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Abstract. We study canonical and affine versions of non-renormalizable
Euclidean classical scalar field-theory with twelfth-order power–law interactions
on three dimensional lattices through the Monte Carlo method. We show that
while the canonical version of the model turns out to approach a ‘free-theory’ in
the continuum limit, the affine version is perfectly well defined as an interaction
model.
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1. Introduction

Classical versions of all covariant scalar field-theory models with positive interactions
admit acceptable solutions, but some models will lead to divergences when trying to
solve them when using canonical quantum versions [1].

Although classical covariant models, such as (φ12)3, lead to acceptable solutions,
canonical quantization leads only to free solutions, as if the interaction term was not
present. There are simple classical models, e.g. a half-harmonic oscillator that is limited
to 0 < q < ∞, which also fails using canonical quantization. A newer procedure, called
affine quantization [2–5], differs from canonical quantization only because it promotes
different canonical variables to quantum operators. It has been shown that affine quanti-
zation can successfully quantize the oscillator example, and the purpose of this paper is
to demonstrate that affine quantization, in effect, just adds one additional term, which
is proportional to �

2, to the Hamiltonian. Which extra term to add is guided by affine
quantization, and the result leads to a valid quantization of (φ12)3

1.
The problem treated in this work deals with covariant scalar fields with power–law

interactions. For the (φr)d theory, the Euclidean time version of the action functional is
then given by,

S[φ] =

∫ {
1

2

[
s∑

μ=0

(
∂φ(x)

∂xμ

)2

+m2φ2(x)

]
+ gφr(x)

}
ddx, (1.1)

with x = (x0, x1, . . . , xs) for s spatial dimensions, x0 being time, and d = s+ 1 for the
number of space-time dimensions, m is the bare mass, g > 0 is the interaction term
coupling constant and r = 4, 6, 8, 10 . . . is the power of the interaction term.

Monte Carlo (MC) [6–8] studies in 1982 [9] showed that these models were correct for
r = 4 and d = 3 but when r = 4 and d = 4 they led only to free models, with a vanishing
renormalized coupling constant in the continuum limit, and this was later confirmed by
analytic studies and that even became simply free models when r = 4 and d > 4, which
includes non-renormalizable models as well.

All of the above stories used canonical procedures, which then failed when r �
2d/(d− 2) [2–4]. It is believed that affine quantization procedures will solve those
problems.

In this work, we chose the (φ12)3 theory. Classically, this is a straightforward problem
that in the g → 0 limit reduces to a free-theory. But in its canonical version it is non-
renormalizable, which means that the domain of the free model, Dg=0, is larger than

1The example (φ12)3 has been deliberately chosen to be highly nonrenormalizable, while requiring the least amount of computer
time.
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that of the interacting model Dg>0 (integrating φ12 will be finite for less φ than in the
free model). In the continuum limit, the domains disagree and by continuity the new
domain for the ‘free’ version (we can call it a ‘pseudofree’ situation) is the domain Dg>0,
not Dg=0. That is the source of having free models using canonical quantization, such as
(φr)d with r > 2d/(d− 2)2. On the other hand, affine quantization will lead to a non-free
model to begin with and so it is appropriate when g → 0. In parallel to the covariant
theory, one can also define an ultralocal theory that is obtained by neglecting the kinetic
part of the action (the term

∑s
μ=1(∂φ(x)/∂xμ)

2) [3]. It turns out that such a theory will
have a divergent perturbation series already for r > 2 for any d � 2. In these cases, the
field theory will lead to a free-theory, non-renormalizable. So, with r = 12 there should
be an even greater difference between the canonical and affine versions.

Various efforts have been tried in literature [10] to get a good result for the (φ4)4
models, only to find that every effort came to the same conclusion that the result was
a ‘free-theory’. Hence, the affine approach is the first to find an acceptable result [11].

2. Affine version of the field-theory

Our model has a standard classical Hamiltonian given by,

H[π,φ] =

∫ {
1

2

[
π2(x) +

s∑
μ=1

(
∂φ(x)

∂xμ

)2

+m2φ2(x)

]
+ gφr(x)

}
dsx, (2.1)

where s denotes the number of spatial coordinates and x0 is the time. The momentum
field π(x) = ∂φ(x)/∂x0 and the canonical action S =

∫
Hdx0 is the one of equation (1.1).

