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Abstract.  We study the eect of having a finite temperature on the equation of 
state and structure of a white dwarf. In order to keep the treatment as general 
as possible we carry out our discussion for ideal quantum gases obeying both 
the Fermi–Dirac and the Bose–Einstein statistics even though we only use the 
results for the free electron gas inside a white dwarf. We discuss the eect of 
temperature on the stability of the star and on the Fermi hole.
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1. Introduction

A white dwarf below the regime of neutron drip, at mass densities less than 
4× 1011 g cm−3, are stars that emit light of a white color due to their relatively high 
surface temper ature of about 104 K. Because of their small radii R, luminous white 
dwarfs, radiating away their residual thermal energy, are characterized by much higher 
eective temper atures, T, than normal stars even though they have lower luminosities 
(which vary as R2T 4). In other words, white dwarfs are much ‘whiter’ than normal 
stars, hence their name [1–3].

The life of white dwarfs begins when a star dies, they are, therefore, compact objects 
[4]. Star death begins when most of the nuclear fuel has been consumed. A white 
dwarfs has about one solar mass M� with characteristic radii of about 5000 km and 
mean densities of around 106 g cm−3. They are no longer burning nuclear fuel and are 
slowly cooling down as they radiate away their residual thermal energy.

They support themselves against gravity by the pressure of cold electrons, near their 
degenerate, zero temperature state. In 1932 Landau [5] presented an elementary explanation 
of the equilibrium of a white dwarf that had been previously discovered by Chandrasekhar 
in 1931 [6–8], building, on the formulation of the Fermi–Dirac statistics in August 1926 
[9] and the work of Fowler in December 1926 [10], on the role of the electron degeneracy 
pressure to keep the white dwarf from gravitational collapse. Landau’s explanation can be 
found in section 3.4 of the book of Shapiro and Teukolsky [4], and fixes the equilibrium 
maximum mass of the white dwarf at Mmax ∼ 1.5M�, whereas Chandrasekhar’s result 
was MCh = 1.456M� for completely ionized matter made of elements with a ratio between 
mass number and atomic number equal to 2. Strictly speaking, one would have a matter 
made of a fluid of electrons and a fluids of nuclei. In the work of Chandrasekhar the fluid 
of electrons is treated as an ideal gas where the electrons are not interacting among them-
selves and the nuclei, thousands times heavier, are neglected.
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Despite their high surface temperature, these stars are still considered cold, how-
ever, because on a first approximation temperature does not aect the equation of state 
of its matter. White dwarfs are described as faint stars below the main sequence in 
the Hertzsprung–Russell diagram. In other words, white dwarfs are less luminous than 
main-sequence stars of corresponding colors. While slowly cooling, the white dwarfs 
change in color from white to red and finally to black. White dwarfs can be considered 
as one possibility for the final stage of stellar evolution since they are considered static 
over the lifetime of the Universe.

White dwarfs were established in the early 20th century and have been studied 
and observed ever since. They comprise an estimated 3% of all the stars of our galaxy. 
Because of their low luminosity, white dwarfs (except the very nearest ones) have been 
very dicult to detect at any reasonable distance and that is why there was very little 
observational data supporting the theory at the time of them being discovered. The 
companion of Sirius, discovered in 1915 by Adams [11, 12], was among the earliest to 
become known. The cooling of white dwarfs is not only a fascinating phenomenon but 
in addition oers information of many body physics in a new setting since the circum-
stances of an original star cannot be built up in a laboratory. Moreover, the evolution 
and the equation of state for white dwarfs can be useful on Earth, providing us with 
more understanding of matter and physics describing the Universe.

In this work, we discuss how the Chandrasekhar analysis at zero temperature should 
be changed in order to take into account the eect of having a quantum ideal gas at 
finite (non-zero) temperature. For the sake of generality we will treat in parallel the 
case of the Fermi and the Bose ideal gases. Only the Fermi case is appropriate for the 
description of the white dwarf interior made of ionized matter characterized by a sea 
of free cold electrons (as Chandrasekhar did, we will neglect the Coulomb interaction 
between the electrons and disregard the nuclei in order to keep the treatment analyti-
cally solvable. We will also use Newtonian gravity to study the star stability disre-
garding general relativistic eects). At the typical surface temperature and density of 
a white dwarf the momentum thermal average fraction of particles having momentum 
�k and a full relativistic dispersion relation (Ck/C0 where Ck is given by equation (2.25) 
below) varies appreciably over a k range that is a fraction of 0.9331 of the k range where 
it is dierent from zero. So we generally expect the eect of temperature to play a role 
in the behavior of the ideal quantum gas. We will pursue our analysis for both the ther-
modynamic properties: as the validity of the various polytropic adiabatic equation of 
state as a function of density, and for the structural properties, such as the Fermi hole.

