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1. Introduction

New materials chemical technology allows for the synthesis of colloidal-size particles
with patches exhibiting an interaction pattern different from that of the rest of the
surface [1–3]. When the patch occupies a hemisphere, we are in the presence of so-called
Janus particles [3–8].
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Figure 1. Sketch of a binary mixture of one-dimensional Janus particles. Particles
of species 1 (2) have a white (green) left face and a green (white) right face. In
general, four types of interactions are possible: green–white (φ11), green–green (φ12),
white–white (φ21), and white–green (φ22). However, in most of this paper we will
assume φ11 = φ22 = φ21. In this particular example, x1 = x2 =

1
2 and N = 6.

One-dimensional fluids play an important role in statistical mechanics because they
often offer integrable systems [9–34]. In a recent paper [35], two of us derived the exact
equilibrium thermodynamic and structural properties of one-dimensional Janus fluids
in the thermodynamic limit (TL). The system consisted in a binary mixture of two-
face Ni = xiN particles of species i = 1, 2, where xi is the mole fraction of species i
and N is the total number of particles. See figure 1 for a sketch of the system. In this
type of systems (henceforth referred to as quenched), the number of particles (N 1 and
N 2) with each face orientation is kept fixed but of course one needs to average over
all possible microscopic configurations to obtain macroscopic quantities. Interestingly,
the theoretical predictions for quenched systems agreed excellently well with Monte
Carlo (MC) simulations for annealed systems (where at each MC attempt a particle is
assigned the face orientation 1 or 2 with probabilities q1 and q2 = 1− q1, respectively)
with N = 500.

The investigation of [35] stimulates a few questions: (i) can the exact derivation of
the Gibbs free energy in the TL (N →∞) be extended to quenched and/or annealed
finite-N systems? (ii) Does the quenched ↔ annealed equivalence break down at finite
N? (iii) Can those theoretical predictions be validated by MC simulations? (iv) Is the
dependence of the average mole fraction 〈x1〉 on the probability q1 robust with respect
to N in annealed MC simulations for biased situations (q1 �= 1

2
)? The main aim of this

paper is to address those questions. As will be seen, the answers are affirmative in all
the cases.

The remainder of this paper is organized as follows. Section 2 presents the deriva-
tion of the configuration integral, and hence of the Gibbs free energy G, for a finite-
size quenched binary mixture in the isothermal–isobaric ensemble. Those results are
then used in section 3 to derive G for an annealed fluid. Since the exact results in
sections 2 and 3 apply to any choice of the two nearest-neighbor interaction potentials
φ11 = φ22 = φ21 and φ12 (see figure 1), the expressions are particularized in section 4
to the Kern–Frenkel model [36], where φ11 and φ12 are the hard-rod and square-well
potentials, respectively. The theoretical results are validated and confirmed by MC sim-
ulations in section 5, where also the case of biased annealed systems is addressed. Finally,
the main results of the work are summarized in section 6. The most technical parts of
the paper are relegated to five appendices.
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2. Finite-N Gibbs free energy of a quenched binary mixture of Janus rods

2.1. The system

Let us consider a one-dimensional binary fluid mixture made of N 1 particles of species
1 (right ‘spin’) and N 2 = N −N 1 particles of species 2 (left ‘spin’) on a line of length
L (see figure 1). Henceforth, we will use Latin and Greek indices for species and par-
ticles, respectively. A particular spatial configuration will be denoted as x ≡ {xα;α =
1, 2, . . . ,N}. Analogously, a particular spin (or species) configuration will be denoted as
s ≡ {sα;α = 1, 2, . . . ,N}, where sα = 1, 2 represents the spin of particle α. Since we are
considering a quenched mixture, the number of possible spin configurations are restricted
by the constraint

N∑
α=1

δsα,1 = N1. (2.1)

The total number of allowed spin configurations is
(

N
N1

)
.

We assume that the rods are impenetrable and that their interaction is restricted to
nearest neighbors. Given s and x , the total potential energy can be written as

ΦN (s, x) =
N−1∑
α=1

φsα,sα+1
(xα+1 − xα) + ωφsN ,s1(x1 + L− xN ), (2.2)

where, without loss of generality, we assume that particles 1, 2, . . . ,N are ordered from
left to right. In equation (2.2), ω = 1 if periodic boundary conditions are applied and
ω = 0 otherwise (open systems).

2.2. Isothermal–isobaric partition function

In the isothermal–isobaric ensemble, the partition function is [32, 37]

ZN1,N2
(β, γ) = Z id

N1,N2
(β, γ)QN1,N2

(β, γ), (2.3)

where

Z id
N1,N2

(β, γ) =
CN1,N2

Lref[Λ1(β)]
N1 [Λ2(β)]

N2
, CN1,N2

(γ) ≡
(
N

N1

)
γ−(N+1), (2.4)

is the ideal-gas partition function and

QN1,N2
(β, γ) =

1

CN1,N2
(γ)

′∑
s

∫ ∞

0

dL e−γL

∫
dNx

0<x1<...<xN<L

e−βΦN (s,x) (2.5)

is the configuration integral. Here, β ≡ 1/kBT (kB and T being the Boltzmann con-
stant and the absolute temperature, respectively) and γ ≡ βp (p being the pressure).
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Figure 2. Illustration of the change of variables (2.7).

In equation (2.4), Lref is a reference length (introduced to make Z id
N dimensionless)

and Λi(β) ≡ h
√

β/2πmi is the thermal de Broglie wavelength (h being the Planck con-
stant and mi being the mass of a particle of species i). In equation (2.5), the prime in
the summation denotes the constraint (2.1). Note that, by construction, QN1,N2

= 1 if
ΦN = 0.

Let us make QN1,N2
more explicit. First,

QN1,N2
=

1

CN1,N2

′∑
s

∫ ∞

0

dL e−γL

∫ L

0

dx1

∫ L

x1

dx2 . . .

∫ L

xN−1

dxN e−βΦN (s,x)

=
1

CN1,N2

′∑
s

∫ ∞

0

dx1

∫ ∞

x1

dx2 . . .

