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Abstract. We discuss the property of the number density of a fluid of
particles living on a curved surface without boundaries to be constant in the
thermodynamic limit. In particular we find a sufficient condition for the density
to be constant along the Killing vector field generating a given isometry of the
surface, and the relevant necessary condition. We reinterpret the effect of a
curvature on the fluid in a physical way as responsible for an external ‘force’
acting on the particles.
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1. Introduction

The physics of fluids of particles living on surfaces is a well known subject in surface
physics. A special role is played by low-dimensional, exactly analytically solvable fluids,
as they give approximate solutions in higher dimensions and general sum rules. In
the statistical mechanics of continuous fluids, those where the particles are allowed to
move in a continuous space, one finds exact solutions for various Coulomb fluids [1].
For example the one-component Coulomb plasma (OCP) is exactly solvable in one
dimension [2]. In two dimensions Jancovici and Alastuey [3, 4] proved that the OCP
is exactly solvable analytically at a special value of the coupling constant. Since then,
a growing interest in two-dimensional plasmas has led to this system being studied on
various flat geometries [5]–[7] and two-dimensional curved surfaces, such as cylinders [8,
9], spheres [10]–[14], pseudospheres [15]–[17], and Flamm’s paraboloids [18, 19]. Among
these surfaces only the last one is of non-constant curvature. The statistical mechanics of
liquids and fluids in curved spaces is a field of growing interest [20].

Here we do not restrict ourselves to those exactly solvable cases but wish to find
a general property of any given fluid living on a curved surface without boundaries. A
homogeneous fluid living on a plane (or in general a Euclidean space) is known [21] to
have a constant density. This same conclusion holds for a (non-ideal) fluid living on a
surface of constant curvature in its thermodynamic limit1. In this paper we will state
what can be said about the constancy of the density for a fluid living on a Riemannian
surface without boundaries and embeddable in the three-dimensional Euclidean space, in
its thermodynamic limit. It is obvious that an ideal fluid (a gas) has a constant density
on any surface, whether or not we are in the thermodynamic limit. But what can be said
about a non-ideal fluid?

1 The notion of thermodynamic limit will become clear further on in the paper.

doi:10.1088/1742-5468/2012/10/P10024 2

http://dx.doi.org/10.1088/1742-5468/2012/10/P10024


J.S
tat.M

ech.(2012)
P

10024

The density of a fluid on a curved surface

The study of [18] showed that the OCP on a Flamm’s paraboloid is indeed
homogeneous. We expect this occurrence to be due to the long-range nature of the
Coulomb potential and argue that it cannot hold in general for other choices of the pair
potential or of the surface.

In this work we will give a physical interpretation of the curvature of the surface as an
external ‘force’ guiding the particles of the corresponding ‘flat’ fluid. We will show that
the Coulomb potential has to be a function of the geodesic distance between the charges
and we will restrict ourselves to a definition of a fluid as one made of particles with a
pair interaction potential which is a function of the geodesic distance between the two
particles. We will then find a necessary and sufficient condition for the density multiplied
by the square root of the determinant of the metric tensor to be constant along a certain
direction. We will show how this condition holds true both for non-quantum and quantum
fluids.

The paper is organized as follows: in section 2 we state the problem we want to solve
at the level of non-quantum fluids; in section 3 we reformulate the problem in such way
as to make explicit the physical interpretation of the curvature of the surface; section 4 is
devoted to the quantum fluid formulation of the problem; section 5 is for final remarks.

2. Statement of the problem

Given a non-quantum fluid of point-like particles living on a surface S embeddable in a
three-dimensional Euclidean space (note that we will not take into consideration those
surfaces deriving from a Riemannian metric but not embeddable or those not deriving
from a metric) and without boundaries one can define the canonical ensemble particle
number density as [21]

ρ(q1) =
N

Z

∫
Ω

e−βV (q1,...,qN )
N∏
i=2

√
g(qi)∧2

αi=1dq
αi , (1)

Z =

∫
Ω

e−βV (q1,...,qN )
N∏
i=1

√
g(qi)∧2

αi=1dq
αi , (2)

where N is the number of particles confined in the region Ω, β = 1/kBT with kB

Boltzmann’s constant and T the absolute temperature. The potential energy of the fluid
is V =

