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Abstract
We study canonical and affine versions of the quantized covariant Euclidean free real scalar
field-theory on four dimensional lattices through the Monte Carlo method. We calculate the
two-point function near the continuum limit at finite volume. Our investigation shows that
affine quantization is able to give meaningful results for the two-point function for which is
not available an exact analytic result and therefore numerical methods are necessary.
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1 Introduction

The aim of this work is to find out what affine quantization does to a classical field-theory.
The simplest such theory is a free real scalar field of mass m. In that case, the spectrum
of physical states obtained with canonical quantization is known: states containing many
indistinguishable particles with momenta p1,p2, . . . and energies

√|pi |2 + m2 (here c = 1)
obeying Bose statistics. The simplest question to ask now is: what becomes of this if the
free real scalar field is subject to affine quantization [1,2] rather than canonical quantization
[3]? Does the system describe particles in this case as well? If so, do they interact with one

Communicated by Luca Peliti.

B Riccardo Fantoni
riccardo.fantoni@posta.istruzione.it

John R. Klauder
klauder@phys.ufl.edu

1 Dipartimento di Fisica, Università di Trieste, strada Costiera 11, 34151 Trieste, Grignano, Italy

2 Department of Physics and Department of Mathematics, University of Florida, Gainesville, FL
32611-8440, USA

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10955-021-02818-x&domain=pdf
http://orcid.org/0000-0002-5950-8648


   28 Page 2 of 10 R. Fantoni , J. R. Klauder

another? Working out the two-point function of the free field in that framework should be of
use to answer these questions.

The free real scalar field is well understood by canonical quantization. The standard set
of problems that can be resolved by canonical quantization is distinct from the standard set
of problems that can be resolved by affine quantization, and one can therefore expect that an
affine quantization of the classical free real scalar differs from that of canonical quantization.
The purpose of this paper is to try to understand in what ways an affine quantization is
similar as well as dissimilar from a canonical quantization. We add that some non-free real
scalar fields have already been observed and that canonical quantization fails for several non-
renormalizable fields, such as (φ12)3 [4] and (φ4)4 [5]. The key to that result is the introduction
of a highly unusual, additional, non-quadratic, term that is dictated by affine quantization.
While affine quantization employs an additional term, that particular term formally disappears
when � → 0,whichmakes it a plausiblemodification of the quadratic terms of traditional free
real scalar fields in order to extend acceptable quantization of traditional non–renormalizable
models.

The Euclidean action in canonical quantization [3], in units where � = 1, is

S(c)[φ] =
∫ ⎧

⎨

⎩
1

2

s∑

μ=0

[
∂φ(x)

∂xμ

]2
+ V (φ(x))

⎫
⎬

⎭
dnx, (1.1)

with x = (x0, x1, . . . , xs) = (x0, x) for s spatial dimensions and n = s + 1 for the number
of space-time dimensions with x0 = ct . We will work at s = 3. And V is the self-interaction
potential density forwhichwewill chooseV (φ) = (1/2)m2φ2 corresponding to a free-theory
with a bare mass m.

The Eudlidean action in affine quantization [1,2] is

S(a)[φ] =
∫ ⎧

⎨

⎩
1

2

s∑

μ=0

[
∂φ(x)

∂xμ

]2
+ 3

8

δ2s(0)

φ2(x) + ε
+ V (φ(x))

⎫
⎬

⎭
dnx, (1.2)

where ε > 0 is a parameter used to regularize the “3/8” extra term (see Appendix A in [4])
and δ is a Dirac delta function. In this case the Hamiltonian density contains a divergent term,
in the total potential density V (φ) = 1

2m
2φ2 + 3

8δ
s(0)/(φ2 + ε), in the continuum, but the

field theory can be treated on a lattice, and the approach toward the continuum will be taken
under exam in this work. In fact, the path integral needs this feature since we have examples

such as
∫

φ2(x)e−S(a)[φ] Dφ/
∫
e−S(a)[φ]Dφ which is a creation of 〈ψ |φ̂2

(x)|ψ〉, namely

it creates a quantum version of the classical φ2(x). The quantum operator φ̂
2
(x) ∼ δs(0)

and must be passed through the functional integral which deals with terms within S(a)[φ]
leading to the fact that the term φ2(x) needs to be ∼ δs(0) (at the minima of V ) to handle

the integration and that factor being “passed” to the quantum operator term φ̂
2
(x). In the

V → 0 limit, this model remains different from a massless free-theory due to exactly the
new (3/8)δ2s(0)/[φ2(x) + ε] interaction term (we have a “pseudofree” situation).

