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Abstract. Penetrable square wells in one dimension were introduced for the
first time in Santos et al (2008 Phys. Rev. E 77 051206) as a paradigm
for ultra-soft colloids. Using the Kastner, Schreiber and Schnetz theorem
(Kastner 2008 Rev. Mod. Phys. 80 167) we give strong evidence for the absence
of any phase transition for this model. The argument can be generalized to a
large class of model fluids and complements van Hove’s theorem.
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1. Introduction

The penetrable square well (PSW) model in one dimension was first introduced in [1]
as a good candidate for providing a description of star polymers in regimes of good and
moderate solvent under dilute conditions. The issue of Ruelle’s thermodynamic stability
was analyzed and the region of the phase diagram for a well defined thermodynamic limit
of the model was identified. A detailed analysis of its structural and thermodynamical
properties was then carried through, for low temperatures [2] and high temperatures [3].

The problem of assessing the existence of phase transitions for this one-dimensional
model had never been dealt with in a definitive way. Several attempts to find a gas–
liquid phase transition were carried through using the Gibbs ensemble Monte Carlo
(GEMC) technique [4]–[8] but all gave negative results. Now it is well known that in
three dimensions the square well (SW) model admits for a particular choice of the well
parameters a gas–liquid transition [9]. As van Hove’s theorem shows [10, 12, 13, 11], this
disappears in one dimension. Nonetheless the PSW model in one dimension, being a
non-nearest neighbor fluid, is not analytically solvable and since we have no hard core,
van Hove’s theorem no longer holds. It is then interesting to answer the question of
whether a phase transition is possible for it. We should also mention that we also used
the GEMC technique to probe for the transition in the three-dimensional PSW and we
generally found that for a given well width there is a penetrability threshold above which
the gas–liquid transition disappears.

In the present work we use the Kastner, Schreiber and Schnetz (KSS) theorem [14, 15]
to give strong analytic evidence for the absence of any phase transition for this fluid model.

The argument hinges on a theorem of Szegö [16] on Toeplitz matrices and can be
applied to a large class of one-dimensional fluid models and complement van Hove’s
theorem.

The paper is organized as follows. In section 2 we state the KSS theorem for the
exclusion of phase transitions, in section 3 we describe the PSW model, in section 4 we
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show numerically that the PSW model satisfies the KSS theorem, in section 5 we show
analytically that the PSW model satisfies the KSS theorem, and the concluding remarks
are presented in section 6.

2. The KSS theorem

The Kastner, Schreiber and Schnetz (KSS) theorem [14, 15] states the following.

Theorem. KSS: Let VN : ΓN ⊆ R
N → R be a smooth potential; an analytic mapping

from the configuration space ΓN onto the reals. Let us indicate with HN(q) the Hessian
of the potential, and indicate with qc the critical points (or saddle points) of VN(q)
(i.e. ∇qVN |q=qc = 0), with k(qc) their index (the number of negative eigenvalues of
HN (qc)). Assume that the potential is a Morse function (i.e. the determinant of the
Hessian calculated on all its critical points is non-zero). Whenever ΓN is non-compact,
assume VN to be ‘confining’, i.e. limλ→∞ VN(λq) = ∞, ∀0 �= q ∈ ΓN . Consider the
Jacobian densities

jl(v) = lim
N→∞

1

N
ln

[∑
qc∈Ql([v,v+ε]) J(qc)∑

qc∈Ql([v,v+ε]) 1

]
, (1)

where

J(qc) =

∣∣∣∣det
HN (qc)

2

∣∣∣∣
−1/2

, (2)

and

Ql(v) = {qc|[VN(qc)/N = v] ∧ [k(qc) = l(mod4)]} . (3)

Then a phase transition in the thermodynamic limit is excluded at any potential energy in
the interval (v̄− ε, v̄ + ε) if: (i) the total number of critical points is limited by exp(CN),
with C a positive constant; (ii) for all sufficiently small ε the Jacobian densities are
jl(v̄) < +∞ for l = 0, 1, 2, 3.