∑
1≤i<j≤Nv(d(qi,qj)) where v is the pair potential and d(q,q′) is the geodesic

distance between the two points q and q′. The surface is defined by a metric tensor gαβ
so that the square of the proper length of the infinitesimal line element is given, using the
usual Einstein summation convention, by ds2 = gαβ(q)dqα ⊗ dqβ, where ⊗ is the usual
tensor product. We denote with g(q) = det ‖gαβ(q)‖ the Jacobian of the transformation
from a locally flat reference frame to the local coordinates system on the surface. Here
we use a coordinate basis {eα = ∂qα} so that q = qαeα and the symbol d stands for the
exterior derivative. As usual we use superscript Greek indices for contravariant components
and subscript Greek indices for covariant components, and we use a subscript Roman
index to denote the (distinguishable) particle number. The symbol ∧ indicates the usual
wedge product. In the following we will call vol(Ω) =

∫
Ω

√
g(q)∧2

α=1dq
α the volume of the

region Ω.
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The problem we want to discuss is that of finding continuous transformations that
leave unchanged the density ρ(q) in the thermodynamic limit. Here we think of the surface
S as an embeddable one without boundaries. And by thermodynamic limit we mean that,
if S extends to infinity, vol(Ω)→∞ with ρ = N/vol(Ω) kept constant, or if S is closed,
Ω→ S with ρ = N/vol(S). We want to answer the question: ‘when is ρ(q) constant on S
in the thermodynamic limit?’.

The number density satisfies the following normalization condition∫
Ω

ρ(q)
√
g(q)∧2

α=1dq
α = N = vol(Ω)ρ. (3)

So when the density is constant on the surface we must have ρ = ρ̄.

3. Reinterpretation of the curvature

Choosing the coordinate basis so that ξ = ∂qα is a Killing vector field [22] generating an
isometry, then g,α = 0, where we use the usual comma convention to indicate a partial
directional derivative. We know that if p is the momentum of a free particle on S then
p · ξ is a constant of motion pα(p · ξ);α = 0, where we use the usual semicolon convention
to indicate a covariant derivative. An ideal gas has constant density on every surface,
regardless of the curvature and of the thermodynamic limit. We thus have to worry about
the term exp(−βV ). Now, if one moves the N particles at q1, . . . ,qN along the vector field
ξ, the geodesic distances among the system of particles will stay constant as well as the
potential energy V . We then have proved that, given a Killing vector field ∂qα , then ρ,α = 0.
Strictly speaking, before taking the thermodynamic limit, the domain has boundaries, and
close to these one might not be able to move the particles along the Killing vector field,
invalidating the conclusion near the boundary. When taking the thermodynamic limit,
one needs to be able to quantify if these boundary effects will be negligible or not, and
how deep they can affect the bulk of the system. This depends on the pair potential v and
on the surface. In a flat space it is well known that the boundary effects are negligible (for
suitable short-range potentials and for the Coulomb potential for globally neutral systems
to have screening). But for a general curved surface, a proper study of what happens in
the thermodynamic limit with this boundary effect is needed and it will certainly impose
additional conditions on the pair potential v, and probably also on the surface, to keep
valid the conclusion that ρ,α = 0. The conditions on the surface might appear, for example,
in cases similar to the pseudosphere, where it has been shown that boundary effects can be
of the same order of magnitude as the bulk properties (see Refs. [15]–[17]). So, additional
work in this direction is needed.

This is clearly only a sufficient condition, but it is enough to say that on the sphere
(or the plane), a surface of constant curvature [23], where ξ = ∂ϕ, with ϕ the azimuthal
angle, the density will be constant in the thermodynamic limit. One, in fact, has that the
density is constant along parallels. And this, given the symmetries of the sphere, means
that the density is indeed everywhere constant over the whole sphere, with ρ = ρ.

On the other hand a necessary condition can be expressed as follows: Say that we find
a coordinate system such that, for all v, (

√
gρ),α = 0, then in particular for v = 0 we have

ρ =constant and g,α = 0. For a Flamm’s paraboloid [18] we can say that there certainly
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exists a fluid (at least one v) such that (
√
gρ),r 6= 0, since ∂r is not a Killing vector of the

surface and g,r 6= 0. And we know [18] that the OCP is an example.
The problem then reduces to understanding what can be said about surfaces of non-

constant curvature. Note that we can as well rewrite equation (1) as follows√
g(q1)ρ(q1) = N

∫
Ω e−β[V (q1,...,qN )+

∑N
i=1 φ(qi;β)]

∏N
i=2 ∧2

αi=1dq
αi∫

Ω e−β[V (q1,...,qN )+
∑N
i=1 φ(qi;β)]

