCarlo algorithmsworks better
as long as we have a longer moves menu, unless of course
one violates detailed balance. So the worm algorithm is
very efficient in exploring all the electrons path configu-
ration with all the necessary exchanges.

7. Results

In order to test the validity of the restriction proce-
dure we first simulated a system of free (V = 0) particles
without the restriction (bosons) and with the restriction
(fermions). The result for the radial distribution function
is shown in Figure 3. The small discrepancy with the ana-
lytic result of Bosse et al. [62] is due to the finite size effect.
The average number of particles in the simulation for
the bosons being around 107 and for the fermions 46 for
β = 1Ry−1, 27 forβ = 10Ry−1, and 21 forβ = 30Ry−1.
For the free particles we do not have any source of error
coming from the imaginary time discretization. Since we
were not interested in a quantitative accurate analysis we
chose the simulations at smaller temperatures shorter.

Figure 3. (Color online) The radial distribution function for an
ideal gas of bosons at one inverse temperature (β = 1 Ry−1)
and an ideal gas of fermions at three inverse temperatures (β =
1Ry−1, 10Ry−1, 30Ry−1).We simulate fully polarised (ξ = 1) par-
ticles. The exact analytical results are shown as guiding lines and
were derived from the work of Bosse et al. [62]

The volume was kept fixed at � = 1.25 × 105a30 corre-
sponding to a half box side of L/2 = 25a0. We used 20
time slices for the boson case and 80 for the fermion cases.

In these simulations we find good agreement with
the exact analytic results also for the internal energy per
particle (kinetic and potential) and for the pressure.

Then we simulated the Jellium using for the poten-
tial energy, V, the image potential, VI , of Equation (A33)
where we chose the short and long range splitting, nec-
essary for the bare Coulomb potential v(r) = 2 Ry/r,
using the optimised method of Natoli and Ceperley [57]
with an eight-order polynomial for the radial interpola-
tion. In the long range part we keep up to 128 Fourier
components.

In Table 1 we present our results for various ther-
modynamic quantities. Our results cannot be directly
compared with the ones of Brown et al. [10] since we are
running at fixed chemical potential but we believe that we
are able to extend their results at higher density rs < 1.
Benchmark data can be found in Refs. [63,64]. We leave
a careful comparison in a subsequent work.

In Figure 4 we show our results for the radial distribu-
tion function for the states of Table 1.

8. Conclusions

We have successfully implemented the ideal fermion
density matrix restriction on the path integral worm
algorithmwhich is able to generate the necessary permu-
tations during the simulation evolution without the need
of their explicit sampling. This allowed us to reach the
fermionic finite temperature properties of a given fluid of
particles interacting through a pair potential. We worked
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Table 1. Thermodynamic results in our simulations: β (Ry−1) inverse temperature, ek (Ry) kinetic energy per particle, ep (Ry) potential
energy per particle, P (Ry/a30) pressure.

M ξ N L β rs � � ek ep P

60 1 35.35(4) 5 0.04 0.945 3.819 0.085 31.5(5) −0.736(3) 5.7(1)
80 0.154 57.0(2) 50 4 8.060 4.180 0.993 0.365(8) −0.0921(4) 5.2(2)×10−5

680 1 30.15(3) 50 68 9.966 0.250 13.647 0.016(1) −0.12198(5) ≈ 0

Figure 4. (Color online) The radial distribution function for Jel-
lium in the states of Table 1. Also shown is the DH result for the
highest temperature state, gDH(r) = exp[−�

r exp(−
√
3�r)].

in the grand canonical ensemble and applied our method
to the Jellium fluid of Wigner. Even if our results cannot
be directly compared with the previous canonical cal-
culation of Brown et al. [10] (this program was already
carried out in our previous work [2]) we believe that they
complement them with the access to the high density
regime and with the treatment of the general polarisa-
tion case. In this preliminary paper we just address the
validity of our method, its accuracy will be treated in a
forthcoming work.