Next, we introduce the affine field κ(x) ≡ π(x)φ(x), with φ(x) �= 0 and modify the
classical Hamiltonian to become [2–4],

H ′[κ,φ] =

∫ {
1

2

[
κ(x)φ−2(x)κ(x) +

s∑
μ=1

(
∂φ(x)

∂xμ

)2

+m2φ2(x)

]
+ gφr(x)

}
dsx. (2.2)

In an affine quantization, the operator term κ̂(x)φ−2(x)κ̂(x) = π̂2(x) +
�
2(3/4)δ2s(0)φ−2(x), which leads to an extra ‘3/4’ potential [12] term (see appendix A),

so that the new affine action will formally read,

S ′[φ] =

∫ {
1

2

[
s∑

μ=0

(
∂φ(x)

∂xμ

)2

+m2φ2(x)

]
+ gφr(x) +

3

8
�
2 δ2s(0)

φ2(x) + ε

}
ddx, (2.3)

where ε > 0 is a parameter used to regularize the ‘3/4’ extra term. In the g → 0 limit, this
model remains different from a free-theory, exactly due to the new (3/8)�2δ2s(0)/[φ2(x) +
ε] interaction term.

2One requires that
∫
ddx [∇φ(x)]2 < [

∫
ddx φr(x)]2/r .
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3. The lattice formulation of the field-theory model

We used a lattice formulation of the field theory. The theory considers a real scalar field
φ taking the value φ(x) on each site of a periodic, hypercubic, d-dimensional lattice of
lattice spacing a and periodicity na. The canonical action for the field, equation (1.1),
is then approximated by

S[φ] ≈
{
1

2

[∑
x,μ

a−2(φ(x)− φ(x+ eμ))
2 +m2

∑
x

φ2(x)

]
+ g

∑
x

φr(x)

}
ad, (3.1)

where eμ is a vector of length a in the +μ direction. The vacuum expectation of a
functional observable F [φ] is

〈F 〉 ≈
∫
F [φ] exp(−S[φ])

∏
x dφ(x)∫

exp(−S[φ])
∏

x dφ(x)
. (3.2)

We will approach the continuum limit by choosing na = 1 fixed and increasing the
number of discretizations n of each component of the space-time, so that the lattice
spacing a = 1/n→ 03.

4. Simulation details and relevant observables

From each real field φ(x), we extract the Fourier transform

φ̃(p) =

∫
ddx eip·xφ(x), (4.1)

with φ̃∗(p) = φ̃(−p), so that the action of equation (1.1) becomes

S[φ̃] =

∫
1

2
[p2 +m2]|φ̃(p)|2 ddp

(2π)d
+ gIr[φ̃], (4.2)

where we denote with Ir the power–law interaction functional.

We then find the ensemble averages 〈φ̃2(0)〉 and 〈φ̃4(0)〉 and construct the following
observable (a renormalized unitless coupling constant at zero momentum),

gR =
3〈φ̃2(0)〉2 − 〈φ̃4(0)〉

〈φ̃2(0)〉2
, (4.3)

so that clearly, using path integrals in the Fourier transform of the field, we immediately
find for the canonical version of the theory,

gR
g→0−−−→ 0. (4.4)

3Note that one could change the field φ→ φ′a1−d/2 so that for example the kinetic term of the action goes to simply∑
x,μ[φ

′(x)− φ′(x+ eμ)]
2/2.
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This remains true even for the calculation on a discrete lattice.
We then choose the momentum p with one component equal to 2π/na and all other

components zero and calculate the ensemble average 〈|φ̃(p)|2〉. We then construct the
renormalized mass

m2
R =

p2〈|φ̃(p)|2〉
〈φ̃2(0)〉 − 〈|φ̃(p)|2〉

. (4.5)

When g = 0 the canonical version of the theory can be solved, exactly yielding

mR
g→0−−−→[π/n sin(π/n)]m. (4.6)

Following Freedman et al [9], we will call gR a dimensionless renormalized coupling
constant and we will use it to test the ‘freedomness’ of our field theories in the continuum
limit. Note that the sum-rules of equations (4.4) and (4.6) do not hold for the affine
version (2.3) of the field theory due to the additional (3/8)�2δ2s(0)/[φ2(x) + ε] interaction
term.

