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Abstract We apply second order Andersen–Weeks–Chandler perturbation theory to the
one-component sticky-hard-spheres fluid. We compare the results with the mean spherical
approximation, the Percus–Yevick approximation, two generalized Percus–Yevick approxi-
mations, and the Monte Carlo simulations.
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1 Introduction

The sticky-hard-sphere (SHS) model introduced by Baxter in [1] plays an important role in
soft matter offering a description of a sterically stabilized colloidal suspension [2–8].

In this work we apply Andersen–Weeks–Chandler (AWC) thermodynamic-perturbation-
theory (TPT) [9] to treat the SHS three-dimensional fluid and we compare the results for
the equation of state of our calculation with the ones for the mean-spherical-approximation
(MSA) [9], for the Percus–Yevick (PY) approximation [9], for two generalized-Percus–
Yevick (GPY) approximations (C0 and C1 in Ref. [10]), and for the Monte Carlo simulations
of Miller and Frenkel [11].

We are then able to show how the TPT breaks down at low reduced temperature and high
density. Our analysis gives a reference benchmark for the behavior of the SHS system when
treated with the AWC TPT scheme.
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Our analysis also clarifies the role played by the reducible Mayer diagrams in the second
order AWC TPT.

The work is organized as follows. In Sect. 2 we introduce the AWC TPT scheme, in Sect. 3
we define the SHS fluid model, in Sect. 4 we outline our calculation of the AWC TPT for the
SHS fluid, in Sect. 5 we clarify the role played by the reducible integrals, in Sect. 6 we discuss
some technical details regarding our Monte Carlo calculation of the various order terms of
the TPT, in Sect. 7 we present our results, and Sect. 8 is for our conclusive discussion.

2 The Andersen–Weeks–Chandler Thermodynamic Perturbation Scheme

Following AWC perturbation theory [12] we consider the Helmholtz free energy A as a func-
tional of the Boltzmann factor e(1, 2) = exp[−βφ(1, 2)] (φ(1, 2) being the pair interaction
potential of the fluid under exam) and expand it in a Taylor series around the Boltzmann
factor, e0(1, 2), of a given reference system. Working in the grand-canonical ensemble we
obtain the following perturbative expansion in �e = e − e0

β(A[e] − A[e0]) = β[�A](1) + β[�A](2) + · · · , (1)

β[�A](1) = −1

2

∫
d1d2

ρ0(1, 2)

e0(1, 2)
�e(1, 2) , (2)

β[�A](2) = −1

2

[∫
d1d2d3

ρ0(1, 2, 3)

e0(1, 2)e0(1, 3)
�e(1, 2)�e(1, 3)

+ 1

4

∫
d1d2d3d4

ρ0(1, 2, 3, 4)−ρ0(1, 2)ρ0(3, 4)

e0(1, 2)e0(3, 4)
�e(1, 2)�e(3, 4)

]

+ 1

2N̄

(
ρ2 χ0

T

χ id
T

) {
∂

∂ρ
β[�A](1)

}2

. (3)

where β = 1/(kBT ) (with kB Boltzmann constant and T absolute temperature), N̄ average
number of particles, ρ = N̄/V (with V volume of the system), χ id

T = β/ρ isothermal
compressibility of the ideal gas, χ0

T isothermal compressibility of the reference system,
ρ0(1, . . . , n) the grand-canonical ensemble n−body correlation function of the reference
system, and in the last term of Eq. (3) the density derivative is taken at constant temperature,
volume, and chemical potential. In order to derive these expressions one can adapt the details
found in Appendix D of Hansen and McDonald book [9] where their expression (6.2.14)
is found. It is then an easy task to pass from their expansion in terms of the pair-potential
variation to our expansion in terms of the Boltzmann factor variation.

3 One-Component Sticky-Hard-Spheres

For the Baxter [1] one-component sticky-hard-spheres (SHS) model one has

e(r) = θ(r − σ) + σ

12τ
δ(r − σ) , (4)

where σ is the spheres diameter, τ the reduced temperature, θ is the Heaviside step function,
and δ the Dirac delta function.