The relevance of our study relies in the fact that our
simulation method is different from both the method of
Ceperley et al. [10,11] who uses the fixed nodes approxi-
mation in the canonical ensemble and explicitly samples
the necessary permutations, and from the one of Bonitz
et al. [12,14–16] who combine configuration path inte-
gralMonte Carlo and permutation blocking path integral
Monte Carlo. Our method is also different from others
quantumMonte Carlo methods like the one of Malone et
al. [17] that agrees well with the one of Bonitz at high
densities and the direct path integral Monte Carlo one
of Filinov et al. [18] that agrees well with Brown at low
density andmoderate temperature. So our new algorithm
adds to the ones already used in the quest for an optimal
way to calculate the properties of the fascinatingWigner’s
Jellium model at finite temperatures.

We obtained results for both the structure, the radial
distribution function, and various thermodynamic quan-
tities.

We intend to adopt this method to simulate Jellium in
a curved surface [6–9] in the near future. For example
the Jellium on the surface of a sphere with a Dirac mag-
netic monopole at the centre could be used to study the
quantumHall effect [65].We already successfully applied
the present method to Jellium on the surface of a sphere
[66] and to two component boson-fermion plasma on a
plane [19].

Notes

1. This approach (which leads to the Random Phase Approx-
imation, RPA) is approximate insofar as the potential
entering the Schrödinger equation has been taken as the
Hartree potential, thus neglecting exchange and corre-
lation between an incoming electron and the electronic
screening cloud.

2. The discontinuity in the momentum distribution across
the Fermi surface introduces a singularity in elastic scat-
tering processes with momentum transfer equal to 2kF.
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Appendices

Appendix 1. The primitive action

In this appendix we give a brief review of the derivation of the
primitive approximation given in Ref. [23]. Suppose theHamil-
tonian is split into two pieces H = T + V , where T and V
are the kinetic and potential operators. Recall the exact Baker-
Campbell-Hausdorff formula to expand exp(−τH ) into the
product exp(−τT ) exp(−τV ). As τ → 0 the commutator
terms which are of order higher than τ 2 become smaller than
the other terms and thus can be neglected. This is known as the
primitive approximation

e−τ(T +V ) ≈ e−τT e−τV . (A1)

hence we can approximate the exact density matrix by prod-
uct of the density matrices for T and V alone. One might
worry that this would lead to an error as M → ∞, with small
errors building up to a finite error. According to the Trotter [67]
formula, one does not have to worry

e−β(T +V ) = lim
M→∞

[
e−τT e−τV

]M
. (A2)

The Trotter formula holds if the three operators T , V , and
T + V are self-adjoint and make sense separately, for exam-
ple, if their spectrum is bounded below [68]. This is the case for
the Hamiltonian describing Jellium.

Let us now write the primitive approximation in position
space

ρ(R0,R2; τ) ≈
∫

dR1〈R0|e−τT |R1〉〈R1|e−τV |R2〉, (A3)

and evaluate the kinetic and potential density matrices. Since
the potential operator is diagonal in the position representa-
tion, its matrix elements are trivial

〈R1|e−τV |R2〉 = e−τV(R1)δ(R2 − R1). (A4)

The kinetic matrix can be evaluated using the eigenfunction
expansion of T . Consider, for example, the case of distin-
guishable particles in a cube of side L with periodic boundary
conditions. Then the exact eigenfunctions and eigenvalues of
T are L−3N/2eiKnR and λK2

n, with Kn = 2πn/L and n a 3N-
dimensional integer vector. We are using here dimensional
units. Then

〈R0|e−τT |R1〉 =
∑
n

L−3Ne−τλK
2
ne−iKn(R0−R1) (A5)

= (4πλτ)−3N/2 exp
[
− (R0 − R1)2

4λτ

]
, (A6)

whereλ = �2/2m. Equation (A6) is obtained by approximating
the sum by an integral. This is appropriate only if the ther-
mal wavelength of one step is much less than the size of the
box, λτ � L2. In some special situations this condition could
be violated, in which case one should use Equation (A5) or
add periodic ‘images’ to Equation (A6). The exact kinetic den-
sity matrix in periodic boundary conditions is a theta function,∏3N

i=1 θ3(zi, q), where zi = π(Ri0 − Ri1)/L, R
i is the ith compo-

nent of the 3N dimensional vector R, and q = e−λτ(2π/L)2 (see
chapter 16 of Ref. [69]). Errors from ignoring the boundary
conditions are O(q), exponentially small at largeM.