The paper is organized as follows: in section 2 we review the thermodynamic 
properties of the ideal quantum gases at finite temperatures. This section contains 
three subsections, in the first one, section 2.1, we discuss the importance of a full 
relativistic treatment at high densities, in the second one, section 2.2, we discuss the 
onset of quantum statistics as the star collapses, and in the third one, section 2.3, 
we present the revised Chandrasekhar analysis. In section 3 we present our study of 
the structure of the ideal quantum gases at finite temperature and in the full rela-
tivistic regime.

1 This value will get smaller as the star cools down in view of equation (2.20) and will eventually become close to 
zero as the momentum thermal average fraction approaches a step function.

https://doi.org/10.1088/1742-5468/aa9339
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2. The thermodynamics of the ideal quantum gas

We want to find the thermodynamic grand potential of a system of many free fermions 
or bosons with a rest mass m in thermodynamic equilibrium at an inverse temperature 
β = 1/kBT .

The Hamiltonian of the system is

H =
∑
i

(−�2c2∆i +m2c4)1/2,
 (2.1)

with Δ the Laplacian and c the speed of light.
Assuming the many particles are distinguishable (Boltzmannons) the density matrix 

operator, ρ̂D, satisfies the Bloch equation

∂ρ̂D(β)

∂β
= −Hρ̂D(β), (2.2)

ρ̂D(0) = I, (2.3)
where I is the identity operator. The solution of equation (2.2) in coordinate repre-
sentation R = (r1, . . . , rN), where ri is the position of the ith spinless particle in three-
dimensional space, has the following solution

ρD(R0, R1; β) = 〈R0|e−βH|R1〉 =
∫

dK

(2π)3N
e−iK·(R0−R1)e−β

∑
i(�2c2k2

i+m2c4)1/2 ,

 

(2.4)

where K = (k1, . . . ,kN) and Rn = (rn1 , . . . , r
n
N). A very simple calculation yields the 

propagator ρD in closed form. The result can be cast in the following form

ρD =
∏
i

R(ri
1, ri

0),
 (2.5)

where R in one dimension is

R1d(r
1, r0) =

mc2β

πΨ1/2
K1

(mc

�
Ψ1/2

)
, (2.6)

where Ψ = (r1 − r0)2 + (�cβ)2 and Kν is the familiar modified Bessel functions of order 
ν. In three dimensions we thus find

R(r1, r0) = − 1

2π|r1 − r0|
dR1d(r

1, r0)

d|r1 − r0|

=
mc2β

4π2Ψ3/2

[mc

�
Ψ1/2K0

(mc

�
Ψ1/2

)
+ 2K1

(mc

�
Ψ1/2

)
+

mc

�
Ψ1/2K2

(mc

�
Ψ1/2

)]
.

 (2.7)
Note that for the non-relativistic gas, when H = −λ

∑
i ∆i, ρD would have been the 

usual Gaussian Λ−3Ne−(R1−R0)2/4λβ, with λ = �2/2m and Λ =
√
4πβλ, the de Broglie 

thermal wavelength.
Taking care of the indistinguishability of the particles we can describe a system of 

bosons and fermions with spin s = (g − 1)/2 through density matrices, ρ̂B,F, which are 
obtained from the distinguishable one opportunely symmetrized or antisymmetrized, 

https://doi.org/10.1088/1742-5468/aa9339
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respectively. The corresponding grand canonical partition functions can then be 

found through a standard procedure [13] from ΘB,F = e−βΩB,F =
∑∞

N=0 Z
N
B,Fe

Nµβ where 

ZN
B,F = e−βFN

B,F is the trace of ρ̂B,F . Here µ = (ln z)/β is the chemical potential, F is the 

Helmholtz free energy, and Ω is the grand thermodynamic potential.
If V is the volume occupied by the system of particles, the pressure is given by 

P = −Ω/V , and the average number of particles, N = nV = −z∂βΩ/∂z, where n is the 
number density. We find for bosons