∏N
i=1 ∧2

αi=1dq
αi
, (4)

where φ(q; β) = −[ln g(q)]/2β is an ‘external potential’. A form which suggests, on
physical grounds, a local dependence of the density on the curvature. The fluid is seen
in this formulation as living on a ‘flat space’, the two-dimensional space determined by
the local coordinates chart (q1, q2) used in the surface, subject to an external potential
induced by the metric. This suggestive reinterpretation of the problem can sometimes lead
to a wrong intuition. For example, we know that the OCP on a Flamm’s paraboloid (see
section 4.2.4 of [18]) has a density that is everywhere constant, even if this surface is only
asymptotically flat but curved near the ‘horizon’, the scalar curvature being proportional
to the Euclidean distance r from the origin to the power of minus three. Whereas the
constancy of the density along the azimuthal direction ϕ has to be expected from the
sufficient condition stated above, the constancy of the density along the radial r direction
is not at all intuitive, even more so in the light of the discussion which follows.

For a surface with a conformal metric gαβ =
√
g(q)δαβ,2 the scalar curvature R can

be written as

R(q) = eβφ(q)β∆flatφ(q), (5)

where ∆flat = ∂2
q1 + ∂2

q2 is the flat Laplace operator. The external ‘force’ acting on the

particles due to the curvature is then −R exp(−βφ)/β. For a Flamm’s paraboloid [18] the
force acting on the charges turns out to be 4/[βs(1 + s)2], where s =

√
(q1)2 + (q2)2. As

we have already mentioned above, in this case, the OCP shows a constant density on the
surface. In section 3.2 we show that in general one would expect a non-constant density.

On the other hand the formulation of equation (4) suggests that
√
gρ should certainly

be regarded as a more fundamental quantity than ρ.

3.1. The Coulomb pair potential

Here we want to show that the Coulomb potential between two charged particles living
on a given surface S has to be a function of the geodesic distance between the charges [3,
8, 10, 15, 16, 18].

The Coulomb potential is defined by the Poisson equation,

∆qvCoul(q,q
′) = −2πδ(2)(q,q′), (6)

where ∆q is the Laplace–Beltrami operator and δ(2)(q,q′) = δ(2)(d(q,q′)) the Dirac delta
function, in the surface S. The Laplace-Beltrami operator is invariant to isometries. This
means that if the charge at q and the one at q′ are moved along the vector field of

2 Note that the following are all surfaces of this kind: the sphere embedded in three-dimensional Euclidean space√
g = 4/(1+s2)2, the pseudosphere embedded in three-dimensional Minkowski space

√
g = 4/(1−s2)2, the cylinder

embedded in three-dimensional Euclidean space
√

g = 1, and a Flamm’s paraboloid embedded in three-dimensional

Euclidean space
√

g = (1 + 1/s)4. Here s =
√

(q1)2 + (q2)2.
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an isometry the Laplace-Beltrami operator will not change. Neglecting eventual additive
functions which have a null Laplacian we must have

vCoul = f(d(q,q′)). (7)

For example on the sphere [10] of radius R one finds f(x) = − ln(2R sin(x/2R)/L), with
L a length scale. The conclusion of equation (7) is in agreement with Fermat’s principle
for light propagation [24].

3.2. The Coulomb fluid

For an open surface with a conformal metric gαβ = (
√
g(s)/s)δαβ, s ∈ [0,+∞[ the Laplace-

Beltrami operator can be rewritten as

∆f =
s
√
g

∆flatf, (8)

where ∆flat is the usual Laplace operator in flat space (x = s cosϕ, y = s sinϕ). We can
then introduce a complex coordinate z = seiϕ and the Laplacian Green’s function (6)

∆flatvCoul((s, ϕ), (s0ϕ0)) = −2π
1

s
δ(s− s0)δ(ϕ− ϕ0) (9)

can be solved as usual, by using the decomposition as a Fourier series. Since (6) reduces
to the flat Laplacian Green’s function, the solution is the standard one

vCoul((s, ϕ), (s0ϕ0)) =
∞∑
n=1

1

n

(
s<
s>

)n
cos[n(ϕ− ϕ0)] + v0(s, s0), (10)

where s> = max(s, s0) and s< = min(s, s0). The Fourier coefficient for n = 0 has the form

v0(s, s0) =

{
a+

0 ln s+ b+
0 s > s0

a−0 ln s+ b−0 s < s0
, (11)

and it has to satisfy the boundary conditions that v0 should be continuous at s = s0,
a+