Generally the number of critical points of the potential grows exponentially with the
number of degrees of freedom of the system. The fact that the total number of critical
points is limited by an exponential is thought to be generically valid [17]. We then
assume that for Morse potentials the first hypothesis of the theorem is satisfied. So the
key hypothesis of the theorem is the second one, which can be reformulated as follows:
for all sequences of critical points qc such that limN→∞ VN(qc)/N = v̄, we have

lim
N→∞

| detHN (qc)| 1
N �= 0. (4)

3. The PSW model

The pair potential of the PSW model can be found as the l → ∞ limit of the following
continuous potential:

φl(r) = a[b− tanh(l(r − 1))] + c[tanh(l(r − λ)) + 1], (5)
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Figure 1. The potential Φl(|x|) for L 
 1. In the plot we used εr = 5, εa =
1,Δ = 4, and L = 10, at two values of the smoothing parameter l.

where a = (εr + εa)/2, b = (εr − εa)/(εr + εa), c = εa/2, with εr a positive constant which
represents the degree of penetrability of the particles, εa a positive constant representing
the depth of the attractive well, and λ = 1+Δ, with Δ the width of the attractive square
well. The penetrable spheres (PS) in one dimension are obtained as the Δ → 0 limit of
the PSW model. In the limit of εr → ∞ the PSW reduces to the SW model.

The PSW model is Ruelle stable for εr/εa > 2(n+ 1) with n ≤ Δ < n+ 1 [1, 3].
Let us consider a pair potential of the following form:

Φl(r) = φl

(
2

(
L

2π

)2 [
1 − cos

(
2π

r

L

)])
. (6)

Note that this pair potential is periodic of period L and flat at the origin, Φ
′
l(0) = 0.

Moreover in the large L limit Φl(r) ≈ φl(r
2). In figure 1 we show this potential for

different choices of the smoothing parameter l.

4. Absence of a phase transition

In this section we will apply the KSS theorem to give numerical evidence that there is no
phase transition for the PSW model introduced above.

The total potential energy is

VN(q) = 1
2

N∑
i,j=1

Φl(|xi − xj|), (7)

where q = (x1, x2, . . . , xN). If limN→∞ VN (q)/N = v one finds εr/2 − εa ≤ v < +∞.
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The saddle points qs = (xs
1, x

s
2, . . . , x

s
N) for the total potential energy (∇qVN = 0),

can be various. We will only consider a critical point of the following kind: equally spaced
points at fixed density ρ = N/L,

xρ
i = i/ρ, i = 0, 1, 2, . . . , N − 1. (8)

Here we can reach

lim
N→∞

VN(qρ)/N = vρ, (9)

where for large N and up to an additive constant −φl(0)/2 we have

vρ ≈
N−1∑
i=0

φl

(
2

(
L

2π

)2 [
1 − cos

(
2πi

N

)])
. (10)

If ρ
 1, in the large N limit we can approximate the sum by an integral such that

vρ ≈ N

2π

∫ 2π

0

φl

(
2

(
L

2π

)2

(1 − cosα)

)
dα

=
N

π

∫ 2

0

φl

(
2 (L/2π)2 x

)
√

1 − (1 − x)2
dx, (11)

keeping in mind that L = N/ρ and N is large we find in the l → ∞ limit

vρ ≈ N

π

{
εr[− arcsin(1 − z)]

1/[2(L/2π)2 ]
0 − εa[− arcsin(1 − z)]

λ/[2(L/2π)2 ]

1/[2(L/2π)2 ]

}
≈ 2ρ[εr − εa(

√
λ− 1)] = v0

ρ, (12)

where we used for small z, arcsin(1 − z) = π/2 −√
2z + O[z3/2].

For small ρ in the l → ∞ limit you get

vρ = εr/2, ρ < 1/
√
λ (13)

vρ = εr/2 − εa, 1/
√
λ < ρ < 1. (14)

For intermediate values of the density you will get a stepwise function of the density.
A graph of vρ is shown in figure 2.

Other stationary points would be the ones obtained by dividing the interval L into
p = N/α (α > 1) equal pieces and placing α particles at each of the points xN,p

i = iL/p,
i = 0, . . . , p − 1. By doing so we can reach limN→∞ VN(qN,p)/N = vN,p where up to an
additive constant −φl(0)/2 we have

vN,p ≈
(
N

p

) p−1∑
i=0

φl

(
2

(
L

2π

)2 [
1 − cos

(
2πi

p

)])
. (15)

We then immediately see that for ρ
 α, limN→∞ vN,p = v0
ρ but for small ρ, vN,p > vρ.

doi:10.1088/1742-5468/2010/07/P07030 5

http://dx.doi.org/10.1088/1742-5468/2010/07/P07030


J.S
tat.M

ech.
(2010)

P
07030

Non-existence of a phase transition for penetrable square wells in one dimension

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40 50 60 70 80 90 100

v ρ

ρ

N=100
N=200
N=300

vρ
0

Figure 2. The behavior of vρ as a function of the density ρ for N = 100, 200, and
300 when εr = 5, εa = 1, and λ = 2 with l = 100. Also the theoretical prediction
v0
ρ at large densities (equation (12)) is shown. Notice that at fixed N , vρ will

saturate to ≈Nεr for 4(L/2π)2 < 1 or ρ > N/π.