βP =
gm2c

2π2β�3
∞∑
ν=1

zν

ν2
K2(βmc2ν), (2.8)

n =
gm2c

2π2β�3
∞∑
ν=1

zν

ν
K2(βmc2ν), (2.9)

and for fermions

βP =
gm2c

2π2β�3
∞∑
ν=1

(−1)ν−1zν

ν2
K2(βmc2ν), (2.10)

n =
gm2c

2π2β�3
∞∑
ν=1

(−1)ν−1zν

ν
K2(βmc2ν). (2.11)

Clearly in the zero temperature limit (β → ∞) these reduce to (see section 2.3 of [4] 
and our appendix)

P =
g

2

mc2

/λ
3 φ(x), (2.12)

n =
g

2

x3

3π2/λ
3 , (2.13)

φ(x) =
1

8π2

[
x
√
1 + x2

(
2

3
x2 − 1

)
+ ln

(
x+

√
1 + x2

)]
, (2.14)

where /λ = �/mc, with m the electron mass, is the electron Compton wavelength.
We can then introduce the polylogarithm, bµ, of order μ and the companion fµ 

function,

bµ(z) =
∞∑
ν=1

zν

νµ
, (2.15)

fµ(z) =
∞∑
ν=1

(−1)ν−1zν

νµ
= −bµ(−z) =

(
1− 21−x

)
bµ(z). (2.16)

https://doi.org/10.1088/1742-5468/aa9339
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At finite temperatures, in the extreme relativistic case, we find for bosons

βP =
g

π2(β�c)3
b4(z), (2.17)

n =
g

π2(β�c)3
b3(z), (2.18)

where we used the property zdbµ(z)/dz = bµ−1(z), and for fermions

βP =
g

π2(β�c)3
f4(z), (2.19)

n =
g

π2(β�c)3
f3(z). (2.20)

In agreement with section 61 of Landau [14]. And in the non-relativistic case, we find 
for bosons

βP =
g

Λ3
b5/2(z),

 (2.21)

n =
g

Λ3
b3/2(z), (2.22)

and for fermions

βP =
g

Λ3
f5/2(z), (2.23)

n =
g

Λ3
f3/2(z), (2.24)

in agreement with section 56 of Landau [14]. Recalling that the internal energy of the 
system is given by E = −∂ lnΘ/∂β, we find in the extreme relativistic case E = 3PV  
and in the non-relativistic case E = 3PV/2. At very low density n, and high temper-
ature T, when n/T 3/2 is very small, b3/2(z) ≈ f3/2(z) is very small and z is also very 
small. In this case b3/2(z) ≈ b5/2(z) ≈ f3/2(z) ≈ f5/2(z) ≈ z and we find for the quantum 
gas E/V ≈ (3/2)KBTn. That is, the non-relativistic classical limit. For the bosons, 
as the temperature gets small at fixed density, b3/2(z) increases (see equation (2.22)) 
and z gets close to 1. bµ(z) is a monotonically increasing function of z, which is only 
defined in 0 � z � 1, so the boson ideal gas must have a chemical potential less than 
zero. b3/2(1) = ζ(3/2) ≈ 2.612 and b5/2(1) = ζ(5/2) ≈ 1.341, where ζ is the Riemann 

zeta function. The temperature Tc =
2π�2
mkB

(
n/g

ζ(3/2)

)
2/3 at which z = 1 is called the critical 

temperature for the Bose–Einstein condensation in the non-relativistic case. For T < Tc 
the number of bosons with energy greater than zero will then be N> = N(T/Tc)

3/2. 
The rest N0 = N [1− (T/Tc)

3/2] bosons are in the lowest energy state, i.e. have zero 
energy. For the fermions the activity is allowed to vary in 0 � z < ∞ and the func-
tions fµ(z) can be extended at z > 1 by using the following integral representation 

fx(z) = [
∫∞
0

dy yx−1/(ey/z + 1)]/Γ(x), where Γ is the usual gamma function.

https://doi.org/10.1088/1742-5468/aa9339
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Given the entropy S = −∂Ω/∂T  we immediately see that, in both the extreme rela-
tivistic and the non-relativistic cases, S/N must be a homogeneous function of order 
zero in z, and that along an adiabatic process (S/N constant) we must have z constant. 
Then, on an adiabatic, in the extreme relativistic case, P ∝ n1+1/3, a polytrope of index 
3, and in the non-relativistic case, P ∝ n1+2/3, a polytrope of index 3/2. This conclusion 
clearly continues to hold at zero temperature when z → ∞ and the entropy is zero.