∫ ∞

xN−1

dxN

∫ ∞

xN

dL e−γL−βΦN (s,x), (2.6)

where in the second step we have changed the order of integration. Next, we perform
the change of variables {x1, x2, . . . , xN ,L} → {x1, r2, . . . , rN , rN+1}, where (see figure 2)

ri ≡ xi − xi−1 (i = 2, . . . ,N), rN+1 ≡ x1 + L− xN. (2.7)

Note that L =
∑N+1

α=2 rα. With this change of variables, equation (2.6) becomes

QN1,N2
=

1

CN1,N2

′∑
s

[
N∏

α=2

∫ ∞

0

drα e
−γrα−βφsα−1,sα

(rα)

]

×
∫ ∞

0

dx1

∫ ∞

x1

drN+1e
−γrN+1−βωφsN ,s1

(rN+1)

=
1

CN1,N2

′∑
s

[
N∏

α=2

Ωsα−1,sα(β, γ)

][
−∂ΩsN ,s1(βω, γ)

∂γ

]
, (2.8)

where

Ωij(β, γ) ≡
∫ ∞

0

dr e−γr−βφij(r). (2.9)
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Table 1. Spin configurations s for N 1 = 4 and N 2 = 2, organized according to the
number (nij) of pairs ij. The number of spin configurations sharing the same values
of nij is given by w({nij}); analogously, w12(n12) is the number of spin configurations
sharing the same n12, regardless of the values of n11, n22, and n21.

Henceforth, we particularize to open systems (ω = 0), so that

QN1,N2
=

γ−2

CN1,N2

′∑
s

N∏
α=2

Ωsα−1,sα . (2.10)

Given a spin configuration s, let us call nij(s) the number of pairs ij. Thus,

N∏
α=2

Ωsα−1,sα = Ω
n11(s)
11 Ω

n22(s)
22 Ω

n12(s)
12 Ω

n21(s)
21 . (2.11)

Obviously, n11 + n22 + n12 + n21 = N − 1. If we call w(n11,n22,n12,n21) the number of
spin configurations with nij pairs ij, equation (2.10) can be rewritten as

QN1,N2
=

γ−2

CN1,N2

∑
n11,n22,n12,n21

w(n11,n22,n12,n21) Ω
n11
11 Ω

n22
22 Ω

n12
12 Ω

n21
21 . (2.12)

Table 1 shows the possible values of nij and w for the simple example of N 1 = 4 and
N 2 = 2.

In general, the evaluation of the number of combinations w({nij}) is quite hard. On
the other hand, since in the end we will apply the results to the Kern–Frenkel Janus
model [36], we can particularize to the case where φ11(r) = φ22(r) = φ21(r), what implies
Ω11 = Ω22 = Ω21, so that equation (2.12) reduces to

QN1,N2
=

γN−1(
N
N1

)min{N1,N2}∑
n12=0

w12(n12)Ω
N−1−n12
11 Ωn12

12 , (2.13)

where w12(n12) stands for the number of spin configurations with n12 pairs 12.
To determine w12(n12), imagine that we enumerate particles of each species i = 1

and 2 from left to right as αi = 1, . . . ,Ni. Then, each pair of type 12 can be identified
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with a label (α1,α2). Thus, given a number n12, each compatible spin configuration s
is characterized by n12 pairs of the form (α1,α2). For example, if N 1 = 4 and N 2 = 2
(table 1), the spin configuration s = {112 121} has n12 = 2 pairs: (α1,α2) = (2, 1) and
(3, 2), while the spin configuration s = {211 121} has a single n12 pair: (α1,α2) = (3, 2).
There is a one-to-one correspondence between the n12 pairs of the form (α1,α2) and the
associated spin configuration s . As a consequence, the number of spin configurations
w12(n12) with n12 pairs of type 12 is given by the number of ways of choosing the n12

labels α1 out of N 1 possible values and the n12 labels α2 out of N 2 possible values.
Therefore,

w12(n12) =

(
N1

n12

)(
N2

n12

)
. (2.14)

As a test of consistency, note that the total number of spin configurations is recovered

as
∑min{N1,N2}

n12=0 w12(n12) =
(

N
N1

)
. Finally, the configuration integral is

QN1,N2
=

(γΩ11)
N−1(

N
N1

) ΞN1,N2
, ΞN1,N2

≡
min{N1,N2}∑

n=0

ξN1,N2
(n), (2.15)

where

ξN1,N2
(n) ≡

(
N1

n

)(
N2

n

)
(1−R)−n, R ≡ 1− Ω11

Ω12

. (2.16)

Interestingly, ΞN1,N2
can be formally rewritten in terms of the hypergeometric function:

ΞN1,N2
=2F1

(
−N1,−N2; 1,

1

1−R

)
. (2.17)

2.3. Gibbs free energy, internal energy, and equation of state

The finite-size Gibbs free energy GN (T , p, x1) is related to the partition function
ZN1,N2

(β, γ) as GN = −kBT ln ZN1,N2
[32, 37]. According to equations (2.3), (2.4) and

(2.15), the finite-size Gibbs free energy per particle gN = GN/N can be decomposed as
gN = gidN + gexN , with

βgidN = x1 ln (γΛ1) + x2 ln (γΛ2)−N−1 ln

(
N

N1

)
+N−1 ln (γLref) , (2.18a)

βgexN = −
(
1−N−1

)
ln (γΩ11)−N−1 ln

ΞN1,N2(
N
N1

) . (2.18b)

By viewing gN as a function of β and γ (instead of as a function of T and p), it is
easy to obtain the average volume (length) per particle (vN) and the excess energy per
particle (uN) at finite N as

vN =

(
∂βgN
∂γ

)
β

= vidN + vexN , uN =

(
∂βgN
∂β

)
γ

= uid + uex
N . (2.19)
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From equations (2.18a) and (2.18b), one has

vidN =
1 +N−1

γ
, uid =

1

2β
, (2.20a)

vexN = −
(
1−N−1

)(∂ ln (γΩ11)

∂γ

)
β

−N−1∂ ln ΞN1,N2

∂R

(
∂R

∂γ

)
β

, (2.20b)

uex
N = −

(
1−N−1

)(∂ ln Ω11

∂β

)
γ

−N−1∂ ln ΞN1,N2

∂R

(
∂R

∂β

)
γ

, (2.20c)

where, in view of equation (2.17),

∂ΞN1,N2

∂R
=

N1N2

(1−R)2
2F1

(
−N1 + 1,−N2 + 1 ; 2,

1

1−R

)
. (2.21)

2.4. Limit N →∞

Equations (2.18b), (2.20b) and (2.20c) provide the excess quantities for any finite N .
It is important to take the limit N →∞ to obtain the TL expressions and their first
finite-N corrections.