Choosing as reference system the hard-spheres (HS) model one has

e0(r) = θ(r − σ) , (5)
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so that

�e(r) = σ

12τ
δ(r − σ) . (6)

So one sees that AWC expansion (1) reduces to an expansion in powers of 1/τ .

4 Calculation

Before expression (3) can be used some approximation must be introduced for the three-
and four-body distribution functions. The most widely used approximation is Kirkwood
superposition approximation [13]. This has previously successfully applied to the second
order thermodynamic perturbation study of the square well potential by Henderson and
Barker [14].

Using the Kirkwood superposition approximation (KSA) [13] one can express the n−body
correlation functions ρ0(1, . . . , n) = ρng0(1, . . . , n) in terms of pair distribution functions
according to

g0(1, . . . , n) ≈
n∏

i< j

g0(i, j) . (7)

The idea is to use for the pair distribution function of the reference HS system the analytic
solution of the Ornstein-Zernike equation with the Percus–Yevick closure.

The first two terms in the perturbative expansion (1) reduce to

β
[�A](1)

N̄
= − I2

ρ
, (8)

β
[�A](2)

N̄
= −1

2

(
I3
ρ

+ I4
ρ

)
+ 1

2

(
χ0
T

χ id
T

) (
∂ I2
∂ρ

)2

, (9)

where

I2
ρ

= 1

2ρ

1

V

∫
d1d2

ρ0(1, 2)

e0(1, 2)
�e(1, 2) = 1

τ
(η ȳ0) , (10)

where η = π
6 ρσ 3 is the hard sphere packing fraction, y0(1, 2) = g0(1, 2)/e0(1, 2) is the

cavity function of the reference system and ȳ0 = y0(|r1 − r2| = σ). Upon using KSA one
finds,

I3
ρ

= 1

ρ

1

V

∫
d1d2d3

ρ0(1, 2, 3)

e0(1, 2)e0(1, 3)
�e(1, 2)�e(1, 3) (11)

≈ ρ2

V

∫
d1d2d3 y0(1, 2)y0(1, 3)J3(1, 2, 3)�e(1, 2)�e(1, 3) ,

I4
ρ

= 1

4ρ

1

V

∫
d1d2d3d4

ρ0(1, 2, 3, 4) − ρ0(1, 2)ρ0(3, 4)

e0(1, 2)e0(3, 4)
�e(1, 2)�e(3, 4) (12)

≈ ρ3

4V

∫
d1d2d3d4 y0(1, 2)y0(3, 4)J4(1, 2, 3, 4)�e(1, 2)�e(3, 4) ,
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where we have introduced

J3(1, 2, 3) = 1 + h0(2, 3) , (13)

J4(1, 2, 3, 4) = 4h0(1, 3)

+ 4h0(1, 3)h0(1, 4)

+ 2h0(1, 4)h0(2, 3)

+ 4h0(1, 3)h0(1, 4)h0(2, 3)

+ h0(1, 3)h0(1, 4)h0(2, 3)h0(2, 4) , (14)

where h0(1, 2) = g0(1, 2) − 1 is the total correlation function of the reference system. Note
that the first term in J3 and the first and second terms in J4 give rise to reducible integrals
(i.e. integrals that can be reduced into products of simpler integrals).

It is convenient to perform the calculation of I3 and I4 in reciprocal space, to get,

I3
ρ

≈ 1

τ 2 (2η ȳ0)
2
(

1 + 1

12π

1

η
g1

)
, (15)

I4
ρ

≈ 1

τ 2 (2η ȳ0)
2 1

4

[
4

(
1

a2 − 1

)
+ 1

3π

1

η
ha2 + 1

6π

1

η
hb2 + 1

72π2

1

η2 h3 + 1

6326π4

1

η3 h4

]
,

(16)

and

g1 =
∫ ∞

0
dz z2 j2

0 (z)H(z) , (17)

ha2 =
∫ ∞

0
dz z2 j0(z)H

2(z) , (18)

hb2 =
∫ ∞

0
dz z2 j2

0 (z)H2(z) , (19)