2.1. Relativistic eects at high density in a gas of fermions

The thermal average fraction of particles having momentum p = �k is given by

Ck =
g

N

1

eβ[ε(k)−µ] − ξ
=

g

Nξ
b0
(
ξze−βεk

)
, V

∫
dk

(2π)3
Ck = 1, (2.25)

where ξ = +1, − 1 and 0 refer to the Bose, Fermi and Boltzmann gases, respectively.
In a degenerate (T = 0) Fermi gas we can define the Fermi energy as 

εF = µ =
√
p2Fc

2 +m2c4 , in terms of the Fermi momentum pF. From equa-
tion (2.25) it follows that the thermal average fraction of particles having momen-
tum p = �k is Ck = (g/N)Θ[µ− ε(k)], where Θ is the Heaviside unit step function and 
ε(k) =

√
�2k2c2 +m2c4 is the full relativistic dispersion relation. We will then have for 

the density

n =
g

h3

∫ pF

0

4πp2 dp =
4πg

3h3
p3F. (2.26)

We then see immediately that at high density the Fermi momentum is also large, and 
as a consequence the Fermi gas becomes relativistic. By contrast, the degenerate Bose 
gas will undergo Bose–Einstein condensation and have all the particles in the zero 
energy state.

At finite temperature, from the results of the previous section, we find that since 
fµ(z) is a monotonously increasing function of z then at large density n, z is also large 
and at fixed temperature this implies that the chemical potential μ is also large. In 
view of equation (2.25) this means that in the gas there are fermions of ever increasing 
momentum so that a relativistic treatment becomes necessary.

From equations (2.10) and (2.11) it is possible (see appendix) to extract the full 
relativistic adiabatic equation of state as a function of temperature and observe the 
transition from the low density regime to the high density extreme relativistic one. 
In figure 1 we show the exponent Γ = d lnP/d lnn for the adiabatic full relativistic 
equation of state as a function of density. For the sake of the calculation it may be 
convenient to use natural units � = c = kB = 1. From the figure we see how at high 
density (which implies high activity) Γ → 4/3. This figure should be compared with 
figure 2.3 of [4] for the degenerate Fermi gas. In particular we see how at a temper-
ature of T = 20 000 K the Fermi gas can already be considered extremely relativistic 
at an electron number density n � 1025 cm−3. While we know (see [4] and equa-
tions (2.12)–(2.14)) that the completely degenerate gas becomes extremely relativistic 
for n � 1031 cm−3.

https://doi.org/10.1088/1742-5468/aa9339


White-dwarf equation of state and structure: the eect of temperature

8https://doi.org/10.1088/1742-5468/aa9339

J. S
tat. M

ech. (2017) 113101

2.2. The onset of quantum statistics

For a spherically symmetric distribution of matter, the mass interior to a radius r is 
given by

m(r) =

∫ r

0

ρ4πr′
2
dr′, or

dm(r)

dr
= 4πr2ρ. (2.27)

Here, since we are considering non-relativistic matter made of completely ionized ele-
ments of atomic number Z and mass number A, ρ = ρ0 = µemun is the rest mass den-
sity with µe = A/Z the mean molecular weight per electron and mu = 1.66× 10−24 g 
the atomic mass unit. If the star is in a steady state, the gravitational force balances 
the pressure force at every point. To derive the hydrostatic equilibrium equation, con-
sider an infinitesimal fluid element lying between r and r + dr and having an area dA 
perpendicular to the radial direction. The gravitational attraction between m(r) and 
the mass dm = ρdAdr is the same as if m(r) were concentrated at a point at the center, 
while the mass outside exerts no force on dm. The net outward pressure force on dm is 
−[P (r + dr)− P (r)]dA, where P is the pressure. So, in equilibrium,

dP

dr
= −Gm(r)ρ

r2
, (2.28)

where G is the universal gravitational constant2.
A consequence of the hydrostatic equilibrium is the virial theorem. The gravita-

tional potential energy of the star of radius R is

Figure 1. The exponent Γ = d lnP/d lnn for the adiabatic full relativistic 
equation of state as a function of density. We chose a temperature T = 20 000 K 
and zero entropy, g = 2, and m is the mass of an electron. n is in cm−3.