In appendix A, it is proved that, for large N at fixed mole fractions,

ΞN1,N2
≈ eNψ̄0√

2πNy0(2− y0/x1x2)
, (2.22)

where

ψ̄0 = −x1 ln

(
1− y0

x1

)
− x2 ln

(
1− y0

x2

)
, y0 =

1−
√
1− 4x1x2R

2R
. (2.23)

As a consistency test, note that in the case of equal interactions (R→ 0), one has
y0 → x1x2 and ψ̄0 →−x1 ln x1 − x2 ln x2, so that ΞN1,N2

→ (xN1
1 xN2

2

√
2πNx1x2)

−1. The

latter expression is not but the Stirling approximation of
(

N
N1

)
, as it should be.

Thus, from equation (2.18b) we obtain

βgexN ≈ βgexTL +N−1 ln
[
γΩ11

√
(2− y0/x1x2)y0/x1x2

]
, (2.24)

where

βgexTL = − ln(γΩ11)− ψ̄0 − x1 ln x1 − x2 ln x2 (2.25)

and we have taken into account that N−1 ln
(

N
N1

)
≈ −x1 ln x1 − x2 ln x2 −

N−1 ln
√
2πNx1x2. Obviously, gexTL is the excess Gibbs free energy per particle in

the TL. That quantity was evaluated by a completely independent route in [35] with
the result
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βgexTL = − ln(γΩ11)− ln
1 +

√
1− 4x1x2R

2
√
1−R

+ |x1 − x2| ln
|x1 − x2|+

√
1− 4x1x2R

(|x1 − x2|+ 1)
√
1−R

.

(2.26)

Taking into account the identity (see appendix B for a proof)

ψ̄0 = −x1 ln x1 − x2 ln x2 + ln
1 +

√
1− 4x1x2R

2
√
1−R

− |x1 − x2| ln
|x1 − x2|+

√
1− 4x1x2R

(|x1 − x2|+ 1)
√
1−R

, (2.27)

it is obvious that equations (2.25) and (2.26) are equivalent. Note, however, that
equation (2.25) is more compact than equation (2.26).

As for the average volume and internal energy per particle, application of
equation (2.19) yields

vexTL = −
(
∂ ln (γΩ11)

∂γ

)
β

− y30/x1x2

(1− y0/x1)(1− y0/x2)

(
∂R

∂γ

)
β

, (2.28a)

uex
TL = −

(
∂ ln Ω11

∂β

)
γ

− y30/x1x2

(1− y0/x1)(1− y0/x2)

(
∂R

∂β

)
γ

, (2.28b)

vexN − vexTL ≈ N−1

(
∂ ln (γΩ11)

∂γ

)
β

+
N−1

2

(1− y0/x1x2)y
2
0/2x1x2

(1− y0/2x1x2)2

(
∂R

∂γ

)
β

, (2.28c)

uex
N − uex

TL ≈ N−1

(
∂ ln Ω11

∂β

)
γ

+
N−1

2

(1− y0/x1x2)y
2
0/2x1x2

(1− y0/2x1x2)2

(
∂R

∂β

)
γ

. (2.28d)

Note that, while uid has no finite-N contribution, this is not so for vidN . According to

equation (2.20a), vidN = vidTL + (γN)−1, with vidTL = γ−1.

2.5. Equimolar mixture

In the special case of an equimolar binary mixture (x1 = x2 =
1
2
), equations (2.25),

(2.28a) and (2.28b) become

βgexTL = − ln

[
γΩ11

2

(
1 +

1√
1−R

)]
, (2.29a)

vexTL = −
(
∂ ln (γΩ11)

∂γ

)
β

− 1−
√
1−R

2R(1−R)

(
∂R

∂γ

)
β

, (2.29b)

uex
TL = −

(
∂ ln Ω11

∂β

)
γ

− 1−
√
1−R

2R(1−R)

(
∂R

∂β

)
γ

. (2.29c)
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Analogously, equations (2.24), (2.28c) and (2.28d) simplify to

gexN − gexTL ≈ N−1 ln

[
2γΩ11

(
1−

√
1−R

)
(1−R)1/4

R

]
, (2.30a)

vexN − vexTL ≈ N−1

(
∂ ln (γΩ11)

∂γ

)
β

−N−1

(
1−

√
1−R

)2
4R(1−R)

(
∂R

∂γ

)
β

, (2.30b)

uex
N − uex

TL ≈ N−1

(
∂ ln Ω11

∂β

)
γ

−N−1

(
1−

√
1−R

)2
4R(1−R)

(
∂R

∂β

)
γ

. (2.30c)

3. Finite-N Gibbs free energy of annealed Janus fluids

In the case of (unbiased) annealed systems, the total number of particles (N) is fixed
but the number of particles (N 1 or N 2) with either spin orientation species is allowed
to take any value between 0 and N . Thus, the associated configuration integral is

QN (β, γ) =
1

CN (γ)

N∑
N1=0

′∑
s

∫ ∞

0

dL e−γL

∫
dNx

0<x1<...<xN<L

e−βΦN (s,x), (3.1)

where now CN (γ) =
∑N

N1=0 CN1,N2
= 2Nγ−(N+1) to guarantee that QN = 1 if ΦN = 0.