The Hessian HN
i,j(q) = ∂2VN(q)/∂xi∂xj calculated on the saddle points of the first

kind can be written as

HN
i,j(qρ) = −Φ′′

l (rij), i �= j, (16)

HN
i,i(qρ) =

N∑
j �=i

Φ′′
l (rij), (17)

where Φ′′
l (r) is the second derivative of Φl(r) and rij = |i− j|/ρ.

So the Hessian calculated at the saddle point is a circulant symmetric matrix with
one zero eigenvalue due to the fact that we have translational symmetry xρ

i = xρ
i ± n/ρ

for any i and any integer n. In order to break the symmetry we need to fix one point, for
example the one at xρ

N . So the Hessian becomes a (N − 1)× (N − 1) symmetric Toeplitz
matrix (no longer circulant) which we call H̄(N−1)(qρ).

In figure 3 we have calculated the | det H̄N (qρ)|1/N as a function of N at ρ = N/L
fixed for εa = 1, εr = 5,Δ = 1, and l = 10. One can see that the normalized determinant
of the Hessian does not go to zero in the large N limit. So the Kastner, Schreiber and
Schnetz (KSS) criteria [14, 15] are not satisfied and the possibility of a phase transition is
excluded. The same holds for the PS model.

In figure 4 we show the dependence of | det H̄N (qρ)|1/N on density for different choices
of N .
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Figure 3. The behavior of |det H̄N (qρ)|1/N as a function of N at two different
densities. Here we chose εa = 1, εr = 5,Δ = 1, and l = 10.

Proved to be a system where there is a phase transition is the self-gravitating
ring (SGR) [18] where φSGR(r) = −1/

√
r + 2(L/2π)2ε.1 In this case one finds v0

ρ =

−ρ2√2/εA(2/ε), with A(x) =
∫ π/2

0
dθ (1 + x sin2 θ)−1/2. They use the Hadamard upper

bound to the absolute value of a determinant to prove that it is indeed the case that
limN→∞ | det H̄N (qρ)|1/N = 0. In figure 5 we show this numerically for a particular
choice of the parameters. Actually this result could be expected from what will be
proven in the next section, as in the large N limit for any finite ε, φSGR = o(1/N) and
| det H̄N(qρ)|1/N = o(1/N). This is a confirmation that the KSS theorem is not violated.

5. The limit of the normalized determinant

In this section we will give analytical evidence that there cannot be a phase transition for
the PSW model.

We need to apply to our case Szegö’s theorem [16] for sequences of Toeplitz matrices
which deals with the behavior of the eigenvalues as the order of the matrix goes to infinity.
In particular we will be using the following proposition.

Proposition. Let Tn = {tnkj|k, j = 0, 1, 2, . . . , n − 1} be a sequence of Toeplitz matrices
with tnkj = tnk−j such that T = limn→∞ Tn and tk = limn→∞ tnk for k = 0, 1, 2 . . .. Let us
introduce

f(x) =

∞∑
k=−∞

tk eikx, x ∈ [0, 2π]. (18)

1 With this choice the pair potential ΦSGR would be 2πρ times the pair potential in the paper of Nardini and
Casetti [18].
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Figure 4. The behavior of |det H̄N (qρ)|1/N as a function of ρ for various N .
Here we chose εa = 1, εr = 5,Δ = 1, and l = 10. Notice that for ρ � 1/

√
λ

then HN (qρ) ≈ 0 and also the normalized determinant is very small, while the
approach to zero at large densities is an artifact of the finite sizes of the systems
considered.
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Figure 5. The behavior of |det H̄N (qρ)|1/N as a function of N for fixed ρ = 1 in
a bilogarithmic plot. Here we chose ε = 0.1.