Our MC simulations use the Metropolis algorithm [6, 8] to calculate the dis-
cretized version of equation (3.2), which is a nd multidimensional integral. The sim-
ulation is started from the initial condition φ = 0. One MC step consisted in a random
displacement of each one of the nd components of φ as follows

φ→ φ+ (η − 1/2)δ, (4.7)

where η is a uniform pseudo random number in [0, 1] and δ is the amplitude of the
displacement. Each one of these nd moves is accepted if exp(−ΔS) > η, where ΔS is
the change in the action due to the move (it can be efficiently calculated considering
how the kinetic part and the potential part change by the displacement of a single
component of φ) and rejected otherwise. The amplitude δ is chosen in such a way to have
acceptance ratios as close as possible to 1/2 and is kept constant during the evolution
of the simulation. One simulation consisted of N = 106 steps. The statistical error on
the average 〈F 〉 will then depend on the correlation time necessary to decorrelate the

property F , τF , and will be determined as
√

τFσ2
F/(Nnd), where σ2

F is the intrinsic
variance for F , as shown in appendix B.

5. Simulation results

We first chose the Euclidean covariant scalar interaction model with d = 3 and r = 12. In
its canonical version (see the action of equation (1.1)), this is a non-renormalizable model
and, following a perturbation expansion of g, there is an infinite number of different,
divergent terms; or, if treated as a whole, such a model collapses to a ‘free-theory’ with
a vanishing interaction term [13, 14]. This is even more true for the ultralocal version
of the theory.

Following Freedman et al [9], in our MC simulation, for each n and g, we adjusted
the bare mass m in such a way to maintain the renormalized mass approximately con-
stant mR ≈ 3 (for large g it was necessary to take a complex bare mass so that m2

https://doi.org/10.1088/1742-5468/ac0f69 5
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Figure 1. We show the renormalized mass mR of equation (4.5) (top) and the
renormalized coupling constant gRm

d
R of equation (4.3) (bottom) as calculated

from equation (3.2) for mR ≈ 3 and various values of the bare coupling constant
g at decreasing values of the lattice spacing a = 1/n (n→∞ continuum limit)
for the canonical (φ12)3 Euclidean scalar field theory described by the action in
equation (1.1). The lines connecting the simulation points are just a guide for the
eye.

was negative), to within a few percent (in all cases less than 15%), and we measured
the renormalized coupling constant gR of equation (4.3) for various values of the bare
coupling constant g at a given small value of the lattice spacing a = 1/n. Thus, with na
and mR fixed, as a was made smaller, whatever change we found in gRm

d
R as a function

of g could only be due to the change in a. We generally found that a depression in
mR produced an elevation in the corresponding value of gR and vice-versa. The results
are shown in figure 1 for the covariant version, where, following Freedman et al [9],
we decided to compress the range of g for display by choosing the horizontal axis to
be g/(50 + g). As we can see from the figure the renormalized mass was made to stay
around a value of 3, even if this constraint was not easy to implement, since for each
n and g we had to run the simulation several (5–10) times with different values of the
bare mass m.
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Figure 2. We show the renormalized mass mR of equation (4.5) (top) and the
renormalized coupling constant gRm

d
R of equation (4.3) (bottom) as calculated from

equation (3.2) for mR ≈ 3 and various values of the bare coupling constant g at
decreasing values of the lattice spacing a = 1/n (n→∞ continuum limit) for the
affine (φ12)3 Euclidean scalar field theory described by the action in equation (1.1).
The lines connecting the simulation points are just a guide for the eye.

In figure 2, we show the same calculation but for the regularized affine field-theory
(see the action of equation (2.3)), where we take � = 1 and ε = 10−10.

From figure 1, we can see how at all finite values for the bare coupling constants g the
renormalized coupling at zero momentum gRm

d
R appears to move to zero uniformly as

the lattice spacing gets small, for n→∞. This numerically suggests that the canonical
theory becomes asymptotically a free-theory in the continuum limit of large n, which
is in agreement with the well known theoretical results [2–4]. This does not happen for
the affine theory as shown in figure 2, where the renormalized coupling of the theory
stays far from zero in the continuum limit for all values of the bare coupling constant.
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6. Conclusions

Using MC simulations, we determined the dimensionless renormalized coupling constant
of a Euclidean classical scalar field-theory with twelfth-order power-law interactions
on a three-dimensional lattice. Our results for the canonical version of the theory are
consistent with a noninteracting continuum limit. The renormalized coupling constant
tends to zero at each finite value of the bare coupling constant as the lattice spacing
gets small.

We then formulated an affine version of the same field-theory with the ‘3/4’ inter-
action term and observed that the MC results for the renormalized coupling constant
stays far from zero for all values of the bare coupling constant as the lattice spacing
diminishes. This means that the affine model remains a well-defined interacting model
in the continuum limit.