In our previous works we studied the non-renormalizable canonical cases with V (φ) =
(1/2)m2φ2+gφ4 [5] in s = 3 and (1/2)m2φ2+gφ12 in s = 2 [4],where g is the bare coupling
constant. And we showed that the corresponding affine cases are indeed renormalizable.

Monte Carlo (MC) [6,7] is the numerical method of choice to treat multidimensional
integrals of high D dimensions (it supercedes the traditional integration methods, like the
trapezoidal rule, the Simpson rule,. . ., based on the knowledge of the αth derivative of the
integrating function already for D > 2α) therefore is especially useful to compute path
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integrals. We will use it to study the two-point function of the Euclidean action of a real
scalar field in affine quantization. Our estimate of the path integrals will be generally subject
to three sources of numerical uncertainties: The one due to the statistical errors, the one due to
the space-time discretization, and the one due to the finite-size effects. Of these the statistical
errors scale like M−1/2 where M is the computer time, the discretization of space-time is
responsible for the distance from the continuum limit (which corresponds to a lattice spacing
a → 0), and the finite-size effects stems from the necessity to approximate the infinite
space-time system with one in a periodic box of volume Ln with L = Na being the box side,
subject to N discretization points.

The work is organized as follows: In Sect. 2 we derive the lattice formulation of the
field theory needed in the treatment on the computer, in Sect. 3 we describe our computer
experiment and introduce the observables that will be measured during our simulations, in
Sect. 4 we present our results, and section 5 is for final remarks.

2 The Lattice Formulation of the Field-TheoryModel

We used a lattice formulation of the field theory. The theory considers a real scalar field φ

taking the value φ(x) on each site of a periodic, hypercubic, n-dimensional lattice of lattice
spacing a and periodicity L = Na. The canonical action for the field, Eq. (1.1), is then
approximated by

S(c)[φ] ≈
{
1

2

∑

x,μ

a−2 [
φ(x) − φ(x + eμ)

]2 +
∑

x

V (φ(x))

}

an, (2.1)

where eμ is a vector of length a in the +μ direction and we are at a temperature T = 1/Na,
in units where Boltzmann constant kB = 1. An analogous expression holds for the affine
action of Eq. (1.2) where the Dirac delta function is replaced by δ2s(0) → a−2s .

We will use this “primitive approximation” for the action even if it can be improved in
several ways [8] in order to reduce the error due to the space-time discretization. In reaching
to the expression (2.1) we neglected the term ∝ a2n due to the commutator of the kinetic and
potential parts of the Hamiltonian, in the Baker–Campbell–Hausdorff formula. In reaching
to the path integral expression this is justified by the Trotter formula.

The affine regularization of the previous paragraphs, leading to x → ka, where a > 0 is
the tiny lattice spacing, is helpful in our analysis but needs not be the final regularization. In
particular, the new term φ(x0, x)−2 → φ−2

k leads to a divergence when, at a fixed value of k,
the integral over the region |φk| < 1, of

∫
(φk)

−2 dφk = ∞. This behavior can be overcome
in an additional form of regularization.1 Instead of just φk we choose 2s additional terms that
are nearest neighbors to k. These additional terms enter in the form φ−2

k → [ ∑
l Jk,l φ

2
l ]−1,

where Jk,l = (2s + 1)−1 for l = k plus l is each of the 2s nearest neighbors of k. This
averaging of φk also leads to a finite integration where, with all |φl| < 1, we have

∫
· · ·

∫ [
∑

l

Jk,l φ
2
l

]−1 ∏

l

dφl < ∞, (2.2)

which is finite as determined by choosing φl = r ul such that
∑

l u
2
l < ∞ leading to the

integral U
∫
r−2r2sdr < ∞, for all s > 0, where U < ∞ accounts for the remaining finite

integrations.

1 The additional regularization is essentially taken from Eq. (14) in [9].
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Clearly, this procedure of averaging the expression φ−2
k offers a smoother regulation, and

we shall also adopt that procedure for ourMCstudies.Wewill refer to this affine regularization
as term B and the one discussed earlier, obtained by choosing Jk,l = δk,l, as term A.