0 ln s0 + b+
0 = a−0 ln s0 + b−0 , and its derivative discontinuous due to the Dirac delta in

(9), a+
0 /s0 − a−0 /s0 = −1/s0. Summing explicitly the Fourier series (10) and requiring

additionally that the Coulomb potential vCoul(s1, s2) be symmetric under exchange of 1
and 2 we find

vCoul(s, ϕ; s0, ϕ0) = − ln
|z − z0|
h(s, s0)

+ a, (12)

with h(s, s0) = 1 or h(s, s0) =
√
ss0, and a a constant. Here if we imagine the plasma

confined into a disk ΩR of radius R we can choose

vCoul(s, ϕ; s0, ϕ0) = − ln
|z − z0|
h(s, s0)

+ b, (13)

with h(s, s0) = R and b = a − lnR, or h(s, s0) =
√
ss0 and b = a, so that if we rescale

all the s into λs and R into λR the Coulomb potential does not change apart from an
additive constant. Imagine now we are on a plane [3], then h(s, s0) = R. Then in the
definition of the density (1) at any temperature we can change integration variables in the

doi:10.1088/1742-5468/2012/10/P10024 6
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numerator from (si, ϕi) to (xi = sie
i(ϕi−ϕ1), yi = ϕi−ϕ1) for i = 2, 3, . . . , N with Jacobian

1. Calling vb = vb(s/R) = ρ̄
∫

ΩR
vCoul(s, ϕ; s′, ϕ′)

√
g(s′) ds′ϕ′ the neutralizing background

potential and v0 the self energy of the background we can write

ρ(s1, ϕ1) =
N

Z
e−β[vb(s1/R)+v0]

∫
ΩR

∏
i>j≥2

e−βvCoul(qi;qj)
N∏
k=2

(
|xk − s1|

R

)βq2

× e−βvb(xke−iyk/R)
√
g (xke−iyk) dxk dyk. (14)

The integral does not depend on ϕ1, so ρ(s1, ϕ1) = ρ(s1). Now we can make a change of
variables where sk → sk/s1 for k = 2, 3, . . . , N and R/s1 → T so that

ρ(s1) =
N

Z
e−β[vb(1/T )+v0]

∫
ΩT

∏
i>j≥2

e−βvCoul(qi;qj)
N∏
k=2

(
|xk − 1|
T

)βq2

× e−βvb(sk/T )
√
g (sks1) sN−1

1 dxk dyk. (15)

On a plane
√
g(ss1) = ss1, so that in equation (15) there is a multiplicative factor s

2(N−1)
1 .

So in the thermodynamic limit T →∞ and N →∞ we can say that ρ(s1) = constant,
since we know that we must have a well defined thermodynamic limit. The same conclusion
holds on a pseudosphere (see section 4.3.2 of [16]), on a cylinder (see equation (12a) of [9]),
and on a Flamm’s paraboloid (see section 4.2.4 of [18]). In these cases the explicit analytic
expression of the density has been determined for the finite system as a function of the
properties of the surface at the special value of the coupling constant βq2 = 2. To the
best of our knowledge there are no analytical results in the literature where the OCP has
been found to have a non-constant number density in the thermodynamic limit on a given
curved surface, and probably one has to resort to numerical simulations [25]. It certainly
has to be expected that in a general curved surface the OCP in the thermodynamic limit
may have a non-constant density, otherwise it would mean that an OCP in the plane
has a uniform density for an arbitrary external field. It might actually be true that the
effects of the metric and the background potential cancel one another when the potential
is determined by Poisson’s equation, but if it is true, it will be necessary to solve for the
potential in more detail to prove it.

4. The quantum case

For the quantum fluid we find for the canonical ensemble distinguishable density
matrix (the full density matrix for a system of bosons or fermions is then obtained by
symmetrization or anti-symmetrization respectively) [26]

ρD(Q′,Q; β) =

∫
ρD(Q′,Q((M − 1)τ); τ) · · · ρD(Q(τ),Q; τ)

M−1∏
j=1

√
g̃(j)

2N∏
α=1

dQα(jτ), (16)

where as usual we discretize the imaginary time in bits τ = ~β/M and Q = (q1, . . . ,qN)
with

g̃(i) = det ‖g̃µν(Q(iτ))‖, (17)

g̃µν(Q) = gα1β1(q1)⊗ . . .⊗ gαNβN (qN), (18)

doi:10.1088/1742-5468/2012/10/P10024 7
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to get to the path integral formulation, and in the small τ limit for particles of unitary
mass it follows that