A link m is a pair of time slices (Rm−1,Rm) separated by a
time step τ = β/M. The action Sm of a link is defined as minus
the logarithm of the exact density matrix. Then the exact path-
integral expression becomes

ρ(R0,RM ;β) =
∫

dR1 . . . dRM−1 exp

[
−

M∑
m=1

Sm
]
. (A7)

It is convenient to separate out the kinetic action from the rest
of the action. The exact kinetic action for linkmwill be denoted
Km

Km = 3N
2

ln(4πλτ)+ (Rm−1 − Rm)2

4λτ
. (A8)

The inter-action is then defined as what is left

Um = U(Rm−1,Rm; τ) = Sm − Km. (A9)

In the primitive approximation the inter-action is

Um
1 = τ

2
[V(Rm−1)+ V(Rm)], (A10)

where we have symmetrised Um
1 with respect to Rm−1 and Rm,

since one knows that the exact density matrix is symmetric and
thus the symmetrised form is more accurate.

A capital letter U refers to the total link inter-action. One
should not think of the exact U as being strictly the poten-
tial action. That is true for the primitive action but, in general,
is only correct in the small−τ limit. The exact U also con-
tains kinetic contributions of higher order in τ . If a subscript
is present on the inter-action, it indicates the order of approxi-
mation; the primitive approximation is only correct to order τ .
No subscript implies the exact inter-action.
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https://doi.org/10.1140/epjb/e2016-60917-9
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https://doi.org/10.1090/S0002-9939-1959-0108732-6
https://doi.org/10.1063/1.437829
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The residual energy of an approximate density matrix is
defined as

EA(R,R′; t) = 1
ρA(R,R′; t)

[
H + ∂

∂t

]
ρA(R,R′; t). (A11)

The residual energy for an exact density matrix vanishes; it is
a local measure of the error of an approximate density matrix.
TheHamiltonianH is a function ofR; thus the residual energy
is not symmetric in R and R′.

It is useful to write the residual energy as a function of the
inter-action. We find

EA(R,R′; t) = V(R)− ∂UA

∂t
− (R − R′) · ∇UA

t
+ λ∇2UA − λ (∇UA)

2 . (A12)

The terms on the right hand side are ordered in powers of τ ,
keeping inmind thatU(R) is of order τ , and |R − R′| is of order
τ 1/2. One obtains the primitive action by setting the residual
energy to zero and dropping the last three terms on the right
hand side.

The residual energy of the primitive approximation is

E1(R,R′; t) = 1
2

[
V(R)− V(R′)

] − 1
2
(R − R′) · ∇V

+ λt
2

∇2V − λt2

4
(∇V)2 . (A13)

With a leading error of ∼ λτ 2.

Appendix 2. The pair-product action

An often useful method to determine the many-body action
is to use the exact action for two electrons [70]. To justify this
approach, first assume that the potential energy can be broken
into a pairwise sum of terms

V(R) =
∑
i<j

v(|ri − rj|), (A14)

with |ri − rj| = rij. Next, apply the Feynman-Kac formula for
the inter-action

e−U(R0,RF ;τ) =
〈
exp

[
−

∫ τ

0
dt V(R(t))

]〉
RW

, (A15)

where the notation 〈· · · 〉RW means the average over all Gaus-
sian random walks from R0 to RF in a ‘time’ τ . So that

e−U(R0,RF ;τ) =
〈
exp

⎡
⎣−

∫ τ

0
dt

∑
i<j

v(rij(t))

⎤
⎦〉

RW

(A16)

=
〈∏
i<j

exp
[
−

∫ τ

0
dt v(rij(t))

]〉
RW

(A17)

≈
∏
i<j

〈
exp

[
−

∫ τ

0
dt v(rij(t))

]〉
RW

(A18)

=
∏
i<j

exp
[
−u2(rij, r′ij; τ)

]
(A19)

= exp

⎡
⎣−

∑
i<j

u2(rij, r′ij; τ)

⎤
⎦ = e−U2(R0,RF ;τ),

(A20)

where U2 is the pair-product action and u2 is the exact action
for a pair of electrons. At low temperatures the pair action
approaches the solution of the two particle wave equation.
The result is the pair-product or Jastrow ground-state wave
function, which is the ubiquitous choice for a correlated wave
function because it does such a good job of describing most
ground-state correlations.