By following the same steps as those followed to arrive to equation (2.15), we now
get

QN =
(γΩ11)

N−1

2N
ΞN , ΞN ≡

N∑
N1=0

ΞN1,N2
. (3.2)

Consequently,

βgexN = −
(
1−N−1

)
ln (γΩ11) + ln 2−N−1 ln ΞN , (3.3a)

vexN = −
(
1−N−1

)(∂ ln (γΩ11)

∂γ

)
β

−N−1∂ ln ΞN

∂R

(
∂R

∂γ

)
β

, (3.3b)

uex
N = −

(
1−N−1

)(∂ ln Ω11

∂β

)
γ

−N−1∂ ln ΞN

∂R

(
∂R

∂β

)
γ

, (3.3c)

where we recall that the quantity R is defined by the second equality in equation (2.16).
In the limit of large N it is proved in appendix C that

ΞN ≈
(
1 +

1√
1−R

)N
1 +

√
1−R

2
. (3.4)
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Therefore,

βgexN − βgexTL ≈ N−1 ln
2γΩ11

1 +
√
1−R

, (3.5a)

vexN − vexTL ≈ N−1

(
∂ ln (γΩ11)

∂γ

)
β

+N−1 1−
√
1−R

2R
√
1−R

(
∂R

∂γ

)
β

, (3.5b)

uex
N − uex

TL ≈ N−1

(
∂ ln Ω11

∂β

)
γ

+N−1 1−
√
1−R

2R
√
1−R

(
∂R

∂β

)
γ

, (3.5c)

where the TL quantities are given by equations (2.29a)–(2.29c).
Comparison between equations (2.30a)–(2.30c) and equations (3.5a)–(3.5c) shows

that, although the quenched and annealed systems are equivalent in the TL, they differ
in their respective finite-size corrections.

4. Particularization to the Kern–Frenkel model

Thus far, except for the constraint to nearest neighbors, the interaction potentials φ11(r)
and φ12(r) are arbitrary. In the special case of isotropic interactions, one has φ11(r) =
φ12(r), so that R = 0. In that case,

ΞN1,N2
=

(
N1

N2

)
, ΞN = 2N , QN1,N2

= QN = (γΩ11)
N−1, (4.1a)

βgexN = −
(
1−N−1

)
ln (γΩ11) , (4.1b)

vexN = −
(
1−N−1

)(∂ ln (γΩ11)

∂γ

)
β

, uex
N = −

(
1−N−1

)(∂ ln Ω11

∂β

)
γ

.

(4.1c)

Thus, the finite-size effects become almost trivial if the interactions are isotropic and,
of course, no distinction between quenched and annealed systems remains.

The situation becomes much more interesting in the genuine Janus case φ11(r) �=
φ12(r). We take now the well-known Kern–Frenkel model [7, 36, 38–41], in which case
φ11(r) and φ12(r) correspond to the hard-rod and square-well potentials, respectively,
i.e.

φ11(r) =

{
∞, r < σ,

0, r > σ,
φ12(r) =

⎧⎪⎪⎨
⎪⎪⎩
∞, r < σ,

−ε, σ < r < λσ,

0, r > λσ,

(4.2)
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Table 2. Values of the average volume (length) per particle, vN , in equimolar
quenched mixtures and in annealed systems for N = 4, 10, 20, and 100. In all
cases, λ = 1.2 and p = 0.6. The TL values are vTL = 2.6000 and 1.2265 at T = 1
and 0.2, respectively.

T = 1 T = 0.2

Quenched Annealed Quenched Annealed

N Exact MC Exact MC Exact MC Exact MC

4 2.7658 2.77(2) 2.7819 2.80(2) 1.0502 1.050(3) 1.0547 1.063(4)
10 2.6664 2.68(1) 2.6728 2.69(1) 1.1540 1.150(4) 1.1591 1.152(4)
20 2.6332 2.646(5) 2.6364 2.647(5) 1.1903 1.189(3) 1.1936 1.193(3)
100 2.6067 2.612(8) 2.6073 2.623(8) 1.2194 1.218(2) 1.2200 1.219(1)

where λ � 2. Henceforth, we take σ = 1, ε = 1, and ε/kB = 1 as units of length, energy,
and temperature, respectively. Therefore,

Ω11 =
e−γ

γ
, Ω12 = eβ

e−γ

γ
−

(
eβ − 1

) e−λγ

γ
, R =

{
1 +

1

(eβ − 1) [1− e−(λ−1)γ]

}−1

,

(4.3a)

(
∂ ln (γΩ11)

∂γ

)
β

= −1,

(
∂ ln Ω11

∂β

)
γ

= 0, (4.3b)

(
∂R

∂γ

)
β

= (1−R)2
(
eβ − 1

)
(λ− 1)e−(λ−1)γ,

(
∂R

∂β

)
γ

= (1−R)2 eβ
[
1− e−(λ−1)γ

]
.

(4.3c)

5. Monte Carlo simulations

5.1. Equimolar quenched and unbiased annealed systems

In order to confirm the theoretical results provided by equations (2.20b) and (2.20c)
for quenched systems and by equations (3.3b) and (3.3c) for (unbiased) annealed sys-
tems, we have performed isothermal–isobaric MC simulations. To make contact between
the annealed and quenched results in the TL, we have considered equimolar mixtures
(x1 =

1
2
) in the latter case. Moreover, the Kern–Frenkel model (4.2) with λ = 1.2 is

chosen. Some technical details about the simulation method are given in appendix D.
Tables 2 and 3 give the MC results of vN and −uex

N , respectively, for p = 0.6, T = 1
and 0.2, and N = 4, 10, 20, and 100. Tables 2 and 3 also include the exact theoreti-
cal values given by equations (2.20b) and (3.3b) for vN and by equations (2.20c) and
(3.3c) for −uex

N . The deviations from the TL values are displayed in figures 3 and 4,
which also include the asymptotic behaviors obtained from equations (2.30b) and (2.30c)
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Table 3. Absolute values of the excess energy per particle, −uex
N , in equimolar

quenched mixtures and in annealed systems for N = 4, 10, 20, and 100. In all the
cases, λ = 1.2 and p = 0.6. The TL values are −uex

TL = 0.067 20 and 0.4421 at T = 1
and 0.2, respectively.

