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Abstract. The two component plasma (TCP) living in a Flamm’s paraboloid is
studied at a value of the coupling constant Γ = 2 for which an analytic expression
for the grand canonical partition function is available. Two cases are considered:
the plasma in the half surface with an insulating horizon and the plasma in
the whole surface. The Green’s function equation necessary to determine the
n-particle truncated correlation functions is explicitly found. In both cases
this proves too complicated to be solved analytically. Therefore we present a
method of solution reducing the problem to finding the two linearly independent
solutions of a linear homogeneous second order ordinary differential equation with
polynomial coefficients of high degrees. In the flat limit one recovers the solution
for the structure of the TCP in a plane in the first case but the collapse of opposite
charges at the horizon means that the structure of the plasma is physically not
well defined in the second case.

Keywords: algebraic structures of integrable models, classical integrability,
correlation functions, rigorous results in statistical mechanics

c©2012 IOP Publishing Ltd and SISSA Medialab srl 1742-5468/12/P04015+15$33.00

mailto:rfantoni27@sun.ac.za
http://stacks.iop.org/JSTAT/2012/P04015
http://dx.doi.org/10.1088/1742-5468/2012/04/P04015


J.S
tat.M

ech.
(2012)

P
04015

Two component plasma in a Flamm’s paraboloid

Contents

1. Introduction 2

2. The Flamm’s paraboloid S 3

3. The Coulomb potential created by a point charge 5

4. The two component plasma model 6

5. TCP in a half surface with an insulating horizon 6

5.1. Symmetries of the Green’s function R . . . . . . . . . . . . . . . . . . . . . 8

5.2. Two-body truncated correlation functions and the perfect screening sum rule 8

5.3. From the structure to the thermodynamics . . . . . . . . . . . . . . . . . . 9

5.4. Determination of the Green’s function R . . . . . . . . . . . . . . . . . . . 9

5.5. Method of solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6. TCP in the whole surface 11

7. Conclusions 14

Acknowledgment 15

References 15

1. Introduction

The two component plasma (TCP) is a neutral mixture of point wise particles of charge
±q. The equation of state of the TCP living in a plane has been known since the work of
Salzberg and Prager [1]. In the plasma the attraction between oppositely charged particles
competes with the thermal motion and makes the partition function of the finite system
diverge when Γ = βq2 ≥ 2, where β = 1/kBT with kB the Boltzmann constant. The
system becomes unstable against the collapse of pairs of oppositely charged particles, and
as a consequence all thermodynamic quantities diverge, so that the point particle model is
well behaved only for Γ < 2 [2] when the Boltzmann factor for unlike particles is integrable
at small separations of the charges. In this case rescaling the particle coordinates so as
to stay in the unit disk one easily proves that the grand canonical partition function is a
function of

√
λ−λ+V

(1−Γ/4), where V is the volume of the plasma and λ± are the fugacities
of the two charge species, and as a consequence the equation of state is βP = n(1−Γ/4),
where n = n+ + n− is the total particle number density. It also follows that the ratio√
λ−λ+/n

(1−Γ/4) must be a function of Γ only in the thermodynamic limit [3]. However, if
the collapse is avoided by some short range repulsion (hard cores for instance), the model
remains well defined for lower temperatures. Then, for Γ > 4 the long range Coulomb
attraction binds positive and negative particles in pairs of finite polarizability. Thus, at
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some critical value Γc ∼ 4 the system undergoes the Kosterlitz–Thouless transition [4]
between a high temperature (Γ < 4) conductive phase and a low temperature (Γ > 4)
dielectric phase. The same behavior also occurs in the TCP living in one dimension [5].

The structure of the TCP living in a plane at the special value Γ = 2 of the coupling
constant is solvable exactly analytically [6]. Through the use of an external potential
it has also been studied in various confined geometries [7]–[10] and in a gravitational
field [11, 12].

In curved surfaces it has only been studied in surfaces of constant curvature such as
the sphere [13, 14] and the pseudosphere [15]. Unlike the one component plasma where the
properties of the Vandermonde determinant allow analytical solution a Cauchy identity is
used for the solution of the TCP. Unlike in the one component case where the solution is
possible for the plasma confined in a region of the surface now this is not possible anymore
without the use of an external potential. In these cases the external potential is rather
given by −(Γ/q2) ln

√
g, where g is the determinant of the metric tensor.