2 Here we are assuming Newtonian theory of gravity. For the general relativistic stability analysis see for example 
section 6.9 of [4].

https://doi.org/10.1088/1742-5468/aa9339
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W = −
∫ R

0

Gm(r)

r
ρ4πr2 dr

=

∫ R

0

dP

dr
4πr3 dr

= −3

∫ R

0

P4πr2 dr,

 

(2.29)

where we have integrated by parts.
Now we assume that the gas of fermions is characterized by an adiabatic equa-

tion of state

P = KρΓ0 , K, Γ = 1 +
1

n
constants, (2.30)

which is also called a polytrope of polytropic index n. For example, for fermions in the 
extreme relativistic limit we find

K =
P

ρ4/3
=

π2/3�c
g1/3(µemu)4/3

f4(z)

f
4/3
3 (z)

, (2.31)

where z depends on the temperature and density and goes to infinity in the degenerate 

limit (limz→∞ f4(z)/f
4/3
3 (z) = 31/3/25/3). At the temperature and density typical of a 

white dwarf z is very large so the equation of state is practically indistinguishable from 
the one in the degenerate limit.

Calling u′ the energy density of the gas, excluding the rest mass energy, we must 
have from the first law of thermodynamics, assuming adiabatic changes,

d(u/ρ0) = −Pd(1/ρ0), (2.32)
and integration leads to

u = ρ0c
2 +

P

Γ− 1
, (2.33)

which gives u′ = P/(Γ− 1). Now equation (2.29) can be rewritten as

W = −3(Γ− 1)U, (2.34)

where U =
∫ R

0
u′4πr2 dr is the total internal energy of the star. The total energy of the 

star, E = W + U , is then

E = − 3Γ− 4

3(Γ− 1)
|W |. (2.35)

If equation (2.30) holds everywhere inside the star of total mass M and constant den-
sity, then the gravitational potential energy is given by

W = −3

∫ M

0

P

ρ
dm(r) = −3(Γ− 1)

5Γ

GM2

R
, (2.36)

https://doi.org/10.1088/1742-5468/aa9339
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where we used d(P/ρ) = [(Γ− 1)/Γ]Gm(r)d(1/r) and integrated by parts using 
Γ > 1.

Without nuclear fuel, E decreases due to radiation. According to equa-
tions (2.35) and (2.36), ∆E < 0 implies ∆R < 0 whenever Γ > 4/3. That is, the 
star contracts and the gas will soon become quantum (see [4] section 3.2). Can the 
star contract forever, extracting energy from the infinite supply of gravitational 
potential energy until R goes to zero or until the star undergoes total collapse? 
The answer is no for stars with M ∼ M�, as is demonstrated by Chandrasekhar 
[15] or in the book of Shapiro and Teukolsky [4]. We will reproduce their treat-
ments in the next section.

2.3. The Chandrasekhar limit

The hydrostatic equilibrium equations (2.27) and (2.28) can be combined to give

1

r2
d

dr

(
r2

ρ

dP

dr

)
= −4πGρ. (2.37)

Substituting the equation of state (2.30) and reducing the result to dimensionless form 
with

ρ = ρcθ
n, (2.38)

r = aη, (2.39)

a =

√
(n+ 1)Kρ

1/n−1
c

4πG
, (2.40)

where ρc = ρ(r = 0) is the central density, we find

1

η2
d

dη
η2

dθ

dη
= −θn. (2.41)

This is the Lane–Emden equation for the structure of a polytrope of index n. The 
boundary conditions at the center of a polytropic star are

θ(0) = 1, (2.42)

θ′(0) = 0. (2.43)
The condition (2.42) follows directly from equation (2.38). Equation (2.43) follows from 
the fact that near the center m(r) ≈ 4πρcr

3/3, so that, using equation (2.27), dρ/dr = 0.
Equation (2.41) can be easily integrated numerically, starting at η = 0 with the 

boundary conditions (2.42) and (2.43). One finds that for n < 5 (Γ > 6/5), the solutions 
decreases monotonically and have a zero at a finite value η = ηn: θ(ηn) = 0. This point 
corresponds to the surface of the star, where P = ρ = 0. Thus the radius of the star is

R = aηn, (2.44)

https://doi.org/10.1088/1742-5468/aa9339
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while the mass is

M =

∫ R

0

4πr2ρ dr

= 4πa3ρc

∫ ηn

0

η2θn dη

= −4πa3ρc

∫ ηn

0

d

dη

(
η2

dθ

dη

)
dη

= 4πa3ρcηn|θ′(ηn)|.