T = 1 T = 0.2

Quenched Annealed Quenched Annealed

N Exact MC Exact MC Exact MC Exact MC

4 0.068 15 0.0690(8) 0.051 83 0.0510(6) 0.4820 0.481(2) 0.4635 0.461(2)
10 0.067 52 0.0677(4) 0.061 05 0.0610(4) 0.4664 0.468(3) 0.4453 0.447(2)
20 0.067 35 0.0676(3) 0.064 12 0.0645(3) 0.4539 0.453(2) 0.4402 0.442(2)
100 0.067 23 0.0674(3) 0.066 58 0.0668(3) 0.4441 0.444(2) 0.4416 0.439(2)

Figure 3. Plot of the finite-N correction vN − vTL vs 1/N for λ = 1.2, p = 0.6,
and (a) T = 1 and (b) T = 0.2. The filled circles and solid lines correspond
to MC simulations and exact theoretical results, respectively, for an equimolar
(x1 = x2 =

1
2) quenched mixture, while the open circles and dashed lines corre-

spond to MC simulations and exact theoretical results, respectively, for an annealed
system. The dotted lines represent the exact asymptotic behaviors. Note that the
asymptotic and full lines for the quenched and annealed systems are practically
indistinguishable in (a).

for (equimolar) quenched systems and from equations (3.5b) and (3.5c) for (unbiased)
annealed systems.

We can observe from tables 2 and 3 and figures 3 and 4 that the simulations nicely
confirm our theoretical results. The differences between quenched and annealed finite-
size corrections are much more important for the energy than for the volume. In the
latter case, there is a change of the sign of vN − vTL when decreasing temperature from
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Figure 4. Plot of the finite-N correction uN − uTL vs 1/N for λ = 1.2, p = 0.6,
and (a) T = 1 and (b) T = 0.2. The filled circles and solid lines correspond
to MC simulations and exact theoretical results, respectively, for an equimolar
(x1 = x2 =

1
2) quenched mixture, while the open circles and dashed lines corre-

spond to MC simulations and exact theoretical results, respectively, for an annealed
system. The dotted lines represent the exact asymptotic behaviors. Note that the
asymptotic and full lines for the annealed system are practically indistinguishable
in (a).

T = 1 to T = 0.2. Interestingly, except for the energy at low temperature (T = 0.2), the
asymptotic behaviors given by equations (2.30b), (2.30c), (3.5b) and (3.5c) apply very
well for any N , including N = 4.

5.2. Biased annealed systems

The MC simulations for annealed systems presented above are unbiased in the sense
that, even though the identities of the particles are not fixed and thus the mole fraction
x1 is a fluctuating quantity, no preference to either spin orientation is imposed, so that
〈x1〉 = 1

2
. As a consequence, the unbiased annealed results become equivalent to the

equimolar quenched ones in the TL.
On the other hand, it is possible to carry out biased annealed simulations by intro-

ducing a parameter q �= 1
2
which favors one of the two possible spin orientations (see

appendix D). As observed in [35], the average value 〈x1〉 ≡ 〈x〉 does not coincide with q,
but a natural question arises as to whether or not the inequality 〈x〉 �= q is a finite-size
artifact.

To address that question, we have performed MC simulations for biased annealed
systems with q = 0.55, 0.65, 0.75, 0.85, and 0.95. As before, we have fixed λ = 1.2,
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Figure 5. Plot of the average mole fraction 〈x〉 vs q for biased annealed systems,
as obtained from MC simulations with N = 50 and 200 for λ = 1.2, p = 0.6, and
T = 1 and 0.2. The size of the symbols is larger than the error bars. The solid lines
represent the simple heuristic approximation given by the solution to equation (E.7)
with a = 10, while the straight dashed line is the reference 〈x〉 = q.

p = 0.6, and temperatures T = 1 and 0.2. As for the number of particles, the val-
ues N = 50 and 200 have been chosen. The results are displayed in figure 5, which
shows that the data with N = 50 and 200 practically coincide. Therefore, the property
〈x〉 �= q (actually, 1

2
� 〈x〉 � q or q � 〈x〉 � 1

2
) and the dependence 〈x〉(q) are robust

with respect to N and must hold in the TL. While the derivation of the exact
function 〈x〉(q) seems to be rather involved and lies outside of the scope of this
work, we have constructed a simple heuristic approximation in appendix E. Figure 5
shows that equation (E.7) with a = 10 displays an excellent agreement with the
MC data.

In the MC simulations for biased annealed systems we have also evaluated the specific
volume (v) and the excess internal energy per particle (uex). Once the robustness of the
relationship 〈x〉(q) has been checked, one can take q as a parameter and plot v and uex as
functions of the mole fraction 〈x〉. This is done in figure 6. While in the case T = 1 the
mapped range is 0.55 � 〈x〉 � 0.94, the range shrinks to 0.51 � 〈x〉 � 0.63 if T = 0.2.
Again, a very weak influence of N is observed. As a matter of fact, comparison with the
exact theoretical results for non-equimolar mixtures in the TL (see equations (2.28a)
and (2.28b)) presents a very good agreement. It is worth mentioning that v exhibits a
rather weak dependence on the mole fraction, with a local minimum at 〈x〉 = 1

2
. On the

other hand, the excess energy uex is much more sensitive to 〈x〉, vanishing at 〈x〉 = 0
and 〈x〉 = 1, as expected.
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Figure 6. Plot of (a) the volume v and (b) the excess internal energy uex vs the
average mole fraction 〈x〉 for biased annealed systems, as obtained from MC sim-
ulations with N = 50 and 200 for λ = 1.2, p = 0.6, and T = 1 and 0.2. The size of
the symbols is larger than the error bars. The lines represent the exact theoretical
results in the TL.

6. Conclusions

This paper has focused on the study of finite-size effects on the thermodynamic quanti-
ties of Janus fluids confined to one-dimensional configurations. Two classes of systems
(quenched and annealed) have been considered. In the quenched case, the fraction xi

of particles with a particular face (or spin) orientation is kept fixed. On the other
hand, particles can flip their orientations in annealed systems, so that the mole fraction
xi fluctuates around a value 〈xi〉 = 1

2
(unbiased case, qi =

1
2
) or 〈xi〉 �= 1

2
(biased case,

qi �= 1
2
).

Our study allows us to answer affirmatively the four questions initially posed in
section 1:

(i) Can the exact derivation of the Gibbs free energy in the TL (N →∞) be extended
to quenched and/or annealed finite-N systems?