The vacuum expectation of a functional observable O[φ] is

〈O〉 ≈
∫
O[φ] exp(−S[φ]) ∏

x dφ(x)
∫
exp(−S[φ]) ∏

x dφ(x)
, (2.3)

for a given action S.
We will approach the continuum limit by choosing a fixed L and increasing the number

of discretizations N of each component of the space-time. So that the lattice spacing a =
L/N → 0. To make contact with the continuum limit, two conditions must be met a 	
1/m 	 L where 1/m is the Compton wavelength.

3 Simulation Details and Relevant Observables

We want to determine the two-point function

K (x, y) = 〈[φ(x) − 〈φ(x)〉][φ(y) − 〈φ(y)〉]〉 = 〈φ(x)φ(y)〉 − 〈φ(x)〉2, (3.1)

replacing x by x + k with k = awn with wn = (n0, n1, . . . , ns) and nμ ∈ ZZ amounts to
a mere relabeling of the lattice points. Hence, due to translational invariance, K (x, y) can
only depend on the difference between the coordinates of the two points and we can define,

D(z) = 1

Ln

∑

x

K (x, x + z)an, (3.2)

For the massless free-theory with V → 0 in canonical quantization, we find that in non
periodic space-time (at zero temperature)

D′(z) =
∫

e−i p·z

p2
dn p

(2π)n
=

⎧
⎪⎪⎨

⎪⎪⎩

−|z|/2 n = 1
−(ln |z|/l)/2π n = 2
1/|z|4π n = 3
1/|z|24π2 n = 4

, (3.3)

where |z| =
√
z20 + z21 + · · · + z2s and l is a length. This shows how the massless field

generates long range interactions.
For a massive free-theory with V (φ(x)) = 1

2m
2φ2(x) in canonical quantization, we find

that in non periodic space-time (at zero temperature) with n = 4

D′(z) =
∫

e−i p·z

p2 + m2

dn p

(2π)n
= mK1(m|z|)/|z|4π2, (3.4)

where m is the mass and K1 is a modified Bessel function.
In periodic space–time (at a temperature T = 1/Na)

D(z) =
∑

wn

D′(z + Lwn), (3.5)

where the sum can be restricted by an infrared cutoff irc such that−irc ≤ nμ ≤ irc (without
any physical significance) in order to reach a given numerical accuracy. If we remove the
cutoff the function diverges for the massless case.
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Our MC simulations use the Metropolis algorithm [6,7] to calculate the ensemble average
of Eq. (2.3) which is a Nn multidimensional integral. The simulation is started from the initial
condition φ = 0. One MC step consisted in a random displacement of each one of the Nn

φ(x) as follows

φ → φ + (2η − 1)δ, (3.6)

where η is a uniform pseudo random number in [0, 1] and δ is the amplitude of the displace-
ment. Each one of these Nn moves is accepted if exp(−
S) > η where 
S is the change in
the action due to the move (it can be efficiently calculated considering how the kinetic part
and the potential part change by the displacement of a single φ(x)) and rejected otherwise.
The amplitude δ is chosen in such a way to have acceptance ratios as close as possible to 1/2
and is kept constant during the evolution of the simulation. One simulation consisted of M
MC steps. The statistical error on the average 〈O〉 will then depend on the correlation time

necessary to decorrelate the property O , τO , and will be determined as
√

τO σ 2
O /(MNn),

where σ 2
O is the intrinsic variance for O .

4 Simulation Results

We worked in units where c = � = kB = 1. We chose the regularization parameter of the
affine quantization A term to be ε = 10−10.2

For a massive free-theory, V (φ) = 1
2m

2φ2, in canonical quantization (1.1) with m =
1, N = 15, L = 3, a = L/N = 0.2 we obtained the result shown in Fig. 1 where we
compare the MC results with the exact expression of Eq. (3.5) with an infrared cutoff of
irc = 2 which is sufficient for an accuracy of 10−3. The run was M = 106 MC steps long.
The figure shows good agreement between the MC and the exact expression except at the
origin due to the space-time discretization.