 

(2.45)

Eliminating ρc between equations (2.44) and (2.45) gives the mass–radius relation for 
polytropes

M = 4πR(3−n)/(1−n)

[
(n+ 1)K

4πG

]n/(n−1)

η(3−n)/(1−n)
n η2n|θ′(ηn)|. (2.46)

The solutions we are particularly interested in are

Γ =
5

3
, n =

3

2
, η3/2 = 3.653 75, η23/2|θ′(η3/2)| = ω3/2 = 2.714 06, (2.47)

Γ =
4

3
, n = 3, η3 = 6.896 85, η23|θ′(η3)| = ω3 = 2.018 24, (2.48)

which, as explained in section 2.1, corresponds to the low density non-relativistic case 
and to the high density relativistic case, respectively. Note that for Γ = 4/3, M is inde-
pendent of ρc and hence R. We conclude that as ρc → ∞, the electrons become more 
and more relativistic throughout the star, and the mass asymptotically approaches the 
value

MCh = 4πω3

(
K

πG

)3/2

, (2.49)

as R → 0. The mass limit (2.49) is called the Chandrasekhar limit (see equation (36) in 
[6], equation (58) in [16], or equation (43) in [17]) and represents the maximum possible 
mass of a white dwarf.

In figure 2 we show the temperature dependence of the Chandrasekar limit at 
µe = 2.

For the dependence of the star mass on the central density as it develops through 
the various polytropes, as shown in figure 1, see for example figure 3.2 of [4]. Clearly in 
the high ρc → ∞ limit we will have in the degenerate limit z → ∞, from equation (2.31),

M → MCh = 1.456 39

(
2

µe

)2

M�, (2.50)

where µe can be taken approximately equal to 2 or to 56/26, assuming that all the ele-
ments have been subject to nuclear fusion in the stable iron 5626Fe.

The star will not become a black hole if R > rs (see figure 1.1 of [4]), with 
rs = 2GMCh/c

2 the Schwarzschild radius in the Chandrasekhar limit, i.e.
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K <
η3c

2

23ω3ρ
1/3
c

, (2.51)

where K is given by (2.31). This suggests that at high enough central densities the 
star’s fate is to become a black hole. The critical central density is given in the degen-
erate z → ∞ limit by ρ̄c = g(µe/2)

4(2.3542× 1017 g cm−3) which is well above the one 
required for the neutron drip.

If the star has a mass lower than MCh it will not reach the Chandrasekhar limit 
but will remain on a polytrope with n < 3. If the star has a mass higher than MCh it 
will eventually evolve through a supernovae explosion into a more compact object as a 
neutron star (when electrons are captured by protons to form neutrons by β+ decay), 
a quark star, or a black hole.

3. The structure of the ideal quantum gas

The radial distribution function g(r) is related to the structure factor S(k) by the fol-
lowing Fourier transform

n[g(r)− 1] =
1

V

∑
k

eik·r[S(k)− 1]. (3.1)

Taking into account that the operator of the particle number N0 is a con-
stant of motion, the fluctuation–dissipation theorem (see appendix of [18]) 
χ′′(k, ω) = (nπ/�)(1− e−β�ω)S(k, ω), can be solved for the van Hove function

S(k, ω) =
�
nπ

[1− δk]
χ′′(k, ω)

1− e−β�ω +

〈
(δN)2

N

〉
δkδ(ω), (3.2)

Figure 2. Temperature dependence of the Chandrasekar limit at µe = 2. We recall 
that z = eβµ.

https://doi.org/10.1088/1742-5468/aa9339


White-dwarf equation of state and structure: the eect of temperature

13https://doi.org/10.1088/1742-5468/aa9339

J. S
tat. M

ech. (2017) 113101

where 〈. . .〉 represents averaging in the grand canonical ensemble. The static structure 

factor S(k) =
∫∞
−∞ dω S(k, ω) is then

S(k) =
�
nπ

[1− δk]

∫ ∞

0

dω χ′′(k, ω) coth

(
β�ω
2

)
+

〈
(δN)2

N

〉
δkδ(ω), (3.3)

where the last term does not contribute in the thermodynamic limit [19]. We substitute 
(see appendix of [18])

χ′′(k, ω) = Nπ

∫
dk′

(2π)3
Ck′{δ[�ω −∆k′(k)]− δ[�ω +∆k′(k)]}, (3.4)

with ∆k′(k) = ε(|k′ + k|)− ε(k′), and obtain for k �= 0

S(k) = V

∫
dk′

(2π)3
Ck′ coth

{
1

2
β[ε(|k′ + k|)− ε(k′)]

}
, k > 0, (3.5)

where Ck denotes the thermal average fraction of particles having momentum �k defined 
in equation (2.25).