Then there exists a sequence of Toeplitz matrices T̃n = {t̃kj|k, j = 0, 1, 2, . . . , n− 1} with
t̃kj = t̃k−j and

t̃k =
1

2π

∫ 2π

0

f(x)e−ikx dx, (19)
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such that

lim
n→∞

| detTn|1/n = lim
n→∞

| det T̃n|1/n = exp

(
1

2π

∫ 2π

0

ln |f(x)| dx
)
, (20)

as long as the integral of ln |f(x)| exists and is finite.

If the Toeplitz matrix is Hermitian then t−k = t∗k and f is real valued. If moreover
the Toeplitz matrix is symmetric then t−k = tk and additionally f(x) = f(2π − x).

By choosing TN = H̄N (qρ) and defining tNi−j = HN
i,j(qρ) we have in the N → ∞ limit,

with L = N/ρ (ρ constant), tk = limN→∞ tNk and

f(x) = lim
N→∞
N odd

⎛
⎝2

(N−1)/2∑
k=1

tNk cos(kx) + tN0

⎞
⎠

= 2

∞∑
k=1

tk cos(kx) + t0, (21)

tNk = −Φ′′
l (k/ρ), k = 1, 2, . . . , (N − 1)/2, (22)

tN0 = −2

(N−1)/2∑
k=1

tNk , (23)

So f(0) = 0. Notice that in this case the sequence of matrices H̄N(qρ) does not coincide
with the sequence used in the proposition; only the limiting matrix for large N coincides.
But since Szegö’s theorem states that the limit of the normalized determinant exists it
should be independent from the sequence chosen. Additional support for the proposition
is presented in the appendix.

Now in order to prove the absence of a phase transition we need to prove that∫ 2π

0
ln |f(x)| dx does not diverge to minus infinity. That is, we must control the way

f passes through zero. In particular we do not want to have that if x0 is a zero of f then

|f(x)| ∼ e−1/|x−x0|α, x ∼ x0, (24)

with α ≥ 1, which is faster than any finite power of (x− x0).
Now for PSW we can write Φl(r) = Φcore

l (r)+Φtail
l (r). Choose Φtail

l (r) = α exp(−2lr2)
with α = (εa + εr)e

2l − εae
2λl. It is then always possible to redefine the starting potential

Φl(r) in such a way that Φcore
l (r) exactly vanishes for r ≥ rcut >

√
λ keeping all the

derivatives at r = rcut continuous2. Now in equation (21) for f core only a finite number
of k contribute to the series, namely the ones for 1 ≤ k < ρrcut. So f core will be well
behaved on its zeros. For the tail we get f tail(x) = −α√π/2lx2 exp(−x2/8l). So we will
never have |f(x)| going through a zero (note that the zeros of f increase in number as ρ
increases) with the asymptotically fast behavior of equation (24). This proves the absence
of any phase transition for the PSW (or PS) models.

Note that the argument continues to hold for example for the Gaussian core model
(GCM) [19] defined by φGCM(r) = ε exp[−(r/σ)2]. In this case by choosing φ(r) = exp(−r)
2 Note that since the potential energy must be a Morse function (on the hypotheses of the KSS theorem), we
cannot take the tail potential Φtail

l (r) such that it exactly vanishes for r > rcut. On the other hand the Gaussian
decay of Φl(r) for large r is sufficient to guarantee the power law behavior of f on its zeros.

doi:10.1088/1742-5468/2010/07/P07030 9
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Figure 6. The pair potential Φ(r) = 2[
√−irK1(2

√−ir) +
√

irK1(2
√

ir)] of
the counterexample given in the text. We have Φ(0) = 2 and Φ(r) ∝
sin

√
2r exp(−√

2r) at large r.

we get in the large L limit Φ(r) = exp(−r2) and the Fourier transform of Φ′′(r) is
−√

πx2 exp(−x2/4) which poses no problems for the zero of f(x) at x = 0 (note that
in this case f(x) is always positive for x > 0).