For a free massive theory V (φ) = 1
2m

2φ2 in affine quantization (1.2) using term A, the
self-interaction is a double well with a spike barrier at φ = 0. We tuned the width of the
displacement, δ in Eq. (3.6), so that the random walk in the φ(x) will sample the probability
distribution exp(−S[φ])most efficiently, with short equilibration times. In Fig. 2 we show the
result for a free real scalar field subject to affine quantizationwith a total self-interaction of the
form V (φ) = 1

2m
2φ2 + 3

8a
−2s/(φ2 + ε) withm = 1, N = 15, L = 3, a = L/N = 0.2, and

ε = 10−10 after cutting the first equilibrationMC steps of a runmade ofM = 2.5×106 steps.
During the simulations we also calculated the renormalized mass mR and the renormalized
coupling constant gR [4]. As we can see from the figure the symmetry z → L − z of the
two-point function is preserved within the errorbars. The minima of the classical V is at
φ = ± with 2 = −ε + √

3/(2a3m) which diverges in the continuum limit a → 0
(this of course does not happen in the harmonic oscillator case [10] which is independent
of the lattice spacing). Moreover the minimum of the action Ls+1m(

√
3 − mεas)/2as also

diverges, both in the continuum limit at finite volume (ma → 0) and in the infinite volume
limit at fixed lattice spacing (mL → ∞) (this also happen for the affine harmonic oscillator
[10] which has a well defined zero temperature limit). The corresponding contribution to the
vacuum expectation only occurs together with the normalization constant in front of the path
integral and drops out in quantities of physical interest (as long as the system is not placed in

2 Note that we could as well choose a regularization putting hard walls at φ = ±ε therefore rejecting MC
moves whenever φ ∈ [−ε, ε]
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0.0 0.5 1.0 1.5 2.0 2.5 3.0

D
(z

)

|z|

Covariant Canonical n=4

MC
exact

Fig. 1 Two-point function D(z) of Eq. (3.2), for a free real scalar field subject to canonical quantization with
a self-interaction potential density of the form V (φ) = 1

2m
2φ2 in Eq. (1.1) with m = 1, N = 15, L = 3, a =

L/N = 0.2. We compare with the analytic exact expression of Eq. (3.5) with an infrared cutoff of irc = 2. A
logarithmic scale is used on the y-axis

a curved geometry, i.e. in a gravitational field - there, the cosmological constant does have
physical significance)

The symmetry φ → −φ is broken in the simulations (see Appendix 1) and as a result
〈φ(x)〉 is different from zero. The action S = K̄ + V̄ where K̄ is the kinetic term and V̄ the
total potential term. Imagine now that we are in a configuration where all the Nn components,
φ(x), are around +. In order to start migrating one single x ′ component, φ(x ′), around
the other minimum at − will have no cost in the potential, 
V̄ ≈ 0, but it will have a
big cost in the kinetic term between “neighboring” x , resulting in a big 
K̄ (as long as the
distance between the two minima, 2, which diverges in the continuum limit, is large). As
a consequence exp(−
S) will be very small and the move will be almost surely rejected
according to the Metropolis rule. Moreover, once the system reaches the phase with all φ(x)
in one of the minima, it is very unlikely that a single φ(x ′) will move to the other minimum
but it cannot be excluded, in principle. If this happens one has a situation where the field is
around + at all x except at x ′ where it is around −. But we can easily see that now it
would be statistically favorable for the single field on the left to rejoin the fields on the right
other then all the fields on the right join the field on the left. Exactly the same holds for affine
quantization (1.2) using term B, since due to the kinetic energy term in the action the fields
at neighboring points tend to assume similar values. On the other hand this would not hold
for an ultralocal [11] theory where we could have the field visiting both wells at ± but
only at not “neighboring” times, resulting in a vanishing 〈φ(x)〉. Apart from this the shape
of the two-point function is qualitatively similar to the one of the covariant case of Eq. (1.2).
In addition in a covariant complex field one could go “slowly” “around” the “mountain” at
φ = 0 with no need of “jumps”.

For our choice of the parameters we have  ≈ 10.404 with 2 ≈ 108.253. The results in
Fig. 2 indicate that the quantization increases this number by about 10%. The minimum of
D(z) is reached around |z| = L/2. The two-point function is qualitatively similar to the one
of the free field. This is supported by recent results on a one dimensional harmonic oscillator
treated with affine quantization [10] where it is shown that the eigenvalues are still equally
spaced. A non-linear fit of the MC data (removing the first point at |z| = 0) with the function
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Covariant Affine n=4 ε=10−10
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Fig. 2 Two-point function D(z) of Eq. (3.2), for a free real scalar field subject to affine quantization with term
A and a self-interaction potential density of the form V (φ) = 1

2m
2φ2 in Eq. (1.2) with m = 1, N = 15, L =

3, a = L/N = 0.2, and ε = 10−10. Also shown is the result of a non-linear fit of the data (except the first
point at |z| = 0) with the function DmD (z) where DmD is the two-point function of a free field of mass mD
of Eq. (3.5) with an irc = 2, taking mD as the only fit parameter

DmD (z) where DmD is the two-point function of a free field of mass mD of Eq. (3.5) with
an irc = 2, taking mD as the only fit parameter, gives mD ≈ 0.9. The result of the fit is also
shown in Fig. 2.