In this work we study the TCP at the special value Γ = 2 of the coupling constant
in a Flamm’s paraboloid, a surface of non-constant curvature. In this surface the one
component plasma [16] has been studied in various situations: confined to one ‘universe’
by an insulating or a grounded perfect conductor ‘horizon’ or in the whole surface. Here
we will restrict ourselves to only the first and last situations.

In a curved surface, even though the finite system partition function will still be finite
for Γ < 2 since the surface is locally flat, the structure will change with respect to the flat
case. The purpose of the present work is to see how it changes for the special case Γ = 2
where an exact analytical solution is possible.

2. The Flamm’s paraboloid S
In this work, we want to study a two-dimensional TCP in the Flamm’s paraboloid. This
is a Riemannian surface S with the following metric:

ds2 = gμν dxμ dxν =

(
1 − 2M

r

)−1

dr2 + r2 dϕ2, (1)

or grr = 1/(1 − 2M/r), gϕϕ = r2, and grϕ = 0.
The Flamm’s paraboloid is an embeddable surface in the three-dimensional Euclidean

space. It is composed of two identical ‘universes’: S+ and S−. These are both multiply
connected surfaces connected by a hole of radius 2M . We will from now on call the
r = 2M region of the surface its ‘horizon’. The scalar curvature is R = −2M/r3.

The system of coordinates (r, ϕ) with the metric (1) has the disadvantage that it
requires two charts to cover the whole surface S. It can be more convenient to use the
variable

u = ±
√

r

2M
− 1 (2)

instead of r. This gives the following metric when using the system of coordinates (u, ϕ):

ds2 = 4M2(1 + u2)[4 du2 + (1 + u2) dϕ2]. (3)

The region u > 0 corresponds to S+ and the region u < 0 to S−.
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The Laplace–Beltrami operator is

Δf =
1√
g

∂

∂qμ

(√
g gμν ∂

∂qν

)
f

=

[(
1 − 2M

r

)
∂2

r +
1

r2
∂2

ϕ +

(
1

r
− M

r2

)
∂r

]
f, (4)

where q ≡ (r, ϕ). Finding the Green’s function of the Laplacian, naturally [16] leads us
to consider the system of coordinates (s, ϕ), with

s = (
√
u2 + 1 + u)2. (5)

The range for the variable s is ]0,+∞[. The lower paraboloid S− corresponds to the region
0 < s < 1 and the upper one S+ to the region s > 1. A point in the upper paraboloid
with coordinate (s, ϕ) has a mirror image by reflection (u→ −u) in the lower paraboloid,
with coordinates (1/s, ϕ), since if

s = (
√
u2 + 1 + u)2 (6)

then
1

s
= (

√
u2 + 1 − u)2. (7)

In the upper paraboloid S+, the new coordinate s can be expressed in terms of the original
one, r, as

s =
(
√
r +

√
r − 2M)2

2M
. (8)

Using this system of coordinates, the metric takes the form of a flat metric multiplied
by a conformal factor

ds2 =
M2

4

(
1 +

1

s

)4

(ds2 + s2 dϕ2). (9)

The Laplacian also takes a simple form

Δf =
s√
g

Δflatf, (10)

where

Δflatf = ∂2
sf +

1

s
∂sf +

1

s2
∂2

ϕf (11)

is the Laplacian of the flat Euclidean space R
2. The square root of the determinant of

the metric is now given by
√
g = (M/2)2s(1 + s−1)4.

It is useful to keep in mind the following small M behaviors:

s = 2
r

M
− 2 − 1

2

M

r
− 1

2

(
M

r

)2

− 5

8

(
M

r

)3

+ O(M4), (12)

√
g =

rM

2
+
M2

2
+

5M3

8r
+ O(M4). (13)
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3. The Coulomb potential created by a point charge

We here summarize the results found in [16] on the determination of the Coulomb potential
between two charges living in a half Flamm’s paraboloid with an insulating horizon and
between two charges living in the full Flamm’s paraboloid.