The argument breaks down if for example f(x) = − exp(−1/|x|). In this case
the pair potential will be given by Φ(r) ∼ − ∫∞

−∞ exp(ixr)f(x)/x2 dx, and one finds

Φ(r) ∼ 2[
√−irK1(2

√−ir)+
√

irK1(2
√

ir)], whereKn is the modified Bessel function of the
second kind. See figure 6 for a plot. Also the relevant feature in the pair potential, which
gives the breakdown of the argument for the absence of a phase transition, is the large r
behavior. Notice that in this case we found numerically that the normalized determinant
tends to a finite value for large N , in accord with the fact that when the hypotheses of the
proposition are not satisfied equation (20) loses its meaning. Considering the normalized
determinant for the rescaled potential Φ(r)/h(N), with h(N) → +∞ as N → ∞, we saw
that it does indeed tend to zero, indicating the presence of a phase transition.

We simulated this model fluid and did indeed find that it undergoes a gas–liquid
phase transition. The coexisting binodal curve is shown in figure 7 and in table 1 we
collect various properties of the two phases. We used GEMC in which two systems can
exchange both volume and particles (the total volume V and the total number of particles
N are fixed) in such a way as to have the same pressures and chemical potentials. We
constructed the binodal forN = 50 particles. In the simulation we had 2N random particle
displacements (with a magnitude of 0.5σi, where σi is the dimension of the simulation
box of system i), N/10 volume changes (with a random change of magnitude 0.1 in
ln[V1/(V − V1)], where V1 is the volume of one of the two systems), and N particle swap
moves. We observed that in order to obtain the binodals at different system sizes we had
to assume a scaling of the following kind: βNα = β5050α = constant, indicating that the

doi:10.1088/1742-5468/2010/07/P07030 10
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Figure 7. The gas–liquid coexistence line in the temperature–density plane,
obtained with the GEMC for N = 50 particles3 interacting with the pair potential
of figure 6.

Table 1. Gas–liquid coexistence data (T, ρi, ui, μi are respectively the
temperature, the density, the internal energy per particle, and the chemical
potential of the vapor i = v or liquid i = l phase. β = 1/kBT and Λ is the de
Broglie thermal wavelength) from GEMC for N = 50 particles (see footnote 3).

kBT ρv ρl uv ul −(3 ln Λ)/β+μv −(3 ln Λ)/β+μl

0.40 0.20 ± 0.01 1.61 ± 0.03 −0.224 ± 0.009 −0.907 ± 0.007 −0.97 ± 0.01 −0.97 ± 0.01
0.42 0.25 ± 0.02 1.51 ± 0.02 −0.26 ± 0.01 −0.873 ± 0.008 −0.95 ± 0.01 −0.943 ± 0.008
0.44 0.292 ± 0.007 1.46 ± 0.02 −0.290 ± 0.007 −0.854 ± 0.004 −0.938 ± 0.004 −0.921 ± 0.006
0.46 0.350 ± 0.007 1.32 ± 0.01 −0.340 ± 0.004 −0.815 ± 0.006 −0.90 ± 0.01 −0.89 ± 0.02
0.48 0.411 ± 0.007 1.21 ± 0.02 −0.370 ± 0.003 −0.77 ± 0.01 −0.886 ± 0.003 −0.86 ± 0.01
0.50 0.49 ± 0.01 1.04 ± 0.02 −0.420 ± 0.006 −0.71 ± 0.01 −0.87 ± 0.01 −0.862 ± 0.006

model is not Ruelle stable (as may be expected since it has a bounded core and a large
attractive region), and ρN = ρ5050 = constant, where β50 and ρ50 are the coexistence
data shown in figure 7 and table 1. For 50 � N � 100 we found α ≈ 1/2, for N ≈ 200
then α ≈ 2/3, and for N ≈ 300 then α ≈ 3/4.

We then added an hard core to the potential

Φ(r) =

{
ε r < 1

2[
√−irK1(2

√−ir) +
√

irK1(2
√

ir)] r ≥ 1,
(25)

3 The Monte Carlo simulations where carried out at the Center for High Performance Computing (CHPC), CSIR
Campus, 15 Lower Hope St, Rosebank, Cape Town, South Africa. Manufacturer: IBM e1350 Cluster, CPU: AMD
Opteron, CPU clock: 2.6 GHz, CPU cores: 2048, memory: 16GB, peak performance: 3.3 Tflops, storage: 94 TB
(multicluster), launch date: 2007.
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with ε a positive large number, and we saw, through GEMC, that the corresponding fluid
still admitted a gas–liquid phase transition (without N scaling of the densities ρ < 1)
in accord with the expectation that it is the large r tails of the potential that make this
model singular from the point of view of our argument.