The residual energy (see Equation (A11)) for the pair-
product action is less singular than for other forms. We have
that

u2(rij, r′ij; τ) = − ln
〈
exp

(
−

∫ τ

0
dt v(rij(t))

)〉
RW

, (A21)

is of order τ 2 since the two body problem can be factorised
into a centre-of-mass term and a term that is a function of the
relative coordinates. Moreover we must have

∂u2
∂τ

= v(rij(τ )), (A22)

so that
∂U2

∂τ
= V(R(τ )), (A23)

which tells that only the last three terms on the right hand side
of Equation (A12) contribute to the residual energy. We also
have

∇U2 =
∑
i

∑
i�=j

∇iu2(rij, r′ij; τ), (A24)

where the indices run over the particles. So the leading error of
the pair-product action is ∼ λτ 3.

Appendix 3. Long-range potentials with the
Ewald image technique

Suppose the bare potential in infinite d dimensional space is
v(r). Let us define the Fourier transform by

ṽk =
∫ ∞

−∞
ddr e−ik·rv(r). (A25)

Then its inverse is

v(r) =
∫ ∞

−∞
ddk
(2π)d

eik·rṽk . (A26)

Now let us find the energy of a single particle interacting
with an infinite rectangular lattice of another particle a distance
r away. To make it converge we also add a uniform background
of the same density (� =volume) of opposite charge. Thus the
‘image pair-potential’ is equal to

vI(r) =
∑
L

v(r + L)− ṽ0/�. (A27)

The L sum is over the Bravais lattice of the simulation cell
L = (mxLx,myLy, . . .)wheremx,my, . . . range over all positive
and negative integers. Converting this to k-space and using the
Poisson sum formula we get

vI(r) = 1
�

′∑
k

ṽkeik·r, (A28)

where the prime indicates that we omit the k = 0 term; it can-
cels out with the background. The k-sum is over reciprocal lat-
tice vectors of the simulation boxk = (2πnx/Lx, 2πny/Ly, . . .).
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Because both sums are so poorly convergent, we make the
division into k-space and r-space; taking the long-range part
into k-space. We write

v(r) = vs(r)+ vl(r), (A29)

where the optimal splitting is discussed in the work by Natoli
andCeperley [57]. Since Fourier transform is linear, we can also
write

ṽk = ṽsk + ṽlk . (A30)
Then the image pair-potential is written as

vI(r) =
∑
L

vs(|r + L|)+ 1
�

∑
k

ṽlkeik·r − 1
�
ṽ0. (A31)

Now let us work with N particles of charge qi in a periodic
box and let us compute the total potential energy of the unit cell.
Particles i and j are assumed to interact with a pair-potential
qiqjv(rij). The image potential energy for theN-particle system
is

VI =
∑
i<j

qiqjvI(rij)+
∑
i
q2i vM , (A32)

where vM is the interaction of a particle with its own images; it
is aMadelung constant for particle i interacting with the perfect
lattice of the simulation cell. If this term were not present, par-
ticle i would only see N−1 particles in the surrounding cells
instead of N. We can find its value by considering the limit as
two particles get close together with the image pair-potential.
Hence

vM = 1
2
lim
r→0

[vI(r)− v(r)]. (A33)

Now we substitute the split up image pair-potential and collect
all the terms together

VI =
∑
i<j

∑
L

qiqjvs(|rij + L|)+ 1
�

′∑
k

ṽlk
∑
i<j

qiqjeik·rij

− 1
�

∑
i<j

ṽs0qiqj +
∑
i
q2i vM . (A34)
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