The Coulomb potential G(s, ϕ; s0, ϕ0) created at (s, ϕ) by a unit charge at (s0, ϕ0) is
given by the Green’s function of the Laplacian

ΔG(s, ϕ; s0, ϕ0) = −2πδ(2)(s, ϕ; s0, ϕ0) (14)

with appropriate boundary conditions. The Dirac distribution is given by

δ(2)(s, ϕ; s0, ϕ0) =
1√
g
δ(s− s0)δ(ϕ− ϕ0). (15)

Notice that using the system of coordinates (s, ϕ) the Laplacian Green’s function
equation takes the simple form

ΔflatG(s, ϕ; s0, ϕ0) = −2π
1

s
δ(s− s0)δ(ϕ− ϕ0) (16)

which is formally the same Laplacian Green’s function equation as that for a flat space.
The Laplacian Green’s function equation (14) can be solved, as usual, by using the

decomposition as a Fourier series. Since equation (14) reduces to the flat Laplacian Green’s
function equation (16), the solution is the standard one

G(s, ϕ; s0, ϕ0) =

∞∑

n=1

1

n

(
s<

s>

)n

cos [n(ϕ− ϕ0)] + g0(s, s0) (17)

where s> = max(s, s0) and s< = min(s, s0).
We consider now the case of particles restricted to live in the half surface (hs) S+,

s > 1, by a hard wall located at the ‘horizon’, s = 1. The region S−, s < 1, is empty
and has the same dielectric constant as the upper region. We want to consider a model
where the interaction potential reduces to the flat Coulomb potential in the flat limit
M → 0. The solution of the Laplacian Green’s function equation is given in Fourier
series by equation (17). The 0th order Fourier component g0 can be determined by the
requirement that, in the limit M → 0, the solution reduces to the flat Coulomb potential

Gflat(r, r′) = − ln
|r− r′|
L

, (18)

where L is an arbitrary constant length. Recalling that s ∼ 2r/M , when M → 0, we find

g0(s, s0) = − ln s> − ln
M

2L
(19)

and in the half surface

Ghs(s, ϕ; s0, ϕ0) = − ln |z − z0| − ln
M

2L
, (20)

where we defined z = seiϕ and z0 = seiϕ0 . And limM→0G
hs = Gflat as desired.

A similar procedure [16] gives the Coulomb potential between charges living in the
whole surface (ws) 0 < s <∞,

Gws(s, ϕ; s0, ϕ0) = − ln
|z − z0|√|zz0|

− ln
L0

L
, (21)

with L0 another length scale.
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4. The two component plasma model

The TCP is a neutral mixture of two species of point charges of charge ±q. In this work
we want to study the plasma in the Flamm’s paraboloid. In [16] the Coulomb potential
between two charges living in the whole paraboloid, in a half surface with an insulating
horizon, and in a half surface with a grounded horizon was found. The first and last cases
have been summarized in section 3 as they will be the two cases considered next.

5. TCP in a half surface with an insulating horizon

When the TCP lives in a half surface with an insulating horizon the Coulomb potential
is given by equation (20). We will use ui = sie

iϕi and vj = sje
iϕj to denote the

complex coordinates of the positively and negatively charged particles respectively, where
s = (

√
r +

√
r − 2M)2/2M > 1. Then, following [6], we use a Cauchy identity [17] to

rewrite e−βU2N , where U2N is the potential energy of a neutral system of N positive and
N negative charges, as follows:

exp

{

2
∑

i<j

[
ln

∣
∣∣
∣
ui − uj

2L/M

∣
∣∣
∣ + ln

∣
∣∣
∣
vi − vj

2L/M

∣
∣∣
∣

]
− 2

∑

i,j

ln

∣
∣∣
∣
ui − vj

2L/M

∣
∣∣
∣

}

=

(
2L

M

)2N
∣
∣
∣
∣∣

∏
i<j(ui − uj)(vi − vj)∏

i,j(ui − vj)

∣
∣
∣
∣∣

2

=

(
2L

M

)2N
∣
∣∣
∣
∣
det

(
1

ui − vj

)

(i,j)∈{1,...,N}2

∣
∣∣
∣
∣

2

, (22)

where we had to choose the particular case of a coupling constant Γ = βq2 = 2.

Following [6], to avoid divergences we start from a discretized model in which two
sub-lattices U and V are introduced. The positive (negative) particles sit on the sub-
lattice U (V ). Each lattice site is occupied by no or one particle. The grand canonical
partition function defined as a sum including only neutral systems is then

Ξ = 1 +

∞∑

N=1

(
2L

M

)2N

λN
−λ

N
+

∑

u1,...,uN∈U

v1,...,vN∈V

∣∣
∣
∣
∣
det

(
1

ui − vj

)

(i,j)∈{1,...,N}2

∣∣
∣
∣
∣

2

, (23)

where the sums are defined with the prescription that configurations which differ only by
a permutation of identical particles are counted only once, and λp is the constant fugacity
of the charges of species p = ±. This grand partition function is the determinant of an
anti-Hermitian matrix M explicitly shown in [7].