For a free real scalar field subject to affine quantization with term A, in n = 4 space-
time dimensions in a volume 34 with a regularization parameter ε = 10−10, we studied the
continuum limit, N → ∞, (by choosing values lower of 15) and the dependence on the
bare mass m, of the five quantities mR, gR, 〈φ(x)〉2,mD , and D(0). The results are shown
in Table 1. From the table we see how moving towards the continuum limit mD ≈ m but mR

becomes small due to the fact that when the field picks up an expectation value, the Fourier
transform of the field φ̃(0) picks up a contribution proportional to the volume of the box.
Moreover, for the same reason, gR ≈ 2. The Table also shows the value of2 and of 〈φ(x)〉2
to be compared. We see that the second is always larger than the first one by a percentage
increasing with increasing m and with increasing a. The value of D(0) is increasing with a
decrease of the lattice spacing a, signaling a divergence in the continuum limit.

Summarizing, the two-point function for φ − 〈φ〉 looks similar to the two-point function
of a free field with mass mD . In other words, the correlation length of the affine quantum
field theory is m/mD times the Compton wavelength of the canonical quantum theory of the
free scalar field. Our results seem to suggest that, going towards the continuum, the affine
model is approaching a free field with the same bare mass.

The value ofmD is not easy to understand, however. If the action is treated at the classical
level, small deviations from the minimum are determined by the curvature of the total poten-
tial, m2

c = d2V /dφ2 at φ = . The mass term contributes m2 and the “3/8” term yields
a contribution that is 3 times larger. For ε = 0, the mass relevant for the relation between
frequency of the waves and wavelength is: mc = 2m independently of a.

In Fig. 3 we show D(z) as obtained for m = 1 (L = 3, ε = 10−10) and three choices of
N , in the long simulations of the Table 1. One can then see the approach to the continuum
of the two-point function of the affine model.
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Table 1 We determined, for a free real scalar field subject to affine quantization with term A, in n = 4 space–
time dimensions, the dependence of mR , gR ,mD , and D(0) on the number of one dimensional discretization
points N and the bare mass m at L = 3 with a regularization parameter ε = 10−10

N m mR gR 2 〈φ(x)〉2 mD D(0)

15 1 0.0122(3) 1.9979(1) 108.2 120.6(1) 0.934 3.69(6)

2 0.00646(4) 1.99983(3) 54.13 65.7(1) 1.785 3.32(6)

3 0.0186(6) 1.99925(8) 36.08 45.85(7) 3.009 2.97(6)

12 1 0.01053(5) 1.99958(5) 55.43 63.25(8) 0.302 2.38(5)

2 0.00967(9) 1.99992(2) 27.71 34.54(5) 2.467 2.00(5)

3 0.0095(1) 1.99905(8) 18.47 24.00(4) 5.483 1.66(5)

10 1 0.01417(4) 1.999464(4) 32.07 37.46(5) 0.587 1.58(3)

2 0.0124(1) 1.99995(1) 16.04 20.43(3) 3.789 1.29(3)

3 0.0119(2) 1.99996(1) 10.69 14.03(2) 5.647 1.02(3)

The runs were M = 5 × 106 MC steps long. The value of 2 and of 〈φ(x)〉2 are also shown for comparison

−1

0

1

2

3

4

0.0 0.5 1.0 1.5 2.0 2.5 3.0

D
(z

)

|z|

Covariant Affine n=4 ε=10−10

N=15
N=12
N=10

Fig. 3 (color online) Two-point function D(z) of Eq. (3.2) for a free real scalar field subject to affine quan-
tization with term A and a self-interaction potential density of the form V (φ) = 1

2m
2φ2 in Eq. (1.2) with

m = 1, L = 3, ε = 10−10 and increasing N = 10, 12, 15

5 Conclusions

In a recent work [5] we studied the case of a non-renormalizable (φ4)4 canonical theory
(where the self-interaction potential is V (φ) = gφ4) in four space-time dimensions and
proved through MC that the theory becomes renormalizable if one treats the field through
affine quantization.