By working on the isothermal–isobaric ensemble with open boundary conditions,
we have been able to derive exactly the configuration integral (and hence the Gibbs
free energy, the specific volume, and the internal energy) for quenched systems with
arbitrary values of number of particles N , mole fraction x1, temperature T , pres-
sure p, and nearest-neighbor interactions φ11 and φ12. The results are summarized by
equations (2.15)–(2.20c).

The exact results for quenched systems are next exploited to get the finite-size
quantities for unbiased annealed systems, as given by equations (3.2)–(3.3c).
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(ii) Does the quenched ↔ annealed equivalence break down at finite N?
The exact results referred to in the previous point apply to any finite N . An

interesting problem consists in taking the limit N →∞ in order to obtain well-
defined expressions for the thermodynamic quantities in the TL, as well as the
first N−1-correction. This is done in appendices A and C, the correction results
being given by equations (2.24), (2.28c) and (2.28d) for the quenched case and by
equations (3.5a)–(3.5c) for the unbiased annealed case.

The quenched quantities in the TL are provided by equations (2.25), (2.28a) and
(2.28b). As proved in appendix B, equation (2.25) is equivalent to (but more compact
than) the Gibbs free energy derived in [35] from a completely different method. While
in [35] the thermodynamic results were derived directly in the TL from the structural
correlation functions, here they have been derived by carefully taking the limit N →∞
from the configuration integral. The equivalence between both routes reinforces the
exact character of the results.

The results for equimolar quenched systems and those for unbiased annealed sys-
tems agree in the TL (equations (2.29a)–(2.29c)), but they differ in the first N−1-
correction (compare equations (2.30a)–(2.30c) with equations (3.5a)–(3.5c)). Therefore,
the quenched ↔ annealed equivalence does break down at finite N .

(iii) Can those theoretical predictions be validated by MC simulations?
The conclusions summarized by the two preceding points apply to any choice of

the interaction potentials φ11 and φ12. In order to validate them by simulations, we have
specialized to the Kern–Frenkel model [36], as defined by equation (4.2). MC results have
been measured for a well range λ = 1.2, a common pressure p = 0.6, two temperatures
(T = 1 and 0.2), and four values of the number of particles (N = 4, 10, 20, and 100).
As shown by figures 3 and 4, the agreement is very good. Interestingly, except for the
case of the internal energy at T = 0.2, the deviations from the TL values closely follow
the N−1 rule even for system sizes as small as N = 4.

(iv) Is the dependence of the average mole fraction 〈x〉 on the probability q robust
with respect to N in annealed MC simulations for biased situations (q �= 1

2
)?

The finite-size corrections mentioned above for annealed systems apply to unbi-
ased situations. In particular, in each MC step an attempt to assign the orientation
identity i = 1 to a given particle is carried out with a probability q = 1

2
, what results

in an average mole fraction 〈x〉 = 1
2
. The procedure can be extended in a straightfor-

ward way to a biased choice q �= 1
2
, which gives rise to 〈x〉 �= 1

2
. The naive expectation

would be 〈x〉 = q, but preliminary results in [35] showed that either 1
2
< 〈x〉 < q or

1
2
> 〈x〉 > q, depending on whether q > 1

2
or q < 1

2
, respectively. One might reason-

able wonder whether the property 〈x〉 �= q is a finite-size effect that would disappear
in the TL.

However, our MC results provide strong evidence about the robustness of the inequal-
ity 〈x〉 �= q and the dependence of 〈x〉 on q (see figure 5). This can be qualitatively
explained as follows. In the quenched case, the configuration integral presents a peaked
local maximum at N 1 = N/2, i.e. x = 1

2
, as can be seen from equations (2.15), (2.22) and

(E.1). For annealed systems, this competes against a weight function wN (x) exhibiting
a peaked local maximum at x = q. The annealed probability density PN(x) is pro-
portional to the product of both functions and then it has a peaked maximum at an
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intermediate value x = 〈x〉. Based on these arguments, a heuristic approach has been
put forward in appendix E. Its theoretical predictions (with a single fitting parameter
a = 10 independent of T and q) agree excellently well with MC simulations, as figure 5
shows.

As a bonus of the biased annealed simulations, and given the weak influence of N
observed in figure 5, we have compared the measured MC values of volume and energy
with the theoretical exact results in the TL as functions of the mole fraction. The results
displayed by figure 6 show again an excellent agreement.

To put our findings in a proper context, some of their limitations should be remarked.
First, the theoretical results have been obtained for open boundary conditions (ω = 0 in
equation (2.2)). As shown by equation (2.8), application of periodic boundary conditions
(ω = 1) significantly hampers the quest for an exact treatment at finite N . While the
choice of the boundary conditions (open or periodic) becomes irrelevant in the TL,
finite-size effects are affected by such a choice.

A second limitation arises from the use of the isothermal–isobaric ensemble rather
than the standard canonical ensemble. Of course, the partition function and its associ-
ated configuration integral can be formally written in the canonical ensemble [consider
equation (2.5) with the integration over L removed], but then it is much more difficult to
reduce the problem to a purely combinatorial one at finite N , as happens, however, with
equations (2.10)–(2.13). One might believe that it would be possible to get the finite-size
Helmholtz free energy from the finite-size Gibbs free energy derived here by means of
the conventional Legendre transformation. However, this transformation is justified in
the TL only and washes out finite-size effects, as we have checked by comparison with
canonical MC simulations (not shown).

Third, we have not addressed in the present paper the problem of deriving the
exact relationship between 〈x〉 and q in biased annealed systems, even in the TL. The
theoretical approach in appendix E is heuristic and depends upon a parameter a whose
value must be obtained by a fitting procedure. It would be very interesting to analyze
in detail the random walk represented by the annealed MC simulations and derive the
dependence 〈x〉(q), at least in the TL. However, this goal is outside of the scope of the
present work.