h3 =
∫ ∞

0
dz1 z

2
1

∫ ∞

0
dz2 z

2
2

∫ 1

−1
dx j0(z1) j0(z2)H(z1)H(z2)H

(√
z2

1 + z2
2 − 2z1z2x

)
,

(20)

h4 =
∫ ∞

0
dz1 z

2
1

∫ ∞

0
dz2 z

2
2

∫ ∞

0
dz3 z

2
3

∫ π

0
dθ1 sin θ1

∫ π

0
dθ2 sin θ2

∫ 2π

0
dφ

j0(z1) j0

(√
z2

2 + z2
3 − 2z2z3 cos θ2

)
H(z2)H(z3)H

(√
z2

1 + z2
2 − 2z1z2 cos δ

)

H

(√
z2

1 + z2
3 − 2z1z3 cos θ1

)
, (21)

where in the integrand of h4

cos δ = cos θ1 cos θ2 + sin θ1 sin θ2 cos φ . (22)
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Fig. 1 We show β�A/N̄ = β(ASHS − AHS)/N̄ as a function of the packing fraction at τ = 5 for various
approximations: (in the MSA �A = 0) C0 (dotted line) [10], C1 (short dashed line) [10], PY (long dashed
line) [9], β[�A](1)/N̄ (dotted dashed line and filled circles), β([�A](1) + [�A](2))/N̄ (empty circles),
β([�A](1) + [�A]′

(2)
)/N̄ (empty squares), and β([�A](1) + [�A]′′

(2)
)/N̄ (empty triangles).

In all these expressions we have introduced the following notation

a2 = χ id
T

χ0
T

= 1 − ρc̃0(0) , (23)

ȳ0 = y0(σ ) = g0(σ )/e0(σ ) , (24)

H(z) = ρh̃0(z/σ) = ρc̃0(z/σ)

1 − ρc̃0(z/σ)
, (25)

j0(z) = sin z

z
, (26)

where g0(r), y0(r), h̃0(k), c̃0(k) are respectively the hard spheres radial distribution function,
cavity function, the Fourier transform of the total correlation function and the Fourier trans-
form of the direct correlation function, and j0 is the zeroth order spherical Bessel function
of the first kind.

Finally the Fourier transform of the HS direct correlation function calculated through the
Percus–Yevick closure is given by [15]

ρc̃0(z/σ) ≈ −24η

∫ 1

0
ds s2 j0(sz)(α + βs + γ s3) , (27)
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Fig. 2 Same as Fig. 1 at τ = 1.5.

where

α =
[

1 + 2η

(1 − η)2

]2

, (28)

β = −6η

[
1 + η/2

(1 − η)2

]2

, (29)

γ = η

2

[
1 + 2η

(1 − η)2

]2

. (30)

and it is easily verified that under such approximation one has

a ≈ 1 + 2η

(1 − η)2 , (31)

ȳ0 ≈ 1 + η/2

(1 − η)2 . (32)

5 Neglecting Reducible Integrals

It has been observed by Henderson and Barker [14] that the role of the last term in Eq. (3)
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Fig. 3 Same as Fig. 1 at τ = 0.5.

C N̄ = 1

2N̄

(
ρ2 χ0

T

χ id
T

) {
∂

∂ρ
β[�A](1)

}2

, (33)

is to cancel in the second order term of the perturbative expansion, [�A](2), all reducible
integrals appearing in I3 and I4. So that the final expression for the second order term of
expansion (1) would be (exactly the expression found in [12])

β
[�A]′(2)

N̄
= −1

2

(
I ′
3

ρ
+ I ′

4

ρ

)
, (34)

where

I ′
3

ρ
= I3

ρ
− 1

τ 2 (2η ȳ0)
2 , (35)

I ′
4

ρ
= I4

ρ
− 1

τ 2 (2η ȳ0)
2 1

4

[
4

(
1

a2 − 1

)
+ 1

3π

1

η
ha2

]
. (36)

Alternatively one may use the sum rule

∂ρ0(1, 2)

∂ρ
= 1

ρ

χ id
T

χ0
T

{
2ρ0(1, 2) +

∫
d3[ρ0(1, 2, 3) − ρρ0(1, 2)]