When passing to the continuum limit in the element Mij one should replace ui or
vi by z and uj or vj by z′, i.e. i → z and j → z′. Each lattice site is characterized by

its complex coordinate z and an isospinor which is
( 1

0

)
if the site belongs to the positive

sub-lattice U and
( 0

1

)
if it belongs to the negative sub-lattice V . We then define a matrix

doi:10.1088/1742-5468/2012/04/P04015 6

http://dx.doi.org/10.1088/1742-5468/2012/04/P04015


J.S
tat.M

ech.
(2012)

P
04015

Two component plasma in a Flamm’s paraboloid

MMM by

〈z|MMM|z′〉 =
σxxx + iσyyy

2

2L/M

z − z′
+
σxxx − iσyyy

2

2L/M

z̄ − z̄′
, (24)

where the σs are the 2×2 Pauli matrices operating in the isospinor space, and z = x+iy.
The matrix MMM can be expressed in terms of a simple Dirac operator

〈z|MMM|z′〉 =
2L

M
(σxxx∂x + σyyy∂y) ln |z − z′|, (25)

and the grand partition function can be rewritten as

Ξ = det

{
1δ(2)(z; z′) +

[
λ+

1 + σzzz

2
+ λ−

1 − σzzz

2

]
〈z|MMM|z′〉

}

= det[I + K−1], (26)

with I = 1δ(2)(z; z′) and

λ = λ+
1 + σzzz

2
+ λ−

1 − σzzz

2
, (27)

K−1 = λMMM. (28)

Then, since Δflat ln |z| = 2πδ(s)δ(ϕ)/s = 2πδ(z) (where s = |z| and δ(z) is the flat
Dirac delta function), the inverse operator K is

K = m−1(z)O, (29)

where

m(z) = m+(z)
1 + σzzz

2
+m−(z)

1 − σzzz

2
, (30)

O =
2

M
(σxxx∂x + σyyy∂y) . (31)

Here m±(z) = (2πLλ±
√
g/sS)(2/M)2 are rescaled position dependent fugacities, g =

det(gμν), and S is the area per lattice site which appears when the discrete sums are
replaced by integrals. Notice that in the flat limit M → 0 we find m± → m̃±, where
m̃± = 2πLλ±/S are the rescaled fugacities of the flat system [7, 6]. Moreover S is a local
property of the surface independent from its curvature.

We then find

ln Ξ = Tr
{
ln

[
I + K−1

]}
,

and the one-body densities and n-body truncated densities can be obtained in the usual
way by taking functional derivatives of the logarithm of the grand partition function with
respect to the fugacities λ±. Marking the sign of the particle charge at zi by an index
pi = ±1, and defining the matrix

Rp1p2(z1, z2) = 〈z1p1|K−1(I + K−1)−1|z2p2〉, (32)

doi:10.1088/1742-5468/2012/04/P04015 7
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it can then be shown [6, 7] that they are given by

ρ(1)
p1

(z1) = Rp1p1(z1, z1), (33)

ρ(2)T
p1p2

(z1, z2) = −Rp1p2(z1, z2)Rp2p1(z2, z1), (34)

ρ(n)T
p1p2,...,pn

(z1, z2, . . . , zn) = (−)n+1
∑

(i1,i2,...,in)

Rpi1
pi2

(zi1 , zi2) · · ·Rpinpi1
(zin , zi1), (35)

where mp(z)=(2πLλp
√
g/sS)(2/M)2=(m̃p

√
g/s)(2/M)2, m̃p = 2πLλp/S,

√
g = (M/2)2

s(1 +1/s)4, and the summation runs over all cycles (i1, i2, . . . , in) built with {1, 2, . . . , n}.