The last limitation refers to the choice of the one-dimensional geometry itself.
Of course, two- and three-dimensional systems are much more realistic, but the one-
dimensional setting, apart from being applicable to single-file confinement situations,
has the enormous advantage of allowing for the derivation of nontrivial exact results.
For instance, we have explicitly shown in a clean way that the first corrections to the
TL values are of order N−1, as usually assumed in the literature to get rid of finite-
size effects and extrapolate the simulation data to the TL. Moreover, exact results are
utterly important to test simulation methods and/or theoretical approaches that can
then be extended to scenarios where exact solutions are absent.
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Appendix A. Function ΞN1,N2
for large N

In this appendix, we prove that the function ΞN1,N2
defined in equations (2.15) and (2.16)

reduces to equation (2.22) in the limit N →∞.
First, application of the Stirling approximation x! ≈

√
2πx(x/e)x yields

ξN1,N2
(n = Ny) ≈ exp [Nψ(y)] , ψ(y) = ψ0(y) +N−1ψ1(y), (A.1)

where

ψ0(y) = −x1 ln

(
1− y

x1

)
− x2 ln

(
1− y

x2

)
+ y ln

(x1 − y)(x2 − y)

y2(1−R)
, (A.2)

ψ1(y) = − ln

[
2πNy

√(
1− y

x1

)(
1− y

x1

)]
. (A.3)

Equating to zero the first derivative of ψ(y) with respect to y, one can find that the
maximum value of ψ(y) corresponds to

ymax ≈ y0 +N−1y1, (A.4)

where

y0 =
1−

√
1− 4x1x2R

2R
, y1 = −1 + (4y0 − 3)y0/2x1x2

2− y0/x1x2

. (A.5)

Note that ψ′
0(y0) = 0 and y1 = −ψ′

1(y0)/ψ
′′
0(y0), where the second derivative of the ψ0(y)

is

ψ′′
0 (y) = − 2− y/x1x2

y(1− y/x1)(1− y/x2)
. (A.6)

Note also that the last term on the right-hand side of equation (A.2) vanishes at y = y0,
so that ψ̄0 ≡ ψ0(y0) is given by equation (2.23).

As a second step, let us expand ψ(y) around y = ymax to get

ψ(y) ≈ ψ(ymax) +
ψ′′(ymax)

2
(y − ymax)

2. (A.7)

Next, we replace the sum in ΞN1,N2
by an integral:
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ΞN1,N2
≈ N

∫ ∞

−∞
dy ξN1,N2

(Ny)

≈ NeNψ(ymax)

∫ ∞

−∞
dy e

Nψ′′(ymax)
2 (y−ymax)

2

= NeNψ(ymax)

√
2π

−Nψ′′(ymax)
, (A.8)

where in the second step use has been made of equation (A.7). Finally, taking
into account that ψ(ymax) ≈ ψ0(y0) +N−1ψ1(y0) and ψ′′(ymax) ≈ ψ′′

0 (y0), equation (A.8)
becomes

ΞN1,N2
≈ NeNψ0(y0)+ψ1(y0)

√
2π

−Nψ′′
0 (y0)

. (A.9)

Insertion of equations (A.3) and (A.6) into equation (A.9) yields equation (2.22).

Appendix B. Proof of equation (2.27)
While ψ̄0 is expressed in terms of y0 (see equation (2.23)), the right-hand side of
equation (2.27) is expressed in terms of R. The latter quantity is related to y0 by the
identities

R =
y0 − x1x2

y20
,

√
1− 4x1x2R =

2x1x2

y0
− 1,

√
1−R =

√
(x1 − y0)(x2 − y0)

y0
,

(B.1)

1 +
√
1− 4x1x2R

2
√
1−R

=
x1x2√

(x1 − y0)(x2 − y0)
, (B.2)

|x1 − x2|+
√
1− 4x1x2R

(|x1 − x2|+ 1)
√
1−R

=
x2

x1

√
x1 − y0
x2 − y0

, (B.3)

where, without loss of generality, we have assumed x1 � x2 in equation (B.3).
The right-hand side of equation (2.27) can be rewritten as

r.h.s. = −x1 ln

[
x1

2
√
1−R

1 +
√
1− 4x1x2R

x1 − x2 +
√
1− 4x1x2R

(x1 − x2 + 1)
√
1−R

]

− x2 ln

[
x2

2
√
1−R

1 +
√
1− 4x1x2R

(x1 − x2 + 1)
√
1−R

x1 − x2 +
√
1− 4x1x2R

]

= −x1 ln

(
1− y0

x1

)
− x2 ln

(
1− y0

x2

)
, (B.4)
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where we have made use of equations (B.2) and (B.3). Comparison with equation (2.23)
closes the proof of equation (2.27).

Appendix C. Function ΞN for large N

The method is analogous to the one followed in appendix A. The quantities ψ̄0 and y0
defined in equation (2.23) are functions of the mole fraction x1. It can be checked that
ψ̄0 presents a maximum at x1 =

1
2
. Expanding in powers of x1 − 1

2
,

ψ̄0 ≈ ln

(
1 +

1√
1−R

)
− 2√

1−R

(
x1 −

1

2

)2

. (C.1)

Combination of equations (2.22) and (C.1) yields

ΞN1,N2
≈

(
1 +

1√
1−R

)N
1 +

√
1−R√

2πN
√
1−R

e−2N(x1− 1
2 )

2
/
√
1−R. (C.2)

As a second step, for large N the summation of ΞN1,N2
over N 1 can be approximated

by an integral over x1:

N∑
N1=0

ΞN1,N2
≈

(
1 +

1√
1−R

)N
1 +

√
1−R√

2πN
√
1−R

N

∫ ∞

−∞
dx1 e

−2N(x1− 1
2 )

2
/
√
1−R. (C.3)

This finally gives equation (3.4).

Appendix D. Technical details of the MC simulations

Since our exact finite-size results are found in the isothermal–isobaric ensemble and the
Legendre transform ‘washes out’ the finite-size effects, we found it necessary to perform
our numerical experiments also in the isothermal–isobaric ensemble [42]. Moreover, in
order to find agreement with our theoretical exact results, open boundary conditions
were used. Of course, only in the TL open and periodic boundary conditions become
equivalent.

We performed two kinds of MC experiments, which we label as MCa and MCq for
annealed and quenched systems, respectively.