For further analytical manipulation we rewrite

β

2
[ε(k)− µ] = ln

√
g

NCk
+ ξ. (3.6)

One rewrites equation (3.5) changing variables first k+ k′ → k and subsequently 
k → −k to find

S(k) = V

∫
dk′

(2π)3
C|k+k′| coth

{
1

2
β[ε(k)− ε(|k+ k′|)]

}
. (3.7)

Adding equations (3.5) and (3.7) and making use of the fact that the hyperbolic cotan-
gent is an odd function, one finds

2S(k) = V

∫
dk′

(2π)3
(Ck′ − C|k+k′|) coth

{
1

2
β[ε(|k′ + k|)− ε(k′)]

}
. (3.8)

Now using equation (3.6) we find

S(k) =
V

2

∫
dk′

(2π)3
(Ck′ − C|k+k′|) coth

[
ln

√
g

NC|k+k′|
+ ξ − ln

√
g

NCk′
+ ξ

]

=
V

2

∫
dk′

(2π)3

(
Ck′ + C|k+k′| +

2Nξ

g
Ck′C|k+k′|

)

= 1 +
V Nξ

g

∫
dk′

(2π)3
Ck′C|k+k′|, k > 0,

 

(3.9)

where coth[ln
√
x] = (x+ 1)/(x− 1) was used in the middle step. From this follows

1

V

∑
k �=0

eik·r[S(k)− 1] =
nξ

g


2C0

∑
k �=0

Ckeik·r +

∣∣∣∣∣
∑
k �=0

Ckeik·r
∣∣∣∣∣
2

 , (3.10)
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where C0 = δξ,1Θ(Tc − T )N0/N , with Θ the Heaviside step function, denotes the frac-
tion of particles that occupy the zero momentum state. We then introduce the function 

F (r) =
∑

k Ckeik·r. This assume the following forms

Fr(r) = C0(T ) +
g

2π2n(β�c)2ξ

∫ ∞

0

κdκ b0

(
ξze−

√
κ2+β2m2c4

)
sin

(
1

β�c
κr

)
/r,

 (3.11)

Fer(r) = C0(T ) +
g

2π2n(β�c)2ξ

∫ ∞

0

κdκ b0
(
ξze−κ

)
sin

(
1

β�c
κr

)
/r, (3.12)

Fnr(r) = C0(T ) +
2g

πnΛ2ξ

∫ ∞

0

κdκ b0

(
ξze−κ2

)
sin

(
2
√
π

Λ
κr

)
/r. (3.13)

in the relativistic ε(k) =
√
�2k2c2 +m2c4, extreme relativistic ε(k) = c�k, and non-rela-

tivistic ε(k) = λk2 cases, respectively. Inserting equations (3.9) into (3.1) we find

g(r) = 1 +
ξ

g

[
F 2(r)− C2

0(T )
]
. (3.14)

which generalizes equation (117.8) of Landau [14]. In figure 3 we show the redial distri-
bution function for fermions in the relativistic and the non-relativistic cases. From the 
figure we see how the Fermi hole becomes larger in the non relativistic case at smaller 
number densities. Increasing the temperature by one order of magnitude (see figure 3.3 
of [4]), keeping the density fixed produces a change in the radial distribution function 
of the order of 10−2, with the Fermi hole getting smaller.

For the electron gas we should include the Coulomb interaction between the par-
ticles: the jellium. The radial distribution function of the jellium cannot of course be 
calculated exactly analytically; for a Monte Carlo simulation of the degenerate (T = 0) 

Figure 3. The radial distribution function for ideal electrons (ξ = −1, g = 2) in 
the relativistic and the non-relativistic cases. Here we chose T = 20 000 K and 
n = 1.04× 1022 cm−3 in the non-relativistic case and n = 5.93× 1024 cm−3 in the 
relativistic case. r is in angstroms.
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jellium see, for example, [20] and for the jellium at finite temperature see, for example, 
[21].

Actually a more accurate result could be found by treating the white dwarf mat-
ter as a binary mixture of electrons and nuclei, which can today be done exactly with 
Monte Carlo simulation techniques such as the one devised in [22].