For fluids with a pair potential Φ given by a hard core and a −1/rα tail we can take
Φ′′(r) = 0 for r < 1 and Φ′′(r) = −α(α − 1)/rα−2 for r > 1, and the resulting f function
(the Fourier transform of −Φ′′) is such that ln |f(x)| has non-integrable zeros. So this class
of models does not fall under the hypotheses of the proposition. And it is well known that
when 1 < α < 2 the corresponding fluid admits a phase transition [12].

6. Conclusions

Using the KSS theorem and a limit theorem of Szegö on Toeplitz matrices we were able
to give strong evidence for the exclusion of phase transitions in the phase diagram of the
PSW (or PS) fluid. The argument makes use of the fact that the smoothed pair potential
amongst the particles has an r cutoff. Even if we just consider two classes of stationary
points, i.e. the equally spaced points and equally spaced clusters, we believe that our
argument gives strong indications of the absence of a phase transition.

Our argument applies equally well to model fluids with large r tails in the pair
potential decaying in such a way that the condition of equation (24) does not hold. For
example it applies to the Gaussian core model. We believe this to be a rather large class
of fluid models.

We give an example of a model fluid which violates the condition of equation (24) and
find through GEMC simulations that it does indeed have a gas–liquid phase transition.

Our argument does not require the fluid to be a nearest neighbor one, for which it is
well known that the equation of state can be calculated analytically [20]–[22]. We think
that our argument can be a good candidate for complementing the well known van Hove
theorem for such systems, violating the hypotheses of the hard core impenetrability of the
particles and of the compactness of the support of the tails.
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Appendix. Alternative support to the Szegö result

Our original matrix HN (qρ) is a circulant matrix

HN(qρ) =

⎛
⎜⎜⎜⎜⎜⎝

hN
0 hN

1 hN
2 hN

3 · · · hN
N−1

hN
N−1 hN

0 hN
1 hN

2 · · · hN
N−2

hN
N−2 hN

N−1 hN
0 h1 · · · hN

N−3
...

. . .
...

hN
1 hN

2 hN
3 hN

4 · · · hN
0

⎞
⎟⎟⎟⎟⎟⎠ . (A.1)
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We have checked numerically that the determinant of HN(qρ) with one row and one
column removed converges in the large N limit to the product of the non-zero eigenvalues
of the matrix HN(qρ).

4

Let us assume that N = 2n+ 1 is odd. Then our matrix has the following additional
structure:

hN
i = h̃N

i , i = 1, . . . , n

hN
n+i = h̃N

n−(i−1), i = 1, . . . , n.
(A.2)

The eigenvalues of HN will be given by [23]

ψm =

N−1∑
k=0

hN
k e−(2π/N)imk, m = 0, 1, . . . , N − 1 (A.3)

with the additional constraint (see equations (16) and (17)) that

ψ0 =

N−1∑
k=0

hN
k = 0. (A.4)

The eigenvalues can be rewritten as follows:

ψm = h̃N
0 +

n∑
k=1

h̃N
k e−(2π/N)imk +

n∑
k=1

h̃N
n−(k−1)e

−(2π/N)im(n+k). (A.5)

Introducing the summation index j = n− k + 1 in the last sum we then obtain

ψm = h̃N
0 +

n∑
k=1

h̃N
k e−(2π/N)imk +

1∑
j=n

h̃N
j e+(2π/N)imj

=

n∑
k=−n

tNk e−(2π/N)imk, (A.6)

with n = (N − 1)/2 and tNk = tN−k = h̃N
k for k = 1, 2, . . . , n.

We take the logarithm of the absolute value of the product of the non-zero eigenvalues
to find

P =
1

N
ln

∣∣∣∣∣
N∏

m=1

ψm

∣∣∣∣∣ =
1

N

N∑
m=1

ln |ψm|. (A.7)

Now in the large N limit we have tk = limN→∞ tNk for k = 0, 1, 2, . . . and

ψm ∼
∞∑

k=−∞
tke

−(2π/N)imk ∼ f ((2π/N)m) , (A.8)

P ∼ 1

N

N∑
m=1

ln

∣∣∣∣f
(

2π

N
m

)∣∣∣∣ ∼ 1

2π

∫ 2π

0

ln |f(x)| dx, (A.9)

where in the last part we have transformed the sum into an integral.

4 We have checked numerically that this property continues to hold as long as the circulant matrix is a symmetric
one.
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