5.1. Symmetries of the Green’s function R

Since m†(z) = m(z) and O† = −O we find

Rp1p2(z1, z2) = 〈z2p2|m−1O(I − m−1O)−1(m−1O)−1|z1p1〉. (36)

Expanding in O (by using (I − m−1O)−1 = I + m−1O + (m−1O)2 + · · ·) and comparing
with the definition Rp1p2(z1, z2) = 〈z1p1|(m−1O)−1(I + m−1O)−1m−1O|z2p2〉 we find

Rpp(z1, z2) = Rpp(z2, z1), (37)

Rp−p(z1, z2) = −R−pp(z2, z1), (38)

from which it also follows that Rpp(z1, z1) has to be real. If λ+ = λ− then we additionally
must have

Rpp(z1, z2) = R−p−p(z1, z2). (39)

5.2. Two-body truncated correlation functions and the perfect screening sum rule

For the two-body truncated correlation functions of equation (34) we then find

ρ
(2)T
++ (z1, z2) = −|R++(z1, z2)|2, (40)

ρ
(2)T
+− (z1, z2) = |R+−(z1, z2)|2. (41)

Notice that the total correlation function for the like particles h++(z1, z2)=ρ
(2)T
++

(z1, z2)/ρ
(1)
+ (z1)ρ

(1)
+ (z2) goes to −1 when the particles coincide, z1 → z2, as follows from

the structure of equations (33) and (34). Moreover, the truncated densities of any order
have to decay to zero as the two groups of particles are infinitely separated. In particular,
|R++(z1, z2)| = |R++(s1, s2;ϕ)|, with ϕ = ϕ1 −ϕ2, has to decay to zero as |s1 − s2| → ∞.

The perfect screening sum rule has to be satisfied for the symmetric mixture
∫

[ρ
(2)T
+− (z1, z2) − ρ

(2)T
++ (z1, z2)]

√
g1 ds1 dϕ1 = ρ±(z2), (42)

where g1 is g calculated on particle 1.

doi:10.1088/1742-5468/2012/04/P04015 8
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5.3. From the structure to the thermodynamics

Following [12], we note that if we solve the eigenvalue problem Kψn = λnψn (here ψn is
a spinor of components ψ+,n and ψ−,n), then

Ξ =
∏

n

(
1 +

1

λn

)
. (43)

Now the eigenvalue problem reads

{m+(z) + A[m−(z)]−1A†}ψ−(z) = (m−(z) − λ2)ψ−(z), (44)

{m−(z) + A†[m+(z)]−1A}ψ+(z) = (m−(z) − λ2)ψ+(z), (45)

where A = (2/M)(∂x +i∂y) and A† = (2/M)(−∂x +i∂y) and the left-hand side is the same
as the left-hand side for the Green’s functions equations (48) and (49).

Of course we know that the thermodynamic quantities all diverge in our Γ = 2 case
so equation (43), although suggestive, is of small practical interest.

5.4. Determination of the Green’s function R

The Green’s function matrix R is the solution of a system of four coupled partial
differential equations, namely

(I + K−1)KR(z1, z2) = (I + K)R(z1, z2) = 1δ(2)(z1; z2), (46)

where δ(2)(z1; z2) = δ(2)(s, ϕ; s0, ϕ0) = (
√
g)−1δ(s−s0)δ(ϕ−ϕ0) is the Dirac delta function

in the curved surface, δ(s − s0)δ(ϕ − ϕ0)/s = δ(s, ϕ; s0, ϕ0) = δ(z; z0) is the flat Dirac
delta function, and 1 is the identity matrix. These can be rewritten as follows:

[O + m(z1)]R(z1, z2) = m(z1)δ
(2)(z1; z2).

If instead of R one uses R = Gm̃, G satisfies the equation

[O + m(z1)]G(z1, z2) =
4

M2
1δ(z1; z2), (47)

where δ(z1; z2) is now the flat Dirac delta function1.
By combining the components of this equation one obtains decoupled equations for

G++ and G−− as follows:

{
m+(z1) + A†[m−(z1)]

−1A
}
G++(z1, z2) =

4

M2
δ(s1, ϕ1; s2, ϕ2), (48)

{
m−(z1) + A[m+(z1)]

−1A†}G−−(z1, z2) =
4

M2
δ(s1, ϕ1; s2, ϕ2), (49)

while

G−+(z1, z2) = − [m−(z1)]
−1AG++(z1, z2), (50)

G+−(z1, z2) = + [m+(z1)]
−1A†G−−(z1, z2). (51)

1 The same result could have been reached by noticing that the partition function of equation (23) rewritten
in the continuum is equivalent to the partition function of the flat system with position dependent fugacities
ζp(s) = λp(M/2)2(1 + 1/s)4(2L/M). This leads naturally [7] to definition of a Green’s function G̃ = (M/2)G
which satisfies the equation [(M/2)O + (2π/S)ζ(z)]G̃(z, z′) = 1δ(z; z′), which reduces to equation (47).
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Then equation (48) can be rewritten in Cartesian coordinates as
{

m+(z1)m−(z1) −
(

2

M

)2 [
(∂2

x1
+ ∂2

y1
) − 4(−x1 + iy1)

s2
1(1 + s1)