The MCa transition rule consists of single particle MC moves (one MC step), which
are the combination of a particle position displacement xα → xα + (2η − 1)δ, where η
is a pseudo-random number in [0, 1] and δ < σ is the maximum displacement (to be
kept fixed during the whole simulation to preserve detailed balance) and a particle
assignment to species i = 1, 2 with probability qi (where q1 = q and q2 = 1− q). Open
boundary conditions were enforced by generating a new position until it falls inside
the segment xα ∈ [−L/2,L/2]. According to the Metropolis algorithm [43, 44] the move
is accepted with probability e−βΔΦN , ΔΦN being the change in potential energy due
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to the combined move. This would be enough in the canonical ensemble, while in the
isothermal–isobaric ensemble we also need to perform a volume move. The latter is
computationally the most expensive one, since it requires a full energy calculation at
each attempt and therefore should be used with a low frequency during the run. We
chose 30% for the frequency of the volume move in all our simulations. For the transition
and acceptance probability for this volume move, see for example [42].

In contrast to the MCa case, in the MCq simulations the particles are assigned an
identity i = 1, 2 with probability xi = qi from the start and the species assignment is
never changed afterwards. The MCq transition rule consists of single particle MC moves
that amount to a particle position displacement with δ > σ (note that this condition
may be relieved in dimensions higher than one), which is accepted with probability
e−βΔΦN , ΔΦN being the change in potential energy due to the displacement. Again, in
the isothermal–isobaric ensemble we also have the volume move [42].

Notice that we can obtain the same result for quenched systems by using a third
simulation strategy that we will call MCaq. The MCaq transition rule consists of single
particle MC moves that are the combination of a particle position displacement (with
δ > σ), which is accepted with probability e−βΔΦN (where ΔΦN is the change in potential
energy due to the displacement only), followed by a particle assignment to species i = 1, 2
with probability qi, which is always accepted and therefore completely disentangled
from the displacement move. As before, we also have the volume move [42] in the
isothermal–isobaric ensemble.

In all cases we chose δ so to have acceptance ratios as close as possible to 1
2
. The

equilibration time for MCa was much longer than for MCq.
Given an observable O, its statistical-mechanical average 〈O〉 was evaluated by aver-

aging O over a sufficiently large number of MC configurations after a sufficiently long
equilibration time. The measured observables were the mole fraction x = N−1

∑N
α=1 δsα,1,

the specific volume (or reciprocal density) v = L/N , and the excess internal energy per
particle uex = ΦN/N .

The statistical error on 〈O〉 is as usual given by σ〈O〉 =
√
σ2
OτO/M , where M is the

number of MC steps, σ2
O is the intrinsic variance of O, and τO is the correlation time

for the observable O [44]. The latter quantity depends crucially on the transition rule
and has a minimum value equal to 1 if one can move so far in configuration space that
successive values become uncorrelated. In general, the number of independent steps
which contribute to reducing the error bar is not M but M/τO. Hence, to determine the
true statistical error in the random walk, one needs to estimate the correlation time. To
do this, it is very important that the total length of the random walk be much greater
than τO. Otherwise, the result and its error bar will not be reliable. In general, there is no
mathematically rigorous procedure to determine τO, so that usually one must determine
it from the random walk itself. It is a good practice occasionally to carry out very long
runs to test that the results are well converged. In order to equilibrate the random walk,
we generally found it necessary to use 106 MC steps at high temperature (T = 1) and
2× 107 MC steps at low temperature (T = 0.2), and collect averages over M = 105 MC
steps.
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Appendix E. A heuristic approximation for the dependence of 〈x〉 on q for biased
annealed systems

From equations (C.2) and (3.4), we have that, for large N , the probability that the mole
fraction x1 lies between x and x+ dx in the unbiased annealed system is

PN (x)dx =
1

ΞN

N(x+dx)∑
N1=Nx

ΞN1,N2
≈ NΞNx,N(1−x)

ΞN

dx ≈ e−2N(x− 1
2 )

2
/
√
1−R√

π
√
1−R/2N

dx. (E.1)

Obviously, 〈x〉 = 1
2
.

Imagine now a biased annealed system where each value of x = N 1/N is weighed
with a certain function wN (x) centered around a value x = q �= 1

2
. In that case,

PN (x) ∝ wN (x)ΞNx,N(1−x), (E.2)

which, for large N , would be extremely peaked around a value (comprised between 1
2

and q) that coincides with the average 〈x〉 =
∫ 1

0
dx xPN (x). Thus, the value 〈x〉 can be

determined as the solution to the equation

0 =
∂

∂x
lim
N→∞

N−1
[
ln wN (x) + ln ΞNx,N(1−x)

]
=

∂

∂x
lim
N→∞

N−1 ln wN (x) +
∂ψ̄0

∂x
, (E.3)

where in the second step we have made use of equation (2.22). Note that here, in contrast
to equation (E.1), we need to take into account the full dependence of ψ̄0 on x because
the solution to equation (E.3) is not, in general, close to 1

2
. According to equation (2.23),

∂ψ̄0

∂x
= − ln

[
1− 1−

√
1− 4x(1− x)R

2xR

]
+ ln

[
1− 1−

√
1− 4x(1− x)R

2(1− x)R

]
. (E.4)

The simplest choice for the weight function wN (x) is the binomial distribution

wN (x) =
(

Neff

Neffx

)
qNeffx(1− q)Neff(1−x), where N eff ≡ Nb, b being an effective factor account-

ing for the expected dependence of wN(x) on the thermodynamic state (T and p). In
that case,

lim
N→∞

N−1 ln wN (x) = b

[
x ln

q

x
+ (1− x) ln

1− q

1− x

]
, (E.5)

∂

∂x
lim
N→∞

N−1 ln wN (x) = b ln
q(1− x)

x(1− q)
. (E.6)
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Therefore, equation (E.3) becomes

0 = − ln

[
1− 1−

√
1− 4x(1− x)R

2xR

]
+ ln

[
1− 1−

√
1− 4x(1− x)R

2(1− x)R

]

+ a
√
1−R ln

q(1− x)

x(1− q)
, (E.7)

where we have taken b = a
√
1−R, a being a constant to be empirically determined. A

simple and yet optimal value is a = 10.
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