}
, (37)
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Fig. 4 Same as Fig. 1 at τ = 0.15.

to rewrite C (Eq. 33) in terms of two and three body correlation functions and upon using the
superposition approximation one finds

β
[�A]′′(2)

N̄
= −1

2

(
I ′
3

ρ
+ I ′

4

ρ

)
+ 1

τ 2

a2

8
(2η ȳ0)

2
(

1

12π

1

η
ha2

)2

, (38)

6 Technical Details

The five integrals (17–21) where all calculated using Monte Carlo technique [16] averaging
the various integrands on 106 randomly sampled points. Since all of those integrals are
improper (extending up to infinity in the z variables) it was necessary to split each integration
on the z variables into an integral over [0, 1] plus an integral over [1,∞]. This latter integral
was then reduced through a change of variable z → 1/z into an integral over [0, 1].

The errors on the estimate of a given integral was calculated so that the true value of the
integral would lie 99.7% of the time within the estimate plus or minus the error.

7 Results

Figures 1, 2, 3, and 4 show the results for β�A/N as a function of η. Amongst the three
expressions used: (8), (34), and (38), the more accurate is [�A]′(2), the one suggested in [12]
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Fig. 5 We show βPσ 3 as a function of the packing fraction at τ = 1 for various approximations: MSA
(continuous line), C0 (dotted line) [10], C1 (short dashed line) [10], PY (long dashed line) [9], AWC 1st order
(dotted dashed line), AWC 2nd order (empty squares), and Monte Carlo results of Miller and Frenkel (empty
triangles) [11].

and it falls on the PY approximation for big τ and small η. At high η the error bars become
more relevant.

Figures 5, 6, 7, and 8 show the results for

βPσ 3 = βPHSσ
3 + 6

π
η2 ∂β�A/N

∂η
, (39)

as a function of η, where for the pressure of the HS reference system we chose the PY result
from the compressibility route, i.e.

βPHSσ
3 = 6

π
η

[
1 + η + η2

(1 − η)3

]
. (40)

The second order AWC TPT is taken from the (34) calculation.

8 Discussion

Our first calculation, the one using [�A](2) (see Eq. (8)) is certainly not correct because we
are using the KSA only on the integrands of the first two integrals of Eq. (3) calculating the
last term exactly; this certainly leads to an inconsistency in the use of KSA.
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Fig. 6 Same as Fig. 5 at τ = 0.5.

Our third calculation, the one using [�A]′′(2) (see Eq. (38)) is also not correct. This can
be understood as follows. It is well known that KSA fails to satisfy the sum rule (37). Using
KSA in the left hand side of Eq. (37) one finds

1

ρ

χ id
T

χ0
T

{
2ρ0(1, 2) +

∫
d3 [ρ0(1, 2, 3) − ρρ0(1, 2)]

}
≈ γ1 + γ2 , (41)

where

γ1 = g0(1, 2)2ρ , (42)

γ2 = g0(1, 2)
χ id
T

χ0
T

∫
d3 [ρh0(1, 3)][ρh0(2, 3)] , (43)

and we used the compressibility sum rule,

χ0
T

χ id
T

= 1 + ρ

∫
h0(1, 2) d1 . (44)

Eq. (41) can be also rewritten as,

∂ ln g0(1, 2)

∂ρ
≈ χ id

T

χ0
T

∫
d3 h0(1, 3)h0(2, 3) . (45)

This approximation is certainly valid in the limit of small densities when χ0
T → χ id

T and
h0 → e0 − 1 = f0 ( f0 being the Mayer function of the reference system), after all the
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Fig. 7 Same as Fig. 5 at τ = 0.2.