(∂x1 + i∂y1)

]}

G++(z1, z2)

=

(
2

M

)4 m̃−
√
g1

s2
1

δ(s1 − s2)δ(ϕ1 − ϕ2) =

(
2

M

)4 m̃−
√
g1√

x2
1 + y2

1

× δ(x1 − x2)δ(y1 − y2), (52)

where s =
√
x2 + y2. From the expression of the gradient in polar coordinates it follows

that

∂x = cosϕ∂s − sinϕ

s
∂ϕ, ∂y = sinϕ∂s +

cosϕ

s
∂ϕ, (53)

Which allows us to rewrite equation (52) in polar coordinates as
[

m̃+m̃−

(
1 +

1

s1

)8

−
(

2

M

)2 (
1

s1

∂s1(s1∂s1) +
1

s2
1

∂2
ϕ1

+
4

s1(1 + s1)
∂s1 +

4i

s2
1(1 + s1)

∂ϕ1

)]

× G++(z1, z2) =

(
2

M

)4 m̃−
√
g1

s2
1

δ(s1 − s2)δ(ϕ1 − ϕ2). (54)

From this equation we immediately see that G++(z1, z2) cannot be real. Notice that in
the flat limit M → 0 we have s ∼ 2r/M and equation (54) reduces to
[
m̃+m̃− − 1

r1
∂r1(r1∂r1) −

1

r2
1

∂2
ϕ1

]
G++(z1, z2) =

m̃−
r1
δ(r1 − r2)δ(ϕ1 − ϕ2), (55)

which, when m̃+ = m̃− = m̃, has the following well known solution [7, 6]:

G++(z1, z2) =
m̃

2π
K0(m̃|r1 − r2|), (56)

where K0 is a modified Bessel function.
Let us from now on restrict ourselves to the case of equal fugacities of the two species.

Then λ− = λ+ = λ with

m̃ =
2πL

S
λ =

2πLeβμ

Λ2
=

(
2πL

mq2

4π�2

)
e2μ/q2

, (57)

where � is Planck’s constant, m is the mass of the particles, and μ is the chemical potential.
So m̃ has the dimensions of an inverse length. From the symmetry of the problem we can
say that G++ = G++(s1, s2;ϕ1 − ϕ2). We can then express the Green’s function as the
following Fourier series expansion:

G++(s1, s2;ϕ) =
1

2π

∞∑

k=−∞
g++(s1, s2; k)e

ikϕ. (58)

Then, using the expansion of the Dirac delta function,
∑

k eikϕ = 2πδ(ϕ), we find that
g++, a continuous real function symmetric under exchange of s1 and s2, has to satisfy
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the following equation:

[Q0(k, s1) +Q1(s1)∂s1 +Q2(s1)∂
2
s1

]g++(s1, s2; k) =

(
2

M

)2

m̃s3
1(1 + s1)

5δ(s1 − s2), (59)

where

Q0(k, s) = m̃2(1 + s)9 +

(
2

M

)2

ks6(4 + k(1 + s)),

Q1(s) = −
(

2

M

)2

s7(5 + s),

Q2(s) = −
(

2

M

)2

s8(1 + s),

and the coefficients Qi are polynomials of up to degree 9.

5.5. Method of solution

We start from the homogeneous form of equation (59). We note that, for a given k, the
two linearly independent solutions fα(s; k) and fβ(s; k) of this linear homogeneous second
order ordinary differential equation are not available in the mathematical literature to the
best of our knowledge. Assuming that we knew these solutions we would then find the
Green’s function, g++(s1, s2; k), writing [18]

f(t1, t2; k) = ckfα(s<; k)fβ(s>; k), (60)

where s< = min(s1, s2), s> = max(s1, s2), and fβ has the correct behavior at large s. Then
we determine ck by imposing the kink in f due to the Dirac delta function at s1 = s2 as
follows:

∂s1f(s1, s2; k)|s1=s2+ε − ∂s1f(s1, s2; k)|s1=s2−ε = −m̃(1 + s2)
4

s5
2

, (61)

where ε is small and positive.
The Green’s function, symmetric under exchange of s1 and s2, is reconstructed as

follows:

G++(z1, z2) = G++(s1, s2;ϕ) =
1

2π

∞∑

k=−∞
ckfα(s<; k)fβ(s>; k)eikϕ. (62)

6. TCP in the whole surface

In the whole surface, using equation (21), we can now write e−βU2N at a coupling constant
Γ = 2 as follows:

∣∣
∣
∣
∣∣
det

(
L

L0

√|ujvj |
ui − vj

)

(i,j)∈{1,...,N}2

∣∣
∣
∣
∣∣

2

. (63)
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The grand partition function will then be

Ξ = det
[
I + K−1

ws

]
, (64)

with

K−1
ws =

(
M

2L0

)
λwsMMM, (65)

λws = λ+|z|1 + σzzz

2
+ λ−|z|1 − σzzz

2
. (66)

The inverse operator is then given by

Kws =

(
2L0

M

)
MMM−1λ−1

ws , (67)

λ−1
ws =

1

λ+|z|
1 + σzzz

2
+

1

λ−|z|
1 − σzzz

2
, (68)

MMM−1 =
Ss

2πL
√
g

(
M

2

)2

O. (69)

Introducing position dependent fugacities2

mp(z) =
2π(L/L0)λp

√
g

Ss
= m̃p

√
g

s
, (70)

where now m̃p/L0 → m̃p, we can rewrite

Kws =
σxxx + iσyyy

2
a− +

σxxx − iσyyy

2
a+, (71)

with the operators

a− = − z̄

m−(z)|z|3 +
1

m−(z)|z|(∂x − i∂y), (72)

a+ = − z

m+(z)|z|3 +
1

m+(z)|z|(∂x + i∂y). (73)

Then the equations for the Green’s functions are

(1 − a−a+)R++(z1, z2) = δ(2)(z1; z2), (74)

(1 − a+a−)R−−(z1, z2) = δ(2)(z1; z2), (75)

R+− = −a−R−−, (76)

R−+ = −a+R++. (77)

2 Alternatively we could have left the one-body terms (
√|z|) outside the determinant, and then considered them

as part of the position dependent fugacities, and simply applied the Cornu and Jancovici [7] formalism with these
position dependent fugacities.
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The equation for R++ in the symmetric mixture case is
[
m2(z1) − 2

s4
1

+
2∂s1

s3
1

− ∂2
s1

s2
1

− −i∂ϕ1 + ∂2
ϕ1

s4
1

]
R++(z1, z2)

=
m2(z1)√

g1
δ(s1 − s2)δ(ϕ1 − ϕ2) =

m̃2√g1

s2
1

δ(s1 − s2)δ(ϕ1 − ϕ2). (78)

From this equation we see that R++(z1, z2) will now be real.
By expanding equation (78) in a Fourier series in the azimuthal angle we now find

[Q0(k, s1) +Q1(s1)∂s1 +Q2(s1)∂
2
s1

]g++(s1, s2; k) =

(
M

2

)2

m̃s3
1(1 + s1)

4δ(s1 − s2), (79)

where

Q0(k, s) =

(
M

2

)4

m̃2(1 + s)8 + s4(k2 − k − 2),

Q1(s) = 2s5,

Q2(s) = −s6,

and the coefficients Qi are now polynomials of up to degree 8.
In the flat limit we find, for G++ = R++/m̃, the following equation:

[
m̃2 − 2

r4
1

+
2∂r1

r3
1

− ∂2
r1

r2
1

− −i∂ϕ1 + ∂2
ϕ1

r4
1

]
G++(z1, z2) =

m̃

r1
δ(r1 − r2)δ(ϕ1 − ϕ2). (80)

We then see that we now do not recover the TCP in the plane [7, 6]. This has to be
expected because in the flat limit the Flamm’s paraboloid reduces to two planes connected
by the origin.

After the Fourier expansion of equation (58) we now get

[P0(k, r1) + P1(r1)∂r1 + P2(r1)∂
2
r1

]g++(r1, r2; k) = m̃δ(r1 − r2), (81)

where

P0(k, r) = m̃2r +
k2 − k − 2

r3
,

P1(r) =
2

r2
, P2(r) = −1

r
.