In the present work we observed that for g = 0 the simplest question to ask was: Does
the affine system describe particles as for the canonical one? If so, do they interact with one
another?

We tried to answer these question by looking at the two-point function. What we proved
through ourMC analysis was that the affine case with g = 0 has to be considered like a “sort”
of free-theory of “quasiparticles” (in the sense of Lev Landau in his theory for Fermi liquids)
where the “3/8” term just offers itself like a sort of “collective excitation” term. In this case
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the φ → −φ symmetry is broken and the field acquires a non-zero vacuum expectation.
The two-point function nonetheless has all the same features as those of a free scalar field of
similar mass, in the continuum limit.

One shortcoming of the affine formulation of the field theory is the divergence (in the
continuum) of the vacuum expectation value of the field which generates the disconnected
contribution to the Green’s functions. The path integral is fully determined by the local
properties of the field that enter through the action. The expectation value of the field does
not represent a local property of the field. We cannot imagine how one could possibly get
rid of it. In the Standard Model, however, one of the crucial properties of the Higgs fields
is that they pick up a vacuum expectation value v. The masses of the W- and Z-bosons as
well as those of the leptons and quarks are proportional to v. In order to remedy to this
drawback one should perform the following scaling φ → a−s/2φ (together with g → asg
in a possible interaction term of the form gφ4) which would bring about an additional factor
a−s multiplying the action. This scaling proved successful in our forthcoming work on the
affine quantization of a Higgs complex scalar field [12].

The present paper is wanted to confirm that both canonical and affine procedures lead
to desired and expected behavior for quadratic potential terms. A later paper [12] will be
designed to deal with quartic potential terms with canonical and affine procedures.

Acknowledgements Many thanks to Heinrich Leutwyler for his suggestions, comments, and someone who
proposed the canonical and affine programs with regard to the required features including what to examine
and what to expect, which has influenced our program and its results, and led to many positive results and
highlighted the expected canonical and affine differentiation.

Appendix: Field Configurations in the Vicinity of the Two Degenerate
Minima in the Affine Version

Classically, the affine version of the free Hamiltonian has two degenerate minima, φ = ±.
If the path integral is dominated by those field configurations that are located in the vicinity
of one of these everywhere on the entire lattice or in the vicinity of the other, then it consists
of two equal pieces

Z =
∫

Dφ exp(−S[φ]),

Z+ =
∫

Dφ exp(−S[φ]), integral only over φ(x) ≈ ,

Z− =
∫

Dφ exp(−S[φ]), integral only over φ(x) ≈ −,

and Z+ = Z−. Under a broken symmetry φ → −φ one would get either Z ≈ Z+ or
Z ≈ Z−. This has to be expected in the present case of a real field since in order to move
the field φ(x) at a single x from around  to around − in the MC path integral one has to
overcome a large kinetic cost. This is not true for a complex field where one can go “slowly”
“around” the “mountain” at φ = 0.

The expectation value of the field

〈φ(x)〉 =
∫

Dφ φ(x) exp(−S[φ])/Z ,

〈φ(x)〉+ =
∫

Dφ φ(x) exp(−S[φ])/Z+, over φ(x) ≈ 
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〈φ(x)〉− =
∫

Dφ φ(x) exp(−S[φ])/Z−, over φ(x) ≈ −,

with 〈φ(x)〉+ ≈ , 〈φ(x)〉− ≈ −, and under the broken symmetry, 〈φ(x)〉 ≈ 〈φ(x)〉± ≈
± where the simulation, starting from φ = 0, will choose among the two different cases
just after the first equilibration steps.

For the two-point function

D+(x − y) =
∫

Dφ φ(x)φ(y) exp(−S[φ])/Z+ − 〈φ(x)〉2+, over φ(x) ≈ ,

D−(x − y) =
∫

Dφ φ(x)φ(y) exp(−S[φ])/Z+ − 〈φ(x)〉2−, over φ(x) ≈ −,

so that D+(z) ≈ 0, D−(z) ≈ 0, and D(z) ≈ D±(z) ≈ 0.
Moreover one can see how in the broken symmetry configuration in which φ2(x) ≈ 2 ∼

a−3, the “3/8” term in the Hamiltonian density is also of the same order in the continuum
limit a → 0. This will lead to a convergent two-point function for φ − 〈φ〉 in the continuum
limit.
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