From these numerical studies one could extract a more accurate value for the 
constant K in the adiabatic equation of state and thus the critical central density 
ρ̄c = (η3c

2/23ω3K)3.

4. Conclusions

In this work we studied the importance of temperature dependence on ideal quant um 
gases relevant for white dwarf interiors. Even if the temperature of the star is six 
orders of magnitude smaller than the Fermi energy of the electron gas inside the star, 
we find that the temperature eects are quite relevant at white dwarf densities and 
temperatures. In particular we show that the adiabatic equation of state becomes 
extremely relativistic, with Γ = 4/3, at densities six orders of magnitude lower than the 
ones required for the completely degenerate, T = 0, case. Even if the polytropic form 
of the adiabatic equation of state remains the same as that at zero temperature, the 
proportionality constant K changing by just a 10−10 relative factor between the finite 
temperature case and the zero temperature case, we think that an accurate analysis of 
the star evolution, at least at the level of the ideal electron gas approximation in the 
absence of nuclei, should properly take into account the temperature eects. This gives 
us a complete exactly solvable analytic approximation for the compact star interior at 
a finite temperature. We could comment that the temperature eects are smaller than 
the corrections necessary to take into account the Coulomb interactions between the 
electrons and of the presence of the nuclei, but from a calculation point of view it is still 
desirable to keep under control the magnitude of the temperature corrections alone. 
Since this can be done analytically we think that their analysis is relevant by itself.

We gave the generalization to finite temperature of all the zero temperature results 
used by Chandrasekhar and, in order to keep the treatment as general as possible, we 
studied in parallel the Fermi and the Bose gases. Clearly, only the Fermi gas results 
were used for the description of the ideal electron gas in the star interior.

We then studied the structure of the ideal quantum gas as a function of temper-
ature. We found the Fermi hole for the cold electron gas in a white dwarf, which turned 
out to be of the order of 1 Å in the full relativistic regime at a number density of the 
order of n ∼ 1026 cm−3 and bigger in the non-relativistic regime at smaller densities and 
fixed temperature. The radial distribution function was also aected by the temper-
ature and the Fermi hole gets smaller as the temperature increases at fixed density.

We also pointed out that in order to correct our result for the Coulomb interac-
tion among the electrons and for the presence of the nuclei, it is necessary to abandon 
the analytic treatment in favor of a numerical simulation. We gave some relevant 
references for Monte Carlo methods that are important to adopt to solve this fasci-
nating subject. These corrections to the Chandrasekhar result or to our temperature 
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dependent treatment are important more from a philosophical point of view rather 
than an experimental or observational point of view. They would lead us to the exact 
knowledge of the properties of a mixture of electrons and nuclei at astrophysical condi-
tions such as the ones found in white dwarfs.

Moreover, let us observe that only a general relativistic statistical physics theory 
would give us fully correct results for the stability of a white dwarf. But since this 
theory has not yet been formulated [23] we will have to wait until the theory becomes 
available.

Appendix. The adiabatic equation of state for a relativistic ideal electron  
gas at finite temperature

Using the dispersion relation ε(k) =
√
�2k2c2 +m2c4, with m the rest mass of an elec-

tron, we find the pressure and the density from,

βP = g

∫
dk

(2π)3
ln
(
1 + ze−βε(k)

)
, (A.1)

n = g

∫
dk

(2π)3
1

eβε(k)/z + 1
. (A.2)

Integrating by parts the pressure equation and changing variable κ = β�ck we find

βP =
g

(β�c)3
1

2π2

1

3

∫
dκ

κ3/
√

κ2 + (βmc2)2

e
√

κ2+(βmc2)2/z + 1
, (A.3)

n =
g

(β�c)3
1

2π2

∫
dκ

κ2

e
√

κ2+(βmc2)2/z + 1
. (A.4)

These equations are equivalent to equations (2.10) and (2.11) in the main text. Then 
the entropy is given by

S/V kB = g

∫
dk

(2π)3
ln
(
1 + ze−βε(k)

)
− g

∫
dk

(2π)3
ln z − βε(k)

eβε(k)/z + 1
. (A.5)

On an adiabatic the entropy per particle s = S/NkB is constant, and from equa-
tion (A.1) it follows that

βP = g

∫
dk

(2π)3
ln z − βε(k)

eβε(k)/z + 1
+ sn. (A.6)
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