KSA becomes exact in such limit (as the potential of mean force tends to the pair interaction
potential). Otherwise the correction term γ3/(ρ

2g0) would be of order ρ as ρ → 0 (see
the “Appendix A”). So that the exact expression for the density derivative of the two body
correlation function would be

∂ρ0(1, 2)

∂ρ
= γ1(1, 2) + γ2(1, 2) + γ3(1, 2) , (46)

where γi = O(ρi ) as ρ → 0. It is then clear that in calculating the square
[

∂

∂ρ

1

2

∫
d1d2

ρ0(1, 2)

e0(1, 2)
�e(1, 2)

]2

, (47)

in the C term, the term stemming from
[

1

2

∫
d1d2

γ2(1, 2)

e0(1, 2)
�e(1, 2)

]2

, (48)

which gives rise to the last term in Eq. (38), will be of the same leading order (ρ4) as the one
coming from[

1

2

∫
d1d2

γ1(1, 2)

e0(1, 2)
�e(1, 2)

] [
1

2

∫
d1d2

γ3(1, 2)

e0(1, 2)
�e(1, 2)

]
, (49)

in the small density limit. But since in KSA this last term is neglected, in order to be con-
sistent (up to orders ρ3 in the small density limit) one needs to neglect also the term of
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Fig. 8 Same as Fig. 5 at τ = 0.15.

Eq. (48). Moreover it can be easily verified that the two terms coming from γ1 times γ1

cancel the first reducible integral in I3 and the first reducible integral in I4 whereas the
term coming from γ1 times γ2 cancels the second reducible integral in I4. So that Eq. (34)
(the original AWC expression) for the second order perturbative term in the AWC theory, is
recovered.

The correct second order AWC calculation, [�A]′(2) (see Eq. (34)) shows that the
TPT breaks down at small reduced temperatures τ and large packing fractions η, as
expected.

While the superposition approximation has long been used for lack of anything bet-
ter it is known to introduce significant errors in certain applications like that leading to
the Yvon–Born–Green integral equation. With that in mind, it could be interesting to use
the MC method to directly evaluate the terms in the basic expression (3) for the second
order term in the AWC expansion. This would require the simulation of the three and
four-body distribution functions of the reference HS system. That would provide a direct
test of the accuracy of the second order AWC perturbation expression (1). One may in
fact suspect that errors from superposition in Eq. (3) are probably larger than the intrinsic
errors resulting from truncating the expansion that leads to Eq. (3). We plan to address this
point in a forthcoming work and we leave this question as an open problem for the time
being.

The results of the present work could be used to complement the studies in the following
Refs. [17–23].
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Appendix A: Correction to Approximation (45)

One can understand that Eq. (45) is not an exact relation by comparing the small density
expansion of the left and right hand side. For the left hand side we have [9]

∂ ln g0(1, 2)

∂ρ
=

1 2

+
⎛
⎝

1 2

+
1 2

+
1 2

+
1 2

⎞
⎠ 2ρ + O

(
ρ2) ,

(A1)

where in the Mayer graphs the filled circles are field points of weight 1 and connecting bonds
are Mayer functions of the reference system f0. And using

h0(1, 2) =
1 2

+
⎛
⎝

1 2

+
1 2

⎞
⎠ ρ + O

(
ρ2) , (A2)

in the right hand side one finds,

χ id
T

χ0
T

∫
d3 h0(1, 3)h0(2, 3) =

∫
d3 h0(1, 3)h0(2, 3)

1 + ρ

V

∫
d1d2 h0(1, 2)

(A3)

= 1 2

+
⎛
⎝

1 2

+
1 2

+
1 2

⎞
⎠ 2ρ + O

(
ρ2

)

1 +
(

V

)
2ρ + O

(
ρ2)

=
1 2

+
⎡
⎣

1 2

+
1 2

+
1 2

−
⎛
⎝

1 2

⎞
⎠ ·

(
V

)⎤
⎦ 2ρ + O

(
ρ2)

= α0(1, 2) + α1(1, 2) + O
(
ρ2) ,

So that the correction term is of order ρ, namely,

α′
1(1, 2) =

⎡
⎣

1 2

+
⎛
⎝

1 2

⎞
⎠ ·

(
V

)⎤
⎦ 2ρ . (A4)

The correct small density expansion for the density derivative of the two body correlation
function is

∂ρ0(1, 2)

∂ρ
= g0(1, 2)

[
2ρ + ρ2α0(1, 2) + ρ2α1(1, 2) + ρ2α′

1(1, 2) + O
(
ρ4)] , (A5)

where the first term neglected in KSA is ρ2α′
1 = O(ρ3).
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