ρ(Q(2τ),Q(τ); τ) = (2π~)−N g̃
−1/4
(2)

√
D(Q(2τ),Q(τ); τ)g̃

−1/4
(1)

× e~τR(Q(τ))/12 e−(1/~)S(Q(2τ),Q(τ);τ), (19)

where R is the scalar curvature of the surface, S the action and D the van Vleck’s
determinant

Dµν = −∂
2S(Q(2τ),Q(τ); τ)

∂Qµ(2τ)∂Qν(τ)
, (20)

D(Q(2τ),Q(τ); τ) = det ‖Dµν‖. (21)

For example for free particles

H = 1
2

N∑
i=1

gαiβi(qi)pαipβi = 1
2

N∑
i=1

gαiβi(qi)q̇
αi q̇βi , (22)

S(Q(2τ),Q(τ); τ) = K(Q(2τ),Q(τ); τ) = 1
2

N∑
i=1

d2(qi(2τ),qi(τ))/τ, (23)

and for the fluid

S(Q(2τ),Q(τ); τ) = K(Q(2τ),Q(τ); τ) + τV (Q(τ)). (24)

We then find the partition function through the integral

Z =

∫
ρD(Q,Q; β)

√
g̃ dQ, (25)

and the number density by√
g(q1)ρ(q1) = N

∫
ρD(Q,Q; β)

√
g̃
∏N
i=2 dqi

Z
. (26)

It is then apparent that by choosing the same isometry on each imaginary time slice
we reach the same conclusion as in section 3 for the classical (non-quantum) fluid.

5. Conclusions

We showed that in a surface of constant curvature without boundaries the local number
density ρ(q) of a non-ideal, (V 6= 0), fluid is a constant in the thermodynamic limit.
Clearly the ideal gas has constant density on every surface regardless of the curvature and
of the thermodynamic limit.

The Coulomb potential for particles living on the surface depends on the metric tensor
and is in general a function of the geodesic distance between the two charges. The Coulomb
fluid density is a constant in the thermodynamic limit in the plane [3] the sphere [10] and
the pseudosphere [15]–[17], all surfaces of constant curvature, but also on the Flamm’s
paraboloid [18], a surface of non-constant curvature.

We proposed a formulation for the number density which gives to the curvature of a
surface with a conformal metric (the sphere, the pseudosphere and the Flamm’s paraboloid

doi:10.1088/1742-5468/2012/10/P10024 8
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are three surfaces of this kind) a physical interpretation as an additional external ‘force’
acting on the system of particles moving in the corresponding ‘flat space’. The formulation,
although suggestive, partly masks the intuition of the properties of the density because of
the fact that the pair potential is inherently related to the properties of the curved surface,
i.e. the geodesic distance between two points, which cannot be translated in terms of the
properties of the corresponding fluid moving in the ‘flat space’ in a straightforward way. On
the other hand the formulation suggests that the combination

√
gρ is a more fundamental

quantity than just ρ itself. One can show both for the non-quantum and the quantum
fluid that if ∂qα is a Killing vector field of the surface then if we can neglect surface effects

[
√
g(q)ρ(q)],α = 0 and if [

√
g(q)ρ(q)],α = 0, ∀ v then g,α = 0. These are the main results

of our discussion. We can also say that g,α = 0 if and only if [
√
g(q)ρ(q)],α = 0, ∀ v.

The total potential energy of the fluid moving in the ‘flat space’ is U(Q) = V (Q) +∑
iφ(qi; β), where the functional dependence on Q of the first term depends both on

the fluid model, through v(d(qi,qj)), and the kind of surface, through d, whereas the
functional form of the second term depends only on the kind of surface. It is then to be
expected that given a fluid model the density can be non-constant on certain surfaces.

The OCP has uniform density on the cylinder (see equation (12a) of [9]), on the
pseudosphere (see section 4.3.2 of [16]), and on the Flamm’s paraboloid (see section 4.2.4
of [18]). In these cases the explicit expression of the density has been determined for the
finite system as a function of the properties of the surface at the special value of the
coupling constant βq2 = 2. To the best of our knowledge there are no analytical results
in the literature where the OCP has been found to have a non-constant number density
in the thermodynamic limit on a given curved surface, and probably one has to resort to
numerical simulations [25].

It would be important, in the future, to be able to understand if the surface effects
on the finite system have some influence in the conclusion that if ∂qα is a Killing vector

field of the surface then [
√
g(q)ρ(q)],α = 0 in the thermodynamic limit.
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