A classical model, such as (φ12)3 with a positive coupling constant, has a natu-
ral behavior, while it becomes a free-theory with a positive coupling constant using
canonical quantization. Canonical quantization also fails for a half-harmonic oscilla-
tor, e.g. 0 < q < ∞ as well. Affine quantization solves both of these problems. There
is a genuinely new procedure that permits various problem models to achieve a proper
quantization. Affine quantization just selects different classical variables to promote to
operators, and then it proceeds just like canonical quantization thereafter.

The present paper shows that the model (φ12)3 also generates a nontrivial behavior
with an affine quantization. It is designed to feature a region where canonical quantiza-
tion fails and there is a new procedure that can help. The classical limit of this quantized
model leads back to a classical model with a positive coupling constant. That does not
happen for canonical quantization. This implies that while canonical quantization is
good for some models, affine quantization is needed for other models.

There are many other models that canonical quantization cannot solve, or struggle
to quantize, that may be possible to quantize using affine quantization. Some of those
models may be useful to specific problems in present-day high energy physics.
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Appendix A. The origin of the ‘3/4’ extra term

The operator corresponding to the affine field κ will be the dilation operator

κ̂ = (π̂φ̂+ φ̂π̂)/2, where the regularized basic quantum Schrödinger operators are

given by φ̂(x) = φ(x) and π̂(x) = −i�δφ(x) = −i�δ/δφ(x) so that the commutator

[φ̂(x), π̂(y)] = i�δs(x− y), where δs(x) is a s-dimensional Dirac delta function since

δφ(x)φ(y) = δs(x− y). Multiplying this by φ̂, we find [φ̂, φ̂π̂] = [φ̂, π̂φ̂] = [φ̂, κ̂] = i�δsφ̂,
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which is only valid for φ �= 0. Then κ̂ = −i�{δφ(x)[φ(x)] + φ(x)δφ(x)}/2 = −i�{δs(0)/2 +
φ(x)δφ(x)}. Now, for φ(x) �= 0, we will have that affine quantization sends π̂2(x) to

κ̂(x)φ−2(x)κ̂(x) = −�
2{δs(0)/2 + φ(x)δφ(x)}φ−2(x){δs(0)/2 + φ(x)δφ(x)}

= −�
2
{
δ2s(0)φ−2(x)/4 + δs(0)φ(x)δφ(x)[φ

−2(x)]/2

+ δs(0)φ−1(x)δφ(x)/2

+ δs(0)φ−1(x)δφ(x)/2− δs(0)φ−1(x)δφ(x) + δ2φ(x)
}

= −�
2{δ2s(0)φ−2(x)/4− 2δ2s(0)φ−2(x)/2 + δ2φ(x)}

= �
2(3/4)δ2s(0)φ−2(x)− �

2δ2φ(x)

= �
2(3/4)δ2s(0)φ−2(x) + π̂2(x).

(A1)

We then see the appearance of an extra ‘3/4’ potential term. The lattice version of such
a term will then be

�
2(3/4)a−2sφ−2(x) (A2)

where a is the lattice spacing.

Appendix B. Error analysis in the simulation

Let F be a given property and let its value at step k of the random walk be Fk. Let the
mean and intrinsic variance of F be denoted by

F̄ = 〈Fk〉 =
1

P

P∑
k=1

Fk (B1)

and

σ2
F = 〈(Fk − F̄ )2〉. (B2)

These quantities depend only on the distribution e−S/
∫
e
−S

, not on the MC procedure.
We can show that the standard error of the estimate of the average, F̄ , over a Markov
chain with P steps, is

error[F̄ ] =

√√√√〈(
1

P

P∑
k=1

Fk −
1

P

P∑
k=1

F̄

)2〉
=

√
σ2
F τF
P

, (B3)

where τF is the correlation time that can be estimated as follows:

τF ≈ 1 + 2
P∑

k=1

〈(F0 − F̄ )(Fk − F̄ )〉
σ2
F

, (B4)
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and it gives the average number of steps to decorrelate the property F . The correlation
time will depend crucially on the transition rule and has a minimum value of 1 if one
can move so far in the configuration space that successive values are uncorrelated. In
general, the number of independent steps that contribute to reducing the error bar from
equation (B3) is not P but P/τ .

Hence, to determine the true statistical error in a random walk, one needs to estimate
the correlation time. To do this, it is very important that the total length of the random
walk be much greater than τF . Otherwise, the result and the error will be unreliable.
Runs in which the number of steps is P � τF are called well-converged. In general, there
is no mathematically rigorous procedure to determine τ . Usually one must determine it
from the random walk. It is a good practice occasionally to run very long runs to test
that the results are well-converged.
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