The homogeneous form of this equation admits the following two linearly independent
solutions:

f1(r;−1) = [D−1/2(i
√

2m̃r) +D−1/2(i
√

2m̃r)]/2

f2(r;−1) = D−1/2(
√

2m̃r)
k = −1,

f1(r; 2) = [D−1/2((−2)1/4
√
m̃r) +D−1/2((−2)1/4

√
m̃r)]/2

f2(r; 2) = [D−1/2(i(−2)1/4
√
m̃r) +D−1/2(i(−2)1/4

√
m̃r)]/2

k = 2,

f1(t; k) =
√
rI−√

7−4k+4k2/4(m̃r
2/2)

f2(t; k) =
√
rI√7−4k+4k2/4(m̃r

2/2)
else,
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where the Dν(x) are parabolic cylinder functions and the Iμ(x) are modified Bessel

functions of the first kind which diverge as ex/
√

2πx for large x
 |μ2 − 1/4|.
Again we write g++(r1, r2; k) = ckfα(r<; k)fβ(r>; k) and impose the kink condition,

∂r1g++(r1, r2; k)|r1=r2+ε − ∂r1g++(r1, r2; k)|r1=r2−ε = −m̃r2, (82)

to find the ck. The Green’s function is then reconstructed using equation (62). But we
immediately see that curiously |G++| diverges. Even the structure of the plasma is not
well defined in this situation. The collapse of opposite charges at the horizon shrinking
to the origin makes the structure of the plasma physically meaningless.

7. Conclusions

An attempt was made to extend the solution of the one component plasma, at the special
value of the coupling constant Γ = 2, living in the Flamm’s paraboloid [16] to the two
component one, the TCP. The Flamm’s paraboloid is a Riemannian surface with non-
constant curvature which is asymptotically flat. Its curvature depends on a parameter M
(2M being the radius of the horizon) in such a way that for M → 0 the surface becomes
flat: two planes connected by the origin.

The work of Cornu and Jancovici [7, 6] on the TCP in a plane showed that at this
particular value of the coupling constant, using a Cauchy identity, it is possible to find an
analytic solution to the structure of the plasma starting from a discretized model to avoid
divergences and taking the continuous limit in the end. All the n-particle correlation
functions with n > 1 are well behaved except the particle density which diverges like
all the other thermodynamic quantities due to the competition between the attraction of
oppositely charged particles and the thermal motion. This can be prevented by adding a
hard core to the particles in order to prevent collapse.

In this work we repeated the same calculation for the plasma living in the Flamm’s
paraboloid, in the half surface case, s > 1, with an insulating horizon (at s = 1) and
in the full surface case, s > 0. The solution of the equation determining the structure,
the Green’s function equation, is reduced to the mathematical problem of finding the two
linearly independent solutions of a linear homogeneous second order ordinary differential
equation with polynomial coefficients of high degree (9th in the half surface case and
8th in the full surface case). To the best of our knowledge, an analytic solution of these
equations turns out to be out of mathematical reach. Nonetheless the many-body problem
has been reduced to finding the solutions of a simple differential equation. The further
step of finding explicitly the analytical form of the solutions from the given differential
equations is a matter of mathematical syntax and we think that it does not add much to
the present work.

We discussed the symmetries of the Green’s function, the perfect screening sum
rule, the relationship between the structure and the thermodynamics, and the method
of solution of the Green’s function equation.

We found that for the plasma living in the half Flamm’s paraboloid with an insulating
horizon the flat limit M → 0 reduces the system to the TCP on a plane [7, 6]. For the
plasma living in the full Flamm’s paraboloid taking the flat limit one does not recover the
plasma in a plane and this has to be expected since the paraboloid in this limit reduces
to two planes connected by a hole at the origin. Instead the resulting solution for the
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structure turns out to be physically meaningless. The collapse of opposite charges at the
horizon as it shrinks to the origin spoils the structure of the plasma.

We leave as an open problem the one of finding approximations to the two linearly
independent solutions of the homogeneous counterpart of equation (59), for the half surface
case, and of equation (79), for the whole surface case, as a function of the integer k, the
further determination of the Green’s function in these two cases, through equation (62),
the eventual analysis of the solution and discussion about the necessity of the addition
of a hard core to the particles (hard ‘disks’ of diameter D with δs < 2D(1 + 1/s)−2/M)
in order to cure the divergence of the densities ρp with the consequent determination of
the equation of state. These final steps are necessary in order to have the problem of the
structure of the fluid reduced to a closed form. In the present work we limited ourselves
to what can be said in